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This paper deals with robust control of continuous bioprocesses. According to the material
balance equations of continuous bioprocesses, a uniform framework for mathematical modeling
of this class of processes is first presented. Then a robust controller is designed by using the H∞
mixed sensitivity method for the biotechnology processes. The corresponding control objective
is described as the development of a robust reference-tracking control structure with the best
possible disturbance compensation, able to cope with variations in key process parameters. Finally,
the proposed robust control strategy is applied to bio-dissimilation process of glycerol to 1, 3-
propanediol. Simulation results are given which show that the designed robust controller makes
the system have a favourable robust tracking performance.

1. Introduction

The goal of bioprocess control is to optimize the performance of processes involving
industrially important organisms, biomedically relevant species, and the degradation of
pollutants [1]. In general, a mathematical model describing the biotechnological process is
first needed to do this task. However, it is difficult to obtain its exact process model due to the
intrinsic complexity of biological system. Even if the mathematical model is built up, model
parameters will vary with the working conditions. In addition, external disturbance signals
also have an important effect on the system. These uncertain factors can deteriorate the
performance of a bioprocess and lead to the instability of the process. One efficient approach
to solving such problems is to design a robust controller via the robust control theory [2–16].
The robust control approach integrates the uncertainty involved in model parameters and
external disturbance to synthesize a control law which maintains real plants to work within
desired performance specifications despite the effects of uncertainty on the system.

The goals of this work are to represent continuous bioprocesses within an uncertain,
linear model framework and to design a robust controller that would perform satisfactorily.
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Figure 1: Schematic representation of continuous stirred tank bioreactors.

The corresponding control objective is described as the development of a robust reference-
tracking control structure with the best possible disturbance compensation. Simulation
results are given which show that the designed robust controller not only ensures the robust
stability of the bioprocess in face of the parametric variations in the model, but also makes
the system have a favourable robust tracking performance.

In the sequel, we first describe the continuous bioprocesses and present a uniform
framework for mathematical modeling of this class of processes. This is followed by a
discussion of H∞ mixed sensitivity approach and selection strategies for weighting functions
used to H∞ design. Then continuous bio-dissimilation of glycerol to 1, 3-propanediol is
chosen as a case study and is presented in terms of simulation experiments. Finally, brief
conclusions are given in Section 5.

2. Modeling of Continuous Bioprocesses

2.1. Material Balance Equations

The process considered is a continuous stirred tank bioreactor shown in Figure 1. The
characteristic of this kind of process is that the reactor is continuously fed with the substrate
influent. The rate of outflow is equal to the rate of inflow and the volume of culture remains
constant.

The general process model obtained from material balances and conservation laws has
the following description:

d(XB)
dt

= μ(CS,CP1 , CP2 , . . . , CPn)XB −DXB,

d(CS)
dt

= D(CSF − CS) − qS(CS,CP1 , CP2 , . . . , CPn)XB,

d(CPi)
dt

= qPi(CS,CP1 , CP2 , . . . , CPn ,D)XB −DCPi , i = 1, 2, . . . , n,

(2.1)

where CSF is the external substrate concentration; D is the dilution rate; XB, CS, and CPi are
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the concentrations of biomass, substrate, and product Pi, respectively; μ, qS, and qPi are the
specific growth rate of cells, specific consumption rate of substrate, specific formation rate
of product Pi, respectively. In general μ and qS are the functions of substrate concentration
CS and product concentrations CPi . But for the specific formation rate qPi , its expression is a
function of substrate concentration CS, product concentrations CPi , and dilution rate D (e.g.,
the specific formation rate of product ethanol in bio-dissimilation process of glycerol to 1, 3-
propanediol, see Section 4).

2.2. Control Model of Continuous Bioprocesses

The process dynamics (2.1) is represented as a linear model with uncertain parameters

ẋ = A(θ)x + B(θ)u,

y = Cx,
(2.2)

where x = (XB,CS, CP1 , CP2 , . . . , CPn)
T ∈ Rn+2 is used for the vector of states, u = D is the

control input, y = CS is the measured output, θ = (XB,CS, CP1 , CP2 , . . . , CPn ,D)T ∈ Rn+3 is a
vector of describing uncertain parameters, and

A(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ(θ2, θ3, . . . , θn+2) 0 0 · · · 0

−qS(θ2, θ3, . . . , θn+2) 0 0 · · · 0

qP1(θ2, θ3, . . . , θn+3) 0 0 · · · 0

...
...

...
. . .

...

qPn(θ2, θ3, . . . , θn+3) 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−θ1

CSF − θ2

−θ3

...

−θn+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(2.3)

The specific growth rate of cells (μ), specific consumption rate of substrate (qS), and
specific formation rate of product Pi(qPi) will change within certain ranges due to variations
in the working conditions. In other words, all parameters in A(θ) and B(θ) are accepted to
vary within known bounds.

Considering all the uncertain parameters in θ, we allow their changes of up to Hk%
(0 < Hk ≤ 100, k = 1, 2, . . . , n + 3) around the nominal values, respectively. Then all uncertain
parameters can be uniformly denoted as

θ = (I +HΔ)θ0, (2.4)

where θ0 = (XB0, CS0, CP10, CP20, . . . , CPn0, D0)
T is the nominal value of vector θ, I is the identity
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matrix, and H and Δ are the diagonal matrices with the following formulations:

H =

⎡
⎢⎢⎢⎣

H1

H2
. . .

Hn+3

⎤
⎥⎥⎥⎦, Δ =

⎡
⎢⎢⎢⎣

Δ1

Δ2
. . .

Δn+3

⎤
⎥⎥⎥⎦, (2.5)

where |Δk| ≤ 1 (k = 1, 2, . . . , n + 3).
The following Theorem 2.1 provides a uniform framework for mathematical modeling

of continuous bioprocesses.

Theorem 2.1. The transfer function model for continuous bioprocesses can be formulated uniformly
as

GP (s) = 1. (2.6)

Proof. For θk ∈ [θ0k(1 −Hk), θ0k(1 +Hk)], the transfer function of the process can be derived
as

GP (s) = C(sI −A(θ))−1B(θ)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

s
s
s

. . .
s

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎣

μ 0 0 · · · 0
−qS 0 0 · · · 0
qP1 0 0 · · · 0

...
...

...
. . .

...
qPn 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

−1⎡
⎢⎢⎢⎢⎢⎢⎣

−θ1

CSF − θ2

−θ3
...

−θn+2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s − μ(θ2, θ3, . . . , θn+2) 0 0 · · · 0
qS(θ2, θ3, . . . , θn+2) s 0 · · · 0
−qP1(θ2, θ3, . . . , θn+3) 0 s · · · 0

...
...

...
. . .

...
−qPn(θ2, θ3, . . . , θn+3) 0 0 · · · s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−θ1

CSF − θ2

−θ3

...
−θn+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s − μ(θ2, θ3, . . . , θn+2)

0 0 · · · 0

−qS(θ2, θ3, . . . , θn+2)
s
(
s − μ(θ2, θ3, . . . , θn+2)

) 1
s

0 · · · 0

qP1(θ2, θ3, . . . , θn+3)
s
(
s − μ(θ2, θ3, . . . , θn+2)

) 0
1
s
· · · 0

...
...

...
. . .

...
qPn(θ2, θ3, . . . , θn+3)

s
(
s − μ(θ2, θ3, . . . , θn+2)

) 0 0 · · · 1
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−θ1

CSF − θ2

−θ3

...
−θn+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
qS(θ2, θ3, . . . , θn+2)θ1 + (CSF − θ2)

(
s − μ(θ2, θ3, . . . , θn+2)

)

s
(
s − μ(θ2, θ3, . . . , θn+2)

) .

(2.7)
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Replacing θ1 and θ2 with XB and CS, respectively, we have

GP (s) =
qSXB + (CSF − CS)

(
s − μ

)

s
(
s − μ

) . (2.8)

This model describes the transfer functions of continuous bioprocesses for all uncertain
parameters θk ∈ [θ0k(1 −Hk), θ0k(1 +Hk)].

In this paper, we choose the multiplicative form of uncertainty modeling to represent
the relative error in the process model

GP (s) = GP0(s)(1 + Δm(s)), (2.9)

where

GP0(s) =
qSXB0 + (CSF − CS0)

(
s − μ

)

s
(
s − μ

) (2.10)

is the nominal model of the plant, and

Δm =
GP (s) −GP0(s)

GP0(s)
. (2.11)

3. H∞ Mixed Sensitivity Method

3.1. H∞ Mixed Sensitivity Problem

The H∞ mixed sensitivity problem is formulated as the one of finding a feedback controller
that stabilizes the closed-loop system shown in Figure 2 and minimizes the H∞-norm of
closed-loop transfer function Tzw from the exogenous input w (w = r) to the regulated
outputs z (z = [z1, z2, z3]

T), namely,

γopt = min
K
‖Tzw(s)‖∞, (3.1)

where

Tzw(s) =

⎡
⎢⎢⎣

W1(s)S(s)

W2(s)K(s)S(s)

W3(s)T(s)

⎤
⎥⎥⎦ = P11(s) + P12(s)K(s)(I − P22(s)K(s))−1P21(s). (3.2)
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Figure 2: Mixed sensitivity configuration.

Here S(s) = (I + Gp0(s)K(s))−1, K(s)S(s), and T(s) = Gp0(s)K(s)S(s) are the sensitivity
transfer matrix, control sensitivity transfer matrix, and complementary sensitivity transfer
matrix, respectively; Gp0(s) is the nominal model that has no imaginary axis zeros and/or
poles; the terms W1(s), W2(s), and W3(s) are performance weighting function, control
weighting function, and robustness weighting function, respectively; P(s) is the augmented
plant and can be denoted as

P(s) =

[
P11 P12

P21 P22

]
=

⎡
⎢⎢⎢⎢⎢⎣

W1 −W1Gp0

0 W2

0 W3Gp0

I −Gp0

⎤
⎥⎥⎥⎥⎥⎦

(3.3)

with state-space realization

P(s) =

⎡
⎢⎢⎣
Ap B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎥⎥⎦ (3.4)

For the H∞ optimal control problem (3.1), all assumptions concerning the existence of
a solution K(s) are satisfied [2, 3].

(a) The pair (Ap, B2) is stabilizable and (Ap,C2) is detectable.

(b) rank(D12) = dim(u) and rank(D21) = dim(y).

(c) The following matrices must have full rank for

[
Ap − jωI B2

C1 D12

]
,

[
Ap − jωI B1

C2 D21

]
, ∀ω ∈ R. (3.5)
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Figure 3: Singular values Bode plot of cost functions Tzw.

Assumption (a) ensures the stability of a synthesized H∞ controller. The second
assumption guarantees that the designedH∞ controller is a proper and real rational function.
The final assumption is a mathematical technicality that enables both P12(s) and P21(s) to have
no invariant zeros on the imaginary axis [6].

3.2. Weighting Function Selection

The selection of the weighting functions W1(s), W2(s), and W3(s) keeps mainly to the basic
rules as follows.

(a) Choose a low-order weighting function, otherwise a high-order H∞ controller can
be achieved.

(b) As the perturbation bound of the uncertainty Δm, the choice of robustness
weighting function W3(s) depends also on whether the nominal model is strictly
proper and real rational function. Usually, W3(s) is chosen to be an improper
and real rational function because the most system in the world is strictly proper.
ThoughW3(s) cannot be realized in state-space form,W3(s)GP0(s) has a state-space
realization since it is a proper structure. This ensures D12 has a full rank.

(c) The performance weighting function W1(s) is usually a stable, proper, and real
rational function. The 0 dB crossover frequency for the Bode plot ofW1(s) should be
below the 0 dB crossover frequency for the Bode plot of W3(s). More precisely, for
allω ∈ R, we require σ(W−1

1 (jω))+σ(W−1
3 (jω)) > 1, where σ denotes the maximum

singular value of a transfer function.

(d) The control weighting function W2(s) is normally chosen to be a high-pass filter
to penalize the control signal and to ensure that the D12 submatrix of state-space
representation of the augmented plant P(s) has full column rank. It is also included
in this paper to limit the size of the controller gain.
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4. Case Study

In this section, we study the robust control of continuous bio-dissimilation of glycerol to 1,
3-propanediol.

In the bioconversion of glycerol to 1, 3-propanediol, a number of products may be
simultaneously produced, depending on the microorganisms and conditions used. Under
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Table 1: Parameters in the models (4.3)–(4.5).

Substrate/products m Ym Δqm K∗

Glycerol 2.20 0.0082 28.58 11.43

1, 3-propanediol −2.69 67.69 26.59 15.50

Acetic acid −0.97 33.07 5.74 85.71

proper fermentation conditions mainly 1, 3-propanediol, acetic acid and ethanol are formed.
The material balance equations of continuous microbial cultures are written as follows [17]:

dX
dt

=
(
μ −D

)
X,

dCS

dt
= D(CSF − CS) − qSX,

dCPD

dt
= qPDX −DCPD,

dCHAc

dt
= qHAcX −DCHAc,

dCEtOH

dt
= qEtOHX −DCEtOH,

(4.1)

where X is the biomass, g/L; D is the dilution rate, 1/h; CSF and CS are the substrate
concentration (glycerol) in feed and reactor, respectively, mmol/L; CPD, CHAc, and CEtOH

are the concentrations of products 1,3-propanediol, acetic acid, and ethanol, respectively,
mmol/L; t is the fermentation time, h; μ,qS,qPD,qHAc and qEtOH are the specific growth
rate of cells, specific consumption rate of substrate, specific formation rate of products 1,3-
propanediol, acetic acid and ethanol, respectively, mmol/gh, which can be expressed as:

μ = μm
CS

KS + CS

(
1 − CS

C∗S

)(
1 − CPD

C∗PD

)(
1 − CHAc

C∗HAc

)(
1 − CEtOH

C∗EtOH

)
, (4.2)

qS = mS +
μ

Ym
S

+ ΔqmS
CS

CS +K∗S
, (4.3)

qPD = mPD + μYm
PD + ΔqmPD

CS

CS +K∗PD
, (4.4)

qHAc = mHAc + μYm
HAc + ΔqmHAc

CS

CS +K∗HAc
, (4.5)

qEtOH = qS
(

b1

c1 +DCS
+

b2

c2 +DCS

)
. (4.6)
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Figure 6: Simulation model of the nonlinear bioprocess.
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Figure 7: Output (glycerol concentration) response.

For Klebsiella pneunoniae cultivated under anaerobic conditions at 37◦C and pH 7.0,
the maximum specific growth rate μm and the saturation constant for glycerol present the
values of 0.67 1/h and 0.28 mmol/L, respectively. The critical concentrations denoted as C∗ in
glycerol, 1, 3-propanediol, acetic acid, and ethanol are 2039, 939.5, 1026, and 360.9 mmol/L,
respectively. In addition, the parameters b1, b2, c1, and c2 in (4.6) are 0.025, 5.18, 0.06, and
50.45 mmol/Lh, respectively, while the ones for (4.3), (4.4) and (4.5) are listed in Table 1.
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The process dynamics (4.1) is represented as a linear model with uncertain parameters:

ẋ = Ax + Bu,

y = Cx,
(4.7)

where x = (X,CS, CPD, CHAc, CEtOH)
T is used for the vector of states, u = D is the control

input, y = CS is the measured output,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ 0 0 0 0

−qS 0 0 0 0

qPD 0 0 0 0

qHAc 0 0 0 0

qEtOH 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−X
CSF − CS

−CPD

−CHAc

−CEtOH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

. (4.8)

By Theorem 2.1, the process transfer function can be derived as

Gp(s) =
(CSF − CS)s + qSX − μ(CSF − CS)

s
(
s − μ

) . (4.9)

The initial glycerol concentration CSF is set to be 730.8 mmol/L. The variable numerical data
for the example are given in Table 2. The plant’s nominal model in a transfer function form is
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Table 2: Variable numerical data.

Data Nominal values Variation bounds
Min Max

D (1/h) 0.2857 0 2D0

X (g/L) 2.89 0.75X0 1.25X0

CS (mmol/L) 98.1 0.4CS0 1.6CS0

CPD (mmol/L) 400.1 0.75CPD0 1.25CPD0

CHAc (mmol/L) 116.6 0.75CHAc0 1.25CHAc0

CEtOH (mmol/L) 42.33 0.75CEtOH0 1.25CEtOH0
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Figure 9: Time trajectory of biomass concentration.

expressed as

G0(s) =
632.7

s − 0.2857
. (4.10)

Based on the previously-mentioned rules concerning the choice of the weighting
function, robustness weighting functionW3(s) can be chosen asW3(s) = s/2 whose crossover
frequency is ωc3 = 2 rad/s; performance weighting function W1(s) is a second-order filter
with

W1(s) =
β
(
αs2 + 2ζ1ωc1

√
αs +ω2

c1

)

βs2 + 2ζ2ωc1
√
βs +ω2

c1

, (4.11)
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where β = 206: DC gain of the filter (controls the disturbance rejection); α = 0.5: high
frequency gain (controls the response peak overshoot); ωc1 = 0.865 rad/s: filter crossover
frequency; ζ1 = 0.6, ζ2 = 0.7: damping ratios of the corner frequencies. Obviously, W−1

1 (0) =
1/β is the steady-state tracking error, and lims→∞W

−1
1 (s) = 1/α = 2 is the corresponding

amplification factor of the high-frequency disturbances. The weighting function W2(s) is
selected as W2(s) = 0.1.

By using MATLAB, the augmented plant P(s) has the following state-space
realization:

Ap =

⎡
⎢⎢⎣

0.2857 0 0

−632.7 −0.0852 −0.0036

0 1.0000 0

⎤
⎥⎥⎦, B1 =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦, B2 =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦,

C1 =

⎡
⎢⎢⎣
−316.35 0.8137 0.7464

0 0 0

90.3812 0 0

⎤
⎥⎥⎦, C2 =

[
−632.7 0 0

]
,

D11 =

⎡
⎢⎢⎣

0.5

0

0

⎤
⎥⎥⎦, D12 =

⎡
⎢⎢⎣

0

0.1000

316.35

⎤
⎥⎥⎦, D21 = 1, D22 = 0.

(4.12)

After 9 iterations, γopt is found to be 0.99. The corresponding H∞ controller is stable and has
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Figure 11: Time trajectory of acetic acid concentration.
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Figure 12: Time trajectory of ethanol concentration.

the same number of states as the augmented plant with transfer function

K(s) =
0.4511s2 + 0.2927s + 0.05571
s3 + 165.5s2 + 14.1s + 0.6006

. (4.13)

The closed-loop poles are −163.5625, −0.6251 + 0.6028i, −0.6251 − 0.6028i, −0.2843, −0.0426 +
0.0426i, and −0.0426 − 0.0426i, respectively.
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Figure 13: Output (glycerol concentration) response in the presence of noise.
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Figure 14: Time trajectory of biomass concentration in the presence of noise.

Figure 3 shows the singular value Bode plot of cost function Tzw(s). As shown, the
cost function Tzw(s) is all-pass, that is, σ(Tzw(jω)) = 1 hold for all ω ∈ R. The results of
the singular values analysis for the sensitivity function S(s), the complementary sensitivity
function T(s), and their associated weighting functions W−1

1 (s) and W−1
3 (s) are illustrated in

Figures 4 and 5. It can be observed that S is below its upper bound W−1
1 at a low frequency

whereas T locates below its upper bound W−1
3 at a high frequency, that is, σ(S(jω)) ≤

W−1
1 (jω) and σ(T(jω)) ≤ W−1

3 (jω) hold. These results not only indicate that the closed-loop
system has a favourable performance of disturbance reduction but also guarantee the robust
stability of controlled system in face of the parametric uncertainty in model.
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Figure 15: Time trajectory of 1, 3-propanediol concentration in the presence of noise.
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Figure 16: Time trajectory of acetic acid concentration in the presence of noise.

Tests of controller performance were carried out through simulation of the whole
nonlinear system employing MATLAB/SIMULINK. The complete simulation model is
shown in Figure 6. The numerical integration of the nonlinear equations (4.1) is based on
the 5th-order Runge-Kutta method. In the simulation experiments, we consider a reference
input as follows:

r(t) =

{
98.1(1 + 0.2), 0 ≤ t < 50,
98.1, 50 ≤ t ≤ 100.

(4.14)

Then the dynamic response curve of the substrate concentration is plotted in Figure 7. From
Figure 7, it can be seen that the substrate concentration CS tracks favourably the reference
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Figure 17: Time trajectory of ethanol concentration in the presence of noise.

input r. The results imply that the H∞ controller K(s) has a good control action on the
presented bioprocess. The time trajectories of the dilution rate, the biomass concentration,
and the concentrations of 1, 3-propanediol, acetic acid, and ethanol are presented in
Figures 8, 9, 10, 11, and 12. The dynamic trajectories of all variable data stay within the
operation ranges as specified in Table 2.

To detect the dynamic tracking performance of the system in the presence of noise
measurement, an additive white Gaussian noise with variance 0.05CS is added in the
simulations. The simulation results are shown in Figures 13, 14, 15, 16, and 17. As shown
in Figures 13–17, the substrate concentration tracks favourably the reference signal. While
the time trajectories of other variables stay within the operation windows as given in Table 2.

5. Conclusions

This paper has presented a uniform modeling framework and robust control design for
continuous bioprocesses. By taking into account the uncertainties in the model parameters,
we have first developed the uncertain, linear state-space model of continuous bioprocesses.
Then a uniform transfer function model is derived. In the H∞ controller design, a scalar
weighting matrix W2 on the control input to the plant has been used to limit the size of
the controller gain. Our work has demonstrated that the designed robust controller not only
ensures the robust stability of the bioprocess in face of the parametric variations in the model,
but also makes the system has a favourable robust tracking performance in the presence of
set-point variations.
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