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Cooperative attitude regulation and tracking problems are discussed in the presence of multiple
time-varying communication delays and dynamically changing topologies. In the case of
cooperative attitude regulation, we propose conditions to guarantee the stability of the closed-loop
system when there exist multiple time-varying communication delays. In the case of cooperative
attitude tracking, the result of uniformly ultimate boundedness of the closed-loop system is
obtained when there exist both multiple time-varying communication delays and dynamically
changing topologies. Simulation results are presented to validate the effectiveness of these
conclusions.

1. Introduction

Cooperative control of multiagent system has been followed with extensive interest in recent
years. Compared to single-agent system, greater benefits such as greater efficiency, lower
costs, and higher robustness can be realized by cooperation of multiagent system. The
basic idea of cooperative control of multiagent system is that each agent in the group uses
its local interactions such that the common objectives and tasks can be achieved [1]. One
important application toward this direction is distributed cooperative attitude control for
multiple rigid bodies. In particular, in the context of deep space interferometry, it is often
necessary and significant to maintain relative attitude synchronization precisely during and
after maneuvers among a formation of spacecraft [2, 3], where cooperative attitude control
may serve as an effective tool.

As a decentralized control strategy, cooperative attitude control demonstrates many
superior qualities compared with the traditionally centralized approaches. A good survey on
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cooperative attitude control can be found in [4]. In particular, a leader-following structure
was used in [2, 5], where the follower spacecraft are assumed to have access to the
information of the leader spacecraft. The authors in [6] proposed a behavioral strategy
to realize attitude synchronization, where the behavior of individual spacecraft attitude
tracking and that of formation keeping were considered together in an index function. As
an alternative to the behavioral strategy, the virtual structure approach was proposed in [7],
where the entire formation is treated as a single rigid body. The communication topology
was highlighted in [8–10] and the attitude coordination problems were presented by using
relative attitude and relative angular velocity information. Attitude containment control for
multiple stationary leaders were considered in [11], where the linearly relative attitude was
expressed by using Modified Rodriguez Parameters (MRPs) as attitude representation.

Although lots of benefits can be obtained from cooperative control of multiagent
system, the performance of such networked system is often subject to communication
failure and communication delays. Plenty results on the influence of delays and dynamically
changing topologies have been obtained for multiagent system described by simplified
models of motion, such as single-integrator dynamics and double-integrator dynamics. In
particular, the authors in [12] presented a consensus algorithm with delays and dynamically
changing topologies and used the time-domain and frequency-domain approaches to find
the stability conditions. Average consensus was considered in [13], where the delays were
assumed nonuniform and the communication topology was assumed jointly-connected. The
similar problem was discussed in [14] where the communication topology was extended
from an undirected graph to a directed one. A second-order consensus regulation algorithm
with nonuniform communication delays was studied in [15] with the focus on a flocking
problem of large scale multiagent systems. Both delay-independent and delay-dependent
conditions were obtained.

The research on the cooperative attitude control problem in the presence of
communication delays and dynamically changing topologies was given in [16, 17], where a
synchronization variable was used to contain both attitude and angular velocity information.
Motivated by the work of [18], the conditions to guarantee cooperative attitude control
with communication delays were obtained. Similar problem was discussed in [19] with
an emphasis on multiple networked Lagrangian systems. Delays, limited data rates, and
bounded disturbance input were considered together in the control law.

This paper is organized as follows. In Sections 2 and 3, we provide basics for
spacecraft attitude dynamics, graph theory, and functional differential equation. In Section 4,
cooperative attitude regulation and tracking problems are described and the control torques
with communication delays and dynamically changing topologies are proposed. The case
of cooperative attitude regulation with multiple time-varying communication delays and
fixed topology is discussed in Section 5, while the case of cooperative attitude tracking
with multiple time-varying communication delays and dynamically changing topologies is
discussed in Section 6. Simulation results are given in Section 7 to validate the theoretical
results. Section 8 contains our concluding remarks.

2. Preliminaries

2.1. Notations

R and C are, respectively, the set of real numbers and the set of complex numbers. λmin(A)
and λmax(A) are, respectively, the minimal eigenvalue and the maximum eigenvalue of the
matrix A. ⊗ denotes the Kronecker product.
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Consistent with [20], we denote Cn,τ as the Banach space of continuous vector
functions mapping the interval [−τ, 0] into R

n with the topology of uniform convergence.
C
v
n,τ = {φ ∈ Cn,τ : ‖φ‖c < v}, where v is a positive real number.

‖ · ‖ stands for the Euclidean vector norm and ‖φ‖c = sup−τ≤t≤0‖φ(t)‖ stands for the
norm of a function φ ∈ Cn,τ .

Q > 0 means that the matrix Q is positive definite.

2.2. Spacecraft Attitude Kinematics and Dynamics

In this paper, the attitude of each spacecraft in a formation is represented by the unit
quaternion, given by qi = [q1, q2, q3, q4]

T
i = [q̂Ti , qi]

T , i = 1, . . . , n. Here q̂i = ei sin(φi/2),
qi = cos(φi/2), where ei and φi are the principle axis and the principle angle of the attitude of
the ith spacecraft and qTi qi = 1 [21]. The product of two unit quaternions pi and qi is defined
by

qipi =
[

qip̂i + piq̂i + q̂i × p̂i
qipi − q̂Ti p̂i

]

. (2.1)

The conjugate of the unit quaternion qi is defined by q−1i = [−q̂Ti , qi]T . Attitude kinematics and
dynamics of each spacecraft using the unit quaternion are given by [21]

q̇i =
1
2
Ei
(

qi
)

ωi, i = 1, . . . , n,

Jiω̇i = −ωi × (Jiωi) + τi, i = 1, . . . , n,
(2.2)

where qi ∈ R
4 denotes the rotation from the body frame of the ith spacecraft to the inertial

frame, ωi is the angular velocity of the ith spacecraft with respect to the inertial frame
expressed in the body frame of the ith spacecraft, and Ei(qi) is given by

Ei
(

qi
)

=
[

qiI3 + S
(

q̂i
)

−q̂Ti

]

, (2.3)

where I3 is the 3×3 identity matrix, S(·) denotes a 3×3 skew-symmetric matrix, and Ji ∈ R
3×3

and τi ∈ R
3 are, respectively, the inertia tensor and control torque of the ith spacecraft.

2.3. Graph Theory [22]

The communication topology among spacecraft in the formation is modeled using graph
theory. An undirected graph G consists of a pair (V,E), where V = {v1, . . . , vn} is a finite
nonempty set of nodes and E ⊆ V × V is a set of unordered pairs of nodes. An edge (vi, vj)
denotes that nodes vi and vj can obtain information from each other. In such case, nodes vi
and vj are neighbors of each other. All the neighbors of node vi are denoted as Ni := {vj |
(vj , vi) ∈ E}, where we assume that vi /∈Ni.

An undirected path is a sequence of edges in a undirected graph of the form
(vi1 , vi2), (vi2 , vi3), . . .. An undirected graph is connected if there is an undirected path between
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every pair of distinct nodes. In this paper, the communication topology is assumed to be
undirected.

The adjacency matrix A = [aij] ∈ R
n×n associated with the undirected graph G is

defined such that aij is a positive value if (vj , vi) ∈ E, and aij = 0 otherwise. We assume that
aij = aji, for all i /= j, since (vj , vi) ∈ E implies (vi, vj) ∈ E in the undirected graph. Also, the
Laplacian matrix L = [lij] ∈ R

n×n associated withA is defined as

lij =

⎧

⎪

⎨

⎪

⎩

∑

j∈Ni

aij , i = j,

−aij , i /= j.
(2.4)

3. Definitions and Lemmas

Suppose f : R × C
v
n,τ �→ R

n is continuous and consider retarded functional differential
equation (RFDE)

ẋ(t) = f(t, xt). (3.1)

Let φ = xt be defined as xt(θ) = x(t + θ), θ ∈ [−τ, 0]. Suppose that the initial condition
satisfies x(θ) = 0, for all θ ∈ [t0 − τ, t0]. Also suppose that the solution x(t0, φ)(t) through
(t0, φ) is continuous in (t0, φ, t) in the domain of definition of the function, where t0 ∈ R.

Definition 3.1 (see [23]). The solutions x(t0, φ) of the RFDE (3.1) are uniformly asymptotically
stable if

(i) for every κ > 0 and for every t0 ≥ 0 there exists a δ = δ(κ) independent of t0 such
that for any φ ∈ C

δ
n,τ the solutions x(t0, φ) of the RFDE (3.1) satisfies xt(t0, φ) ∈ C

κ
n,τ

for all t ≥ t0,
(ii) for every η > 0 and for every t0 ≥ 0 there exists a T(η) independent of t0 and a

v0 > 0 independent of η and t0 such that for any φ ∈ Cn,τ , ‖φ‖c < v0 implies that
‖xt(t0, φ)‖c < η, for all t ≥ t0 + T(η).

Definition 3.2 (see [23]). The solutions x(t0, φ) of the RFDE (3.1) are uniformly ultimately
bounded if there is a β > 0 such that for any α > 0, there is a constant T0(α) > 0 such that
|x(t0, φ)(t)| ≤ β for t ≥ t0 + T0(α) for all t0 ∈ R, φ ∈ C, and |φ| ≤ α.

Lemma 3.3 (Lyapunov-Krasovskii stability theorem [20]). Consider the RFDE (3.1). Suppose
f : R × Cn,τ �→ R

n takes R× (bounded sets of Cn,τ ) into bounded sets of R
n, u(s), v(s), and w(s)

are continuous, nonnegative and nondecreasing functions with u(s), v(s) > 0 for s /= 0 and u(0) =
v(0) = 0. If there exists a continuous function V : R × Cn,τ �→ R such that

(i) u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖c),
(ii) V̇ (t, φ) ≤ −w(‖φ(0)‖),

then the solutions of (3.1) are uniformly stable. In addition, if w(s) > 0 for s > 0, then the solutions
of (3.1) are uniformly asymptotically stable.
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Lemma 3.4 (Lyapunov-Razumikhin uniformly ultimately bounded theorem [23]). Consider
the RFDE (3.1). Suppose f : R × Cn,τ �→ R

n takes R× (bounded sets of Cn,τ ) into bounded sets of
R
n and u, v,w : R

+ �→ R
+ are continuous nonincreasing functions, u(s) → ∞ as s → ∞. If there

is a continuous function V : R × R
n �→ R, a continuous nondecreasing function p : R

+ �→ R
+,

p(s) > s for s > 0, and a constant H ≥ 0 such that u(‖x‖) ≤ V (x) ≤ v(‖x‖), t ∈ R, x ∈ R
n,

and V̇ (t, φ) ≤ −w(‖φ(0)‖) if ‖φ(0)‖ ≥ H, V (t + θ, φ(θ)) < p(V (t, φ(0))), θ ∈ [−τ, 0], then the
solutions of (3.1) are uniformly ultimately bounded.

4. Problem Statement

In this paper, we consider cooperative attitude regulation and tracking problems for multiple
rigid bodies in the presence of multiple time-varying delays and dynamically changing
topologies. The objectives are to guarantee that each spacecraft tracks the constant or time-
varying states of the leader spacecraft while aligning their attitudes within the formation.
Cooperative attitude regulation control law with zero delay and fixed topology is proposed
in [8] as

τi = −Kiq̂i −Diωi −
n
∑

j=1

aij q̂ij −
n
∑

j=1

aijωij , (4.1)

where Ki and Di are nonnegative constants, aij is the (i, j)th entry of the adjacency matrix
A associated with the graph G, qij = q−1j qi, q̂ij is the vector part of qij , ωij = ωi − A(qij)ωj,

and A(qij) = A(qi)AT (qj) denotes the rotation matrix [21]. Here qij represents the relative
attitude between spacecraft i and spacecraft j, andωij represents the relative angular velocity
between spacecraft i and spacecraft j. Note that the existence of the attitude consensus terms
−∑n

j=1 aij q̂ij −
∑n

j=1 aijωij help to guarantee that the attitude of each follower spacecraft will
be close to its neighbors. This is necessary in certain spacecraft mission, such as distributed
synthetic-aperture imaging mission [24], where the attitude control system is required to
have the ability to ensure relative attitude keeping during the maneuver.

Cooperative attitude tracking control law with zero delay and fixed topology is
proposed in [9] as

τi = JiA
(

Δqi
)

ω̇d +ω
bi
d
× Jiωbi

d
−Ki

̂Δqi −DiΔωi −
n
∑

j=1

aij q̂ij −
n
∑

j=1

aijωij , (4.2)

where qd and ωd denote, respectively, the time-varyingly desired attitude and angular
velocity of the leader spacecraft, Δqi = q−1d qi, ̂Δqi is the vector part of Δqi, ω

bi
d = A(Δqi)ωd,

A(Δqi) = A(qi)AT (qd), and Δωi = ωi − ωbi
d
. Here Δqi denotes the relative attitude between

spacecraft i and the leader, Δωi denotes the relative angular velocity between spacecraft i
and the leader. By using (4.1) for (2.2), cooperative attitude regulation, that is, qi → qI and
ωi → 0, is achieved, where qI denotes the identity quaternion [0, 0, 0, 1]T . By using (4.2) for
(2.2), cooperative attitude tracking, that is, qi → qd and ωi → ωd is achieved.

In this paper, we extend cooperative attitude regulation and tracking control laws to
the cases where there exist multiple time-varying communication delays and dynamically
changing topologies. For the first part, we discuss cooperative attitude regulation problem
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in the presence of multiple time-varying communication delays and assume that the
communication topology is fixed. A model-independent control torque τi is proposed

τi = −Kiq̂i −Diωi −
n
∑

j=1

aij
[

q̂i − q̂j
(

t − Tij(t)
)] −

n
∑

j=1

aij
[

ωi − lijAij

(

t − Tij(t)
)

ωj

(

t − Tij(t)
)]

,

(4.3)

where Ki, Di, and aij are defined after (4.1), lij is a nonnegative constant, Tij = Tji denotes
multiple time-varying communication delay, and Aij(t − Tij(t)) = A(qi)AT (qj(t − Tij)). For
the second part, we discuss cooperative attitude tracking problem in the presence of multiple
time-varying communication delays and dynamically changing topologies, where a model-
independent control torque τi is proposed,

τi = −Ki
̂Δqi −DiΔωi −

n
∑

j=1

aσij

[

̂Δqi − ̂Δqj
(

t − Tij(t)
)

]

, (4.4)

where ̂Δqi and Δωi are defined after (4.2). Following the similar definition given in [25], the
dynamically changing topology is defined as σ : [0,+∞) → ψΓ, where the set Γ is a finite
collection of undirected graphs with a common node set. Then aσij denotes the (i, j)th entry
of the adjacency matrix Aσ associated with the communication topology Gσ . Before moving
on, we assume that ωd and ω̇d are bounded and define γJi = ‖Ji‖, γd = supt≥0‖ωd(t)‖, and
β1 = ‖ω̇d‖ + ‖ωd‖2 in this paper.

Remark 4.1. Compared with (4.3), (4.4) introduces absolute angular velocity damping, thus
avoiding introducing the communication delays of relative angular velocity information
between the follower spacecraft.

5. Cooperative Attitude Regulation with Multiple Time-Varying
Communication Delays and Fixed Topology

In this section, we propose proper conditions to guarantee that cooperative attitude
regulation is achieved by using (4.3) for (2.2). Before moving on, we need the following
lemma.

Lemma 5.1. The matrix M = L + diag(K1, . . . , Kn) is symmetric and positive definite if the
undirected graph G is connected and at least one Ki > 0, where L is the Laplacian matrix of graph G.

Proof. See the proof of Lemma 4 [25].

Motivated by the works of [15, 16, 18], we provide the following theorem for closed-
loop systems (2.2)with (4.3).
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Theorem 5.2. Using (4.3) for (2.2), if M > 0, Di > 0, for all i, ρij < aij , 4ρij(1 − Ṫij)(aij − ρij) >
l2ija

2
ij , when aij /= 0, and W > 0, cooperative attitude regulation, that is, qi → qI and ωi → 0, is

achieved, whereW is given by

W =

⎡

⎢

⎢

⎢

⎣

cM − c2D − 1
2
c2B (M −K − cB − cC)

2

(M −K − cB − cC)
2

D − B − 1
2
cF

⎤

⎥

⎥

⎥

⎦

, (5.1)

and c, ρij , D, K,M, B, C, D, and F are defined in the proof.

Proof. Consider the following Lyapunov function candidate

V =
n
∑

i=1

(Ki + cDi)
∥

∥qi − qI
∥

∥

2 +
1
2

n
∑

i=1

ωT
i Jiωi +

n
∑

i=1

cq̂Ti Jiωi +
n
∑

i=1

n
∑

j=1

∫0

−Tij (t)
ρij
∥

∥ωj(t + s)
∥

∥

2
ds

+
1
2

n
∑

i=1

n
∑

j=1

∫0

−Tij (t)

∫0

μ

aij
∥

∥ ˙̂qj(t + s)
∥

∥

2
dsdμ,

(5.2)

where c is a positive constant, ρij = 0 when aij = 0, and ρij is a positive constant when aij /= 0.
It is easy to verify that V is positive definite if 2(Ki + cDi)λmin(Ji) > c2λ2max(Ji), for all i [26].
This implies that the selection of sufficiently small c guarantees that V is positive definite.
Taking the derivative of V gives

V̇ =
n
∑

i=1

(Ki + cDi)q̂Ti ωi −
n
∑

i=1

(

ωi + cq̂i
)T

⎡

⎣Kiq̂i +
n
∑

j=1

aij
(

q̂i(t) − q̂j(t)
)

⎤

⎦

−
n
∑

i=1

(

ωi + cq̂i
)T

⎧

⎨

⎩

Diωi +
n
∑

j=1

aij
[

ωi − lijAij

(

t − Tij(t)
)

ωj

(

t − Tij(t)
)]

⎫

⎬

⎭

+
n
∑

i=1

cq̂Ti (−ωi × Jiωi)

+
1
2

n
∑

i=1

c
[(

qiI3 + S
(

q̂i
))

ωi

]T
Jiωi −

n
∑

i=1

(

ωi + cq̂i
)T

n
∑

j=1

∫0

−Tij (t)
aij ˙̂qj

(

t + μ
)

dμ

+
1
2

n
∑

i=1

n
∑

j=1

∫0

−Tij (t)
aij
[

˙̂qTj (t) ˙̂qj(t) − ˙̂qj
(

t + μ
)T ˙̂qj

(

t + μ
)

]

dμ

+ ρij
n
∑

i=1

n
∑

j=1

ωj(t)Tωj(t) − ρij
n
∑

i=1

n
∑

j=1

(

1 − Ṫij
)

ωj

(

t − Tij
)T
ωj

(

t − Tij
)

,

(5.3)
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where we have used the fact thatωT
i (ωi×Jiωi) = 0 and Leibniz-Newton formula q̂j(t−Tij(t)) =

q̂j(t) −
∫0
−Tij

˙̂qj(t + μ)dμ [23]. It thus follows that

V̇ ≤ 1
2
c

n
∑

i=1

γJi‖ωi‖2 − cq̂T (M ⊗ I3)q̂ −ωT (M ⊗ I3)q̂ + q̂T (K + cD) ⊗ I3ω

+
1
2

n
∑

i=1

n
∑

j=1

Tijaij
∥

∥ωi + cq̂i
∥

∥

2

− 1
2

n
∑

i=1

n
∑

j=1

∫0

−Tij
aij
∥

∥ωi + cq̂i + ˙̂qj(t + μ)
∥

∥

2
dμ

+
1
2

n
∑

i=1

n
∑

j=1

Tijaijω
T
j

(

qjI3 + S
(

q̂j
)

)T(

qjI3 + S
(

q̂j
)

)

ωj

−
n
∑

i=1

n
∑

j=1

(

aij − ρij
)

∥

∥

∥

∥

∥

(ωi + cq̂i) −
lijaij

2(aij − ρij)Aij(t − Tij)ωj(t − Tij)
∥

∥

∥

∥

∥

2

+ ρij
n
∑

i=1

n
∑

j=1

ωT
j ωj +

n
∑

i=1

n
∑

j=1

(

aij − ρij
)∥

∥ωi + cq̂i
∥

∥

2

−
n
∑

i=1

n
∑

j=1

aij
(

ωi + cq̂i
)T
ωi −

n
∑

i=1

n
∑

j=1

[

ρij
(

1 − Ṫij
) −

l2ija
2
ij

4
(

aij − ρij
)

]

∥

∥ωi(t − Tij)
∥

∥

2

−
n
∑

i=1

Di‖ωi‖2 −
n
∑

i=1

cDiq̂
T
i ωi,

(5.4)

where q̂ = [q̂T1 , q̂
T
2 , . . . , q̂

T
n]

T , ω = [ωT
1 , ω

T
2 , . . . , ω

T
n]

T , K = diag(K1, . . . , Kn), M = L + K, and
D = diag(D1, . . . , Dn). Based on the conditions that ρij < aij and 4ρij(1 − Ṫij)(aij − ρij) > l2ija2ij
when aij /= 0, we have that

V̇ ≤ 1
2
c

n
∑

i=1

γJi‖ωi‖2 − cq̂T(M ⊗ I3)q̂ −ωT (M ⊗ I3)q̂ + q̂T (K ⊗ I3)ω

−ωT (D ⊗ I3)ω +
1
2

n
∑

i=1

n
∑

j=1

Tijaij
∥

∥ωi + cq̂i
∥

∥

2

+
1
2

n
∑

i=1

n
∑

j=1

Tijaijω
T
i ωi + c

n
∑

i=1

n
∑

j=1

(

aij − 2ρij
)

ωT
i q̂i + c

2
n
∑

i=1

n
∑

j=1

(

aij − ρij
)

q̂Ti q̂i

= −q̂T
(

cM − c2D − 1
2
c2B

)

⊗ I3q̂ +ωT (−M +K + cB + cC)

⊗ I3q̂ −ωT

(

D − B − 1
2
cF

)

⊗ I3ω,

(5.5)



Mathematical Problems in Engineering 9

where we have used the fact that
∑n

i=1
∑n

j=1 aijω
T
j ωj =

∑n
i=1

∑n
j=1 aijω

T
i ωi (graph G is

undirected). Here we also define B = [bij], C = [cij], D = [dij], andF as n×nmatrices, where
bij = Tijaij , cij = aij−2ρij , dij = aij−ρij , andF = diag(γJ1 , . . . , γJn). Based on the conditions that
M is positive definite and D is positive definite (Di > 0, for all i), for the sufficient small Tij
and c, it is easy to verify that there always existM andD to guaranteeW is positive definite.
Then, Lemma 3.3 implies the stability of the closed-loop systems (2.2) with (4.3) from the
condition that W > 0. Thus, cooperative attitude regulation, that is, qi → qI , and ωi → 0 is
achieved under the conditions provided in Theorem 5.2.

Remark 5.3. It follows that M is positive definite from Lemma 5.1 if the undirected graph G
is connected and at least one Ki > 0. This implies conditions that the undirected graph G is
connected and at least one Ki > 0 can be used to replace condition thatM > 0.

Remark 5.4. Note that the parameters ρij and c in the proposed conditions in Theorem 5.2 are
independent of control parameters in control torque (4.3).

Remark 5.5. The cooperative attitude regulation problem in the presence of communication
delays was also discussed in the work of [16]. In contrast to [16], we do not assume that
relative attitude information and relative angular velocity information between different
follower spacecraft could be described in a united variable. This may increase the flexibility
of the design.

6. Cooperative Attitude Tracking with Multiple Time-Varying
Communication Delays and Dynamically Changing Topologies

In this section, the conditions to guarantee cooperative attitude tracking in the presence
of multiple time-varying communication delays and dynamically changing topologies are
obtained. We first transform the closed-loop systems (2.2) to the error kinematic and dynamic
as

Δ̇qi =
1
2
Ei
(

Δqi
)

Δωi,

JiΔ̇ωi = −ωi × (Jiωi) − JiA
(

Δqi
)

ω̇d + JiΔωi ×ωbi
d
+ τi,

(6.1)

where Δqi, Δωi, and ωbi
d
are defined after (4.2). Also define τ = [τT1 , . . . , τ

T
n ]

T . We can then
transform (4.4) to the matrix expression

τ = −(Mσ ⊗ I3)̂Δq − (D ⊗ I3)Δω −
r
∑

k=1

(Aσ
k ⊗ I3

)

∫0

−Tk(t)
̂Δq
(

t + μ
)

dμ, (6.2)
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Figure 1: Communication topologies.

where ̂Δq = [̂Δq
T

1 ,
̂Δq

T

2 , . . . ,
̂Δq

T

n]
T , Δω = [ΔωT

1 ,Δω
T
2 , . . . ,Δω

T
n]

T , K = diag(K1, . . . , Kn), Mσ =
Lσ+K, Lσ is the Laplacian matrix ofGσ, D = diag(D1, . . . , Dn), Tk(t) ∈ {Tij(t) : i, j = 1, . . . , n}
for k = 1, . . . , r, and r = n(n − 1)/2, Aσ

k = [aijk] is a corresponding n × nmatrix, where

aijk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

aσij , Tk = Tij ,

0, Tk /= Tij .

(6.3)

Before moving on, we need the following lemma.

Lemma 6.1 ([27]). For any a, b ∈ R
n and any symmetric positive definite matrix Φ ∈ R

n×n, one has
2aTb ≤ aTΦ−1a + bTΦb.

Theorem 6.2. Using (4.4) for (2.2), if Mσ > 0 in each time interval, Di > 0, for all i, and
Q =

[

Q11 Q12
Q12 Q22

]

> 0, where Q11 = cMσ − (1/2)c2
∑r

k=1 TkAσ
k (Aσ

k )
T , Q12 = [−K + Mσ −

c
∑r

k=1 TkAσ
k
(Aσ

k
)T ]/2, Q22 = D − F∈ − (1/2)

∑r
k=1 TkAσ

k
(Aσ

k
)T , andF∈ = diag((3/2)cγJ1 +

(1/2)
∑r

k=1 Tkq(λmax(P2)/λmin(P1)), . . . , (3/2)cγJn + (1/2)
∑r

k=1 Tkq(λmax(P2)/λmin(P1))), the

error state x of the closed-loop system is uniformly ultimately bounded, where x = [̂Δq
T
,ΔωT ]T .

In particular, the ultimate bound of x is λmax(P2)b/λmin(P1)θλmin(Q) (c, q, P1, P2, b, θ will be
defined in the proof).

Proof. Consider the following Lyapunov function candidate

V =
n
∑

i=1

(Ki + cDi)
∥

∥Δqi − qI
∥

∥

2 +
1
2

n
∑

i=1

ΔωT
i JiΔωi +

n
∑

i=1

ĉΔq
T

i JiΔωi, (6.4)
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Figure 2: Rigid body attitudes with control law (4.3).

where c is a positive constant. By using the fact that ‖Δqi − qI‖2 ≤ 2‖̂Δqi‖2, we know that
xTP1x ≤ V ≤ xTP2x, where

P1 =

⎡

⎢

⎢

⎢

⎣

(K + cD) ⊗ I3 1
2
cJ ⊗ I3

1
2
cJ ⊗ I3 1

2
J ⊗ I3

⎤

⎥

⎥

⎥

⎦

,

P2 =

⎡

⎢

⎢

⎢

⎣

2(K + cD) ⊗ I3 1
2
cJ ⊗ I3

1
2
cJ ⊗ I3 1

2
J ⊗ I3

⎤

⎥

⎥

⎥

⎦

,

(6.5)
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Figure 3: Rigid body angular velocities with control law (4.3).

and J = diag(J1, . . . , Jn). We also know that V is positive definite if c is chosen properly to
ensure 2(Ki + cDi)λmin(Ji) > c2λ2max(Ji), for all i. Taking the derivative of V gives

V̇ ≤
n
∑

i=1

(Ki + cDi)̂Δq
T

i Δωi −
n
∑

i=1

(

Δωi + ĉΔqi
)T

⎡

⎣Ki
̂Δqi +

n
∑

j=1

aσij

(

̂Δqi(t) − ̂Δqj(t)
)

+DiΔωi

⎤

⎦

+
n
∑

i=1

{

γJiβ1‖Δωi‖ + cγJiβ1
∥

∥

∥

̂Δqi
∥

∥

∥ + cγJi‖Δωi‖2 + 3cγJiγJd
∥

∥

∥

̂Δqi
∥

∥

∥‖Δωi‖

+
1
2
c
[(

ΔqiI3 + S
(

̂Δqi
))

Δωi

]T
JiΔωi

}

+
(

Δω + ĉΔq
)T r
∑

k=1

(Aσ
k ⊗ I3

)

∫0

−Tk(t)
̂Δq
(

t + μ
)

dμ,

(6.6)

where we have used (6.1), and the facts that ΔωT
i (−ωi × (Jiωi) − JiA(Δqi)ω̇d + JiΔωi ×ωbi

d
) =

ΔωT
i (−JiA(Δqi)ω̇d−ωbi

d
×Jiωbi

d
) ≤ γJiβ1‖Δωi‖ and ̂Δq

T

i (−ωi×(Jiωi)−JiA(Δqi)ω̇d+JiΔωi×ωbi
d
) =
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Figure 4: Rigid body control torques with control law (4.3).

̂Δq
T

i (−JiA(Δqi)ω̇d − ωbi
d
× Jiωbi

d
+ JiΔωi × ωbi

d
− ωbi

d
× JiΔωi − Δωi × JiΔωi − Δωi × Jiωbi

d
) ≤

γJiβ1‖̂Δqi‖ + γJi‖Δωi‖2 + 3γJiγd‖̂Δqi‖‖Δωi‖. We then have that

V̇ ≤ ̂Δq
T
(K + cD) ⊗ I3Δω − ĉΔqT (Mσ ⊗ I3)̂Δq − ̂Δq

T
(Mσ ⊗ I3)Δω

−ΔωT (D ⊗ I3)Δω − ĉΔqT (D ⊗ I3)Δω

+
n
∑

i=1

β1γJi‖Δωi‖ +
n
∑

i=1

cβ1γJi

∥

∥

∥

̂Δqi
∥

∥

∥ +
3
2

n
∑

i=1

cγJi‖Δωi‖2 +
n
∑

i=1

3cγJdγJi‖Δωi‖

+
1
2

r
∑

k=1

∫0

−Tk(t)

(

Δω + ĉΔq
)T[Aσ

k

(Aσ
k

)T
]

⊗ I3
(

Δω + ĉΔq
)

+
1
2

r
∑

k=1

∫0

−Tk(t)
̂Δq
(

t + μ
)T

̂Δq
(

t + μ
)

dμ,

(6.7)
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Figure 5: Rigid body attitudes with control law (4.4).

where we have used the fact that ‖̂Δqi‖ ≤ 1, for all i and Lemma 6.1 to derive the inequality.
Take φ(s) = qs for some constant q > 1. In the case of

V (x(t + θ)) < qV (x(t)), −supk{Tk} ≤ θ ≤ 0, (6.8)

we know that λmin(P1)‖Δω‖2(t+θ) < qλmax(P2)(‖Δω‖2 + ‖̂Δq‖2). (Note that this is a property
inherited from Lyapunov-Razumikhin uniformly ultimately bounded theorem.) Thus, we
have that

V̇ ≤ ̂Δq
T
(K −Mσ) ⊗ I3Δω − ĉΔqT (Mσ ⊗ I3)̂Δq −ΔωT (D ⊗ I3)Δω

+
n
∑

i=1

β1γJi‖Δωi‖ +
n
∑

i=1

cβ1γJi

∥

∥

∥

̂Δqi
∥

∥

∥ +
3
2

n
∑

i=1

cγJi‖Δωi‖2 +
n
∑

i=1

3cγJdγJi‖Δωi‖

+
1
2

r
∑

k=1

Tk
(

Δω + ĉΔq
)T[Aσ

k

(Aσ
k

)T
]

⊗ I3
(

Δω + ĉΔq
)

+
1
2

r
∑

k=1

Tkq
λmax(P2)
λmin(P1)

(

‖Δω‖2 +
∥

∥

∥

̂Δq
∥

∥

∥

2
)

= −xT (Q ⊗ I3)x +wTy,

(6.9)
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Figure 6: Rigid body angular velocities with control law (4.4).

where y = [‖̂Δq1‖, . . . , ‖̂Δqn‖, ‖Δω1‖, . . . , ‖Δωn‖]T , Q is defined in Theorem 6.2, and w =
[cβ1γJ1 +(1/2)

∑r
k=1 Tkq(λmax(P2)/λmin(P1)), . . . , cβ1γJn +(1/2)

∑r
k=1 Tkq(λmax(P2)/λmin(P1)),

(3cγJd + β1)γJ1 , . . . , (3cγJd + β1)γJn]
T . Based on the conditions thatMσ > 0 in each time interval

and D > 0 (Di > 0, for all i), for the sufficient small Tij and c, it is easy to verify that there
always existMσ and D to guarantee Q is positive definite. Therefore, we have that

V̇ ≤ −λmin(Q)‖x‖2 + b∥∥y∥∥ = −λmin(Q)‖x‖2 + b‖x‖, (6.10)

where b =
√

∑n
i=1(cβ1γJi + (1/2)

∑r
k=1 Tkq(λmax(P2)/λmin(P1)))

2 +
∑n

i=1 γ
2
Ji
(3cγJd + β1)

2. Thus,
for 0 < θ < 1, if ‖x‖ ≥ b/θλmin(Q), we have that

V̇ = −(1 − θ)λmin(Q)‖x‖2 − θλmin(Q)‖x‖2 + b‖x‖ ≤ −(1 − θ)λmin(Q)‖x‖2. (6.11)

Therefore, the uniformly ultimate boundedness of x follows from Lemma 3.4. In addition,
the ultimate bound is λmax(P2)b/λmin(P1)θλmin(Q) by following a similar analysis to that in
[28].
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Figure 7: Rigid body control torques with control law (4.4).

Remark 6.3. Note that both the case of cooperative regulation and that of cooperative tracking
discussed in this paper introduce model-independent control laws. The final errors converge
to zero for the cooperative regulation case while the final errors are bounded for the
cooperative tracking case. The authors in [26] showed that the final errors will be decreased
effectively if the control parameters are chosen large enough for the tracking case. Similar
conclusion also holds for our control law.

Remark 6.4. Note that the stability or uniformly ultimate boundedness conditions given in
Theorems 5.2 and 6.2 are just sufficient conditions, not the necessary conditions.

Remark 6.5. Note that the bounds of the communication delays to guarantee the stability or
uniformly ultimate boundedness of the closed-loop systems are implied in the conditions
thatW > 0 for the regulation case and Q > 0 for the tracking case. Also note that the bounds
of the communication delays are related to the control parameters and their relationship is
indirect.

Remark 6.6. Reference [17] also discussed the cooperative attitude tracking problem in the
presence of communication delays and dynamically changing topologies, where stability
result was obtained by using Lyapunov-Krasovskii Theorem. In contrast, here we use
Lyapunov-Razumikhin Theorem to derive uniformly ultimate boundedness results of the
closed-loop systems.
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Table 1: Spacecraft specifications.

J1 [23.0 0.1 0.1; 0.1 22.2 0.1; 0.1 0.1 23.2] kg ·m2

J2 [22.5 0.1 −0.3; 0.1 22.1 0.1; −0.3 0.1 24.1] kg ·m2

J3 [24.0 −0.2 0.1; 0 21.2 0.1; 0.1 −0.1 22.2] kg ·m2

7. Simulation

In this section, control laws (4.3) and (4.4) are used in simulation to achieve cooperative atti-
tude regulation and tracking among three follower spacecraft. The spacecraft specifications
are given in Table 1.

For control law (4.3), we choose the control parameters asKi = 2, Di = 5, and lij = 0.3,
for all i, j. qi(0) and ωi(0), i = 1, 2, 3 are generated randomly. For control law (4.4), we
choose the control parameters as Ki = 2.2 andDi = 11. qi(0) and ωi(0), i = 1, 2, 3 are
generated randomly. Suppose that the reference attitude qd(t), reference angular velocity
ωd(t) = 2E−1(qd)q̇d, reference torque τd and reference inertia satisfy (2.2) with qd(0) =
[0.3921, 0.5502, 0.5287, 0.5139]T (the corresponding Euler Angles are ψ = 80 deg, φ = 60 deg,
and θ = 40 deg), ωd(0) = [0.021,−0.012, 0.014]T rad/s, τd = [0, 0, 0]T Nm, and Jd =
[22.0, 0.2,−0.1; 0.2, 23.1, 0.3;−0.1, 0.3, 21.3] kgm2. For communication topology, we assume
that aij = 1 if (j, i) ∈ E, and aij = 0 otherwise. For control law (4.3), the communication
topology for follower spacecraft is fixed and determined by G1 in Figure 1(a). For control
law (4.4), the communication topology for follower spacecraft is switching between G1 in
Figure 1(a) and G2 in Figure 1(b) every one second. The time-varying communication delays
are chosen as T12 = T21 = 0.4| sin(0.2t)|, T13 = T31 = 0.3| cos(0.4t)|, and T23 = T32 =
0.5| sin(0.3t)|.

Figures 2, 3, and 4 show, respectively, the attitudes, angular velocities, and control
torques of follower spacecraft 1, 2, and 3 using (4.3) for (2.2). We can see from the figures that
if the control parameters are selected properly, all spacecraft can regulate their attitude and
angular velocity to zero even if there exists multiple time-varying communication delays.

Figures 5, 6 and 7 show, respectively, the attitudes, angular velocities and control
torques of follower spacecraft 1, 2 and 3 using (4.4) for (2.2). We can see from the figures that
if the control parameters are selected properly, all spacecraft can track time-varyingly desired
attitude and angular velocity even if there exists multiple time-varying communication
delays and dynamically changing topologies.

8. Conclusions

In this paper, the cooperative attitude regulation problem in the presence of multiple time-
varying communication delays and the cooperative attitude tracking problem in the presence
of multiple time-varying communication delays and dynamically changing topologies are
discussed. Lyapunov-Krasovskii Theorem and Lyapunov-Razumikhin Theorem are used
to derive the conditions to guarantee the stability or uniformly ultimate boundedness
of the closed-loop system. Simulation results validate the effectiveness of the theoretical
results. Future work will include proposing a more practical design by addressing the
sign ambiguity problem for the unit quaternion description and discussing the cooperative
attitude regulation problem in the presence of both communication delays and dynamically
changing topologies.
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[19] P. F. Hokayem, D. M. Stipanović, and M. W. Spong, “Semiautonomous control of multiple networked
Lagrangian systems,” International Journal of Robust and Nonlinear Control, vol. 19, no. 18, pp. 2040–
2055, 2009.

[20] S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer, London, UK, 2003.
[21] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems, American Institute of Aeronautics

and Astronautics, 2003.
[22] F. R. K. Chung, Spectral Graph Theory, vol. 92, American Mathematical Society, 1997.
[23] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied

Mathematical Sciences, Springer, New York, NY, USA, 1993.
[24] W. Kang and H. H. Yeh, “Coordinated attitude control of multisatellite systems,” International Journal

of Robust Nonlinear Control, vol. 12, no. 2-3, pp. 185–205, 2002.
[25] J. Hu and Y. Hong, “Leader-following coordination of multi-agent systems with coupling time

delays,” Physica A, vol. 374, no. 2, pp. 853–863, 2007.
[26] J.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,” IEEE Transactions on Automatic



Mathematical Problems in Engineering 19

Control, vol. 36, no. 10, pp. 1148–1162, 1991.
[27] K. Peng and Y. Yang, “Leader-following consensus problem with a varying-velocity leader and time-

varying delays,” Physica A, vol. 388, no. 2-3, pp. 193–208, 2009.
[28] H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2002.


