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The study sought to investigate the influence of a magnetic field on heat and mass transfer
by mixed convection from vertical surfaces in the presence of Hall, radiation, Soret (thermal-
diffusion), and Dufour (diffusion-thermo) effects. The similarity solutions were obtained using
suitable transformations. The similarity ordinary differential equations were then solved by
MATLAB routine bvp4c. The numerical results for some special cases were compared with the
exact solution and those obtained by Elgazery (2009) and were found to be in good agreement.
A parametric study illustrating the influence of the magnetic strength, Hall current, Dufour, and
Soret, Eckert number, thermal radiation, and permeability parameter on the velocity, temperature,
and concentration was investigated.

1. Introduction

The range of free convective flows that occur in nature and in engineering practice is very
large and has been extensively considered by many researchers (see, [1, 2], among others).
When heat and mass transfer occur simultaneously between the fluxes, the driving potentials
are of more intricate nature. An energy flux can be generated not only by temperature
gradients but by composition gradients. The energy flux caused by a composition is called
Dufour or diffusion-thermo effect. Temperature gradients can also create mass fluxes, and
this is the Soret or thermal-diffusion effect. Generally, the thermal-diffusion and the diffusion-
thermo effects are of smaller-order magnitude than the effects prescribed by Fourier’s or
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Fick’s laws and are often neglected in heat and mass transfer processes. However, there are
exceptions. The thermal-diffusion effect, for instance, has been utilized for isotope separation
and in mixture between gases with very light molecular weight (Hydrogen-Hellium) and of
medium molecular weight (Nitrogen-air) the diffusion-thermo effect was found to be of a
magnitude such that it cannot be neglected (see Kafoussias and Williams [3] and references
therein). Kafoussias and Williams [3] considered the boundary layer-flows in the presence of
Soret, and Dufour effects associated with the thermal diffusion and diffusion-thermo for the
mixed forced natural convection.

In recent years, progress has been considerably made in the study of heat and mass
transfer in magneto hydrodynamic flows due to its application in many devices, like the
MHD power generator and Hall accelerator. The influence of magnetic field on the flow
of an electrically conducting viscous fluid with mass transfer and radiation absorption is
also useful in planetary atmosphere research. Kinyanjui et al. [4] presented simultaneous
heat and mass transfer in unsteady free convection flow with radiation absorption past an
impulsively started infinite vertical porous plate subjected to a strong magnetic field. Yih
[5] numerically analyzed the effect of transpiration velocity on the heat and mass transfer
characteristics of mixed convection about a permeable vertical plate embedded in a saturated
porous medium under the coupled effects of thermal and mass diffusion. Elbashbeshy [6]
studied the effect of surface mass flux on mixed convection along a vertical plate embedded
in porous medium.

Chin et al. [7] obtained numerical results for the steady mixed convection boundary
layer flow over a vertical impermeable surface embedded in a porous medium when the
viscosity of the fluid varies inversely as a linear function of the temperature. Pal and Talukdar
[8] analyzed the combined effect of mixed convection with thermal radiation and chemical
reaction on MHD flow of viscous and electrically conducting fluid past a vertical permeable
surface embedded in a porous medium is analyzed. Mukhopadhyay [9] performed an
analysis to investigate the effects of thermal radiation on unsteady mixed convection flow
and heat transfer over a porous stretching surface in porous medium. Hayat et al. [10]
analyzed a mathematical model in order to study the heat and mass transfer characteristics in
mixed convection boundary layer flow about a linearly stretching vertical surface in a porous
medium filled with a viscoelastic fluid, by taking into account the diffusionthermo (Dufour)
and thermal-diffusion (Soret) effects.

Postelnicu [11] studied simultaneous heat and mass transfer by natural convection
from a vertical plate embedded in electrically conducting fluid saturated porous medium,
using Darcy-Boussinesq model including Soret, and Dufour effects. Lyubimova et al. [12]
dealt with the numerical investigation of the influence of static and vibrational acceleration
on the measurement of diffusion and Soret coefficients in binary mixtures, in low gravity
conditions. Abreu et al. [13] examined the boundary layer solutions for the cases of forced,
natural, and mixed convection under a continuous set of similarity type variables determined
by a combination of pertinent variables measuring the relative importance of buoyant force
term in the momentum equation.

Alam et al. [14] studied numerically the Dufour and Soret effects on combined
free-forced convection and mass transfer flow past a semi-infinite vertical plate, under the
influence of transversely applied magnetic field. Alam and Rahman [15] studied numerically
the Dufour and Soret effects on mixed convection flow past a vertical plate embedded in
a porous medium. Li et al. [16] took an account of the thermal-diffusion and diffusion-
thermo effects, to study the properties of the heat and mass transfer in a strongly endothermic
chemical reaction system for a porous medium.
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Gaikwad et al. [17] investigated the onset of double diffusive convection in a two-
component couple of stress fluid layer with Soret, and Dufour effects using both linear and
nonlinear stability analysis.

The interaction of buoyancy with thermal radiation has increased greatly during the
last decade due to its importance in many practical applications. The thermal radiation
effect is important under many isothermal and nonisothermal situations. If the entire system
involving the polymer extrusion process is placed in a thermally controlled environment,
then thermal radiation could be important. The knowledge of radiation heat transfer in the
system can, perhaps, lead to a desired product with a sought characteristics. Abd El-Aziz
[18] studied the thermal-diffusion and diffusion-thermo effects on the heat and mass transfer
characteristics of free convection past a continuously stretching permeable surface in the
presence of magnetic field, blowing/suction, and radiation.

Osalusi et al. [19] investigated thermal-diffusion and diffusion-thermo effects on
combined heat and mass transfer of a steady hydromagnetic convective and slip flow
due to a rotating disk in the presence of viscous dissipation and Ohmic heating. Motsa
[20] investigated the effect of both the Soret, and Dufour effects on the onset of double
diffusive convection. Mansour et al. [21] investigated the effects of chemical reaction, thermal
stratification, Soret number, and Dufour number on MHD-free convective heat and mass
transfer of a viscous, incompressible, and electrically conducting fluid on a vertical stretching
surface embedded in a saturated porous medium. Shateyi [22] investigated thermal radiation
and buoyancy effects on heat and mass transfer over a semi-infinite stretching surface with
suction and blowing.

Afify [23] carried out an analysis to study free convective heat and mass transfer
of an incompressible, electrically conducting fluid over a stretching sheet in the presence
of suction and injection with thermal-diffusion and diffusion-thermo effects. Hence, based
on the mentioned investigations and applications, the present paper considers the effect of
both the Soret, and Dufuor effects on MHD convective heat and mass transfer from vertical
surfaces with Hall and radiation effects. Elgazery [24] analyzed numerically the problem of
magneto-micropolar fluid flow, heat and mass transfer with suction and blowing through
a porous medium under the effects of chemical reaction, Hall, ion-slip currents, variable
viscosity, and variable thermal diffusivity.

Motivated by the above referenced work and the numerous possible industrial
applications of the problem (like in isotope separation), it is of paramount interest in this
study to investigate the effects of Hall currents, thermal radiation, Soret, and Dufour on
boundary layer mixed convection MHD flow over a vertical surface in the presence of suction.
None of the above investigations simultaneously studied the effects of Hall currents, thermal
radiation, Soret, and Dufour on boundary layer mixed MHD flow over a vertical surface
through a porous medium. Hence, the purpose of this paper is to extend Afify [23], to study
the more general problem which includes thermal radiation, Soret, and Dufour effects on
mixed convection MHD flow with heat and mass transfer past a vertical plate with suction
through a porous medium in the presence of Hall currents.

The momentum, thermal, and solutal boundary layer equations are transformed into
a set of ordinary differential equations and then solved using MATALAB bvp4c. The analysis
of the results obtained in the present work shows that the flow field is appreciably influenced
by Dufour and Soret numbers, Hall, and thermal radiation parameters and suction on the
wall. To reveal the tendency of the solutions, selected results for the velocity components,
temperature, and concentration are graphically depicted. The rest of the paper is structured as
follows. In Section 2, we formulate the problem; in Section 3, we give the method of solution.
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Our results are presented and discussed in Section 4, and in Section 5, we present some brief
conclusions.

2. Mathematical Formulation

We consider mixed free-forced convective and mass transfer flow of a viscous incompressible
fluid over an isothermal semi-infinite vertical flat plate through a porous medium. The flow
is steady, laminar, and three dimensional and the viscous fluid is an electrically conducting
one. The flow configuration and coordinate system are as shown in Figure 1 with the x-axis
along the vertical plate and the y-axis normal to it.

The z-direction coincides with the leading edge of the plate. A normal magnetic field
is assumed to be applied in the y-direction and the induced magnetic field is negligible
in comparison with the applied one which corresponds to very small magnetic Reynolds
number. The surface is maintained at uniform constant temperature and concentration.
The flow has significant thermal radiation, Hall, Soret, and Dufour effects. Under the
electromagnetic Boussinesq approximations the basic boundary-layer equations are given by
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where u, v, and w are the fluid velocity components along the x-, y-, and z-axes, respectively.
T andC are the fluid temperature and concentration, respectively. ν is the kinematic viscosity,
μ is the dynamic viscosity, g is the gravitational force due to acceleration, ρ is the density,
βt is the coefficient of volume expansion, βc is the volumetric coefficient of expansion with
concentration, k is the thermal conductivity of the fluid, B0 is the magnetic field of constant
strength, D is the coefficient of mass diffusivity, cp is the specific heat at constant pressure, Tm
is the mean fluid temperature, kt is the thermal diffusion ratio, k∗ is the permeability, m is the
Hall parameter, and cs is the concentration susceptibility.

The boundary conditions are

u(x, 0) = Us = A0x, v(x, 0) = −Vw, w(x, 0) = 0, T(x, 0) = Tw, C(x, 0) = Cw,

u(x,∞) = w(x,∞) = 0, T(x,∞) = T∞, C(x,∞) = C∞.
(2.6)
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Figure 1: The coordinate system for the physical model of the problem.

Us is the surface velocity,A0 is a constant with dimension (time)−1, and Vw, Tw, andCw are the
suction (>0) or injection (<0) velocity, the fluid temperature, and concentration at the plate,
respectively. Tw andCw are the temperature and concentration of the plate. The radiative heat
flux qr is described by the Rosseland approximation such that

qr = −
4σ∗

3K
∂T4

∂y
, (2.7)

where σ∗ and K are the Stefan-Boltzman constant and the mean absorption coefficient,
respectively. Following Chamkha [25], we assume that the temperature differences within
the flow are sufficiently small so that the T4 can be expressed as a linear function after using
Taylor series to expand T4 about the free stream temperature T∞ and neglecting higher-order
terms. This results in the following approximation:

T4 ≈ 4T3
∞T − 3T4

∞. (2.8)

Using (2.7) and (2.8) in (2.4), we obtain
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Following Elgazery [24] we nondimensionalize (2.1)–(2.5) using the following transforma-
tions:

η =

√
A0

ν
y, u = A0xf

′(η), v = −
√
A0νf

(
η
)
, w =

√
A0νh

(
η
)
,

T = T∞ + (Tw − T∞)θ
(
η
)
, C = C∞ + (Cw − C∞)φ

(
η
)
,

(2.10)



6 Mathematical Problems in Engineering

where f(η), h(η), θ(η), and φ(η) are the dimensional stream, microrotation functions,
temperature, and concentration distribution functions, respectively.

Upon substituting (2.10) into (2.1)–(2.5) we get the following similarity equations:
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where the primes denote differentiation with respect to η. Where M = σB2
0/ρA0 is the

magnetic parameter, Pr = ν/α is the Prandtl number, Sc = ν/D is the Schmidt number,
Sr = Dkt(Tw − T∞)/νTm(Cw − C∞) is the Soret number, Du = Dkt(Cw − C∞)/νTm(Tw − T∞)
is the Dufour number, Gr = gβt(Tw − T∞)/UsA0 is the local Grashof number, Gm =
gβc(Cw −C∞)/UsA0 is the local modified Grashof number, Ec = U2

s/cp(Tw −T∞) is the Eckert
number, Ω is the permeability parameter, Re = xUs/ν is the Reynolds number, Sc = ν/D is
the Schmidt number, and R = 4σT3

∞/kK is the dimensionless thermal radiation coefficient. In
view of the similarity transformations, the boundary conditions transform into:

f(0) = fw, f ′(0) = 1, h(0) = 0, θ(0) = 1, φ(0) = 1,

f ′(∞) = 0, h(∞) = 0, T(∞) = 0, C(∞) = 0,
(2.12)

where fw = Vw/
√
A0ν is the mass transfer coefficient such that fw > 0 indicates suction and

fw < 0 indicates blowing at the surface.

3. Method of Solution

The governing nonlinear similarity equations (in the case m = Gr = Gm = 0), together with
the boundary conditions f(0) = fw, f ′(0) = 1, and f ′(∞) = 0, has an exact solution in the
following form:

f
(
η
)
= fw +

1
a

(
1 − e−aη

)
, a =

fw +
√
f2
w + 4(M + Ω + 1)

2
. (3.1)

The full set of (2.11) were reduced to a system of first-order differential equations and
solved using a MATLAB boundary value problem solver called bvp4c. This program solves
boundary value problems for ordinary differential equations of the form y′ = f(x, y,p), a ≤
x ≤ b, by implementing a collocation method subject to general nonlinear, two-point
boundary conditions g(y(a), y(b),p) = 0. Here p is a vector of unknown parameters.
Boundary value problems (BVPs) arise in most diverse forms. Just about any BVP can be
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Table 1: Values of the skin friction, −f ′′(0), the exact solution, the present method, and results of Elgazery
[24].

kp Exact solution Present method Elgazery [24]

1 1.417059704707229 1.417059704707229 1.4170597047066027

2 1.269413474070165 1.269413474070165 1.2694134740920218

5 1.173975065412817 1.173975065412817 1.1739750656338466

10 1.140805151587558 1.140805151587558 1.1408051520832996

15 1.129583274664413 1.129583274664413 1.1295832753169304

formulated for solution with bvp4c. The first step is to write the ODEs as a system of first-
order ordinary differential equations. The details of the solution method are presented in
Shampine and Kierzenka [26] and references therein. The numerical results were compared
with the exact solution for the skin friction −f ′′(0) for various values of kp = 1/Ω. Table 1
gives a comparison between the exact solution for the skin friction, the present numerical
scheme, and results obtained by Elgazery [24] who used a Chebyshev pseudospectral method
of solution. The table shows an excellent agreement between our numerical results and the
exact solution. The results in Table 1 were generated using M = 1, fw = −0.7, and m = Gr =
Gm = 0

4. Results and Discussion

The similarity equations (2.11) are nonlinear, coupled ordinary differential equations which
possess no closed-form solution. Thus, we solve these equations numerically subject to the
boundary conditions given by (2.12). Graphical representations of the numerical results are
illustrated in Figure 2 through Figure 23 to show the influences of different parameters on the
boundary layer flow.

In this study, we investigate the influence of the Dufour and Soret effects separately
in order to clearly observe their respective effects on the velocity, temperature, and
concentration profiles of the flow. The variation of tangential velocity distribution with η
for different values of the Dufour variable Du is shown in Figure 2. It can be clearly seen in
this figure that as the Dufour effects increase, the tangential velocity increases.

The variation of lateral velocity distribution with η for different values of the Soret
variable Sr is shown in Figure 3. It can be clearly seen that the velocity distribution in the
boundary layer increases with the Soret parameter. In Figure 4 we observe that as the Eckert
number value increases, the tangential velocity increases.

The effect of the magnetic field parameter (M) is shown in Figure 5. It is observed that
the tangential velocity of the fluid decreases with the increase of the magnetic field parameter
values. The decrease in the tangential velocity as the Hartman number (M) increases is
because the presence of a magnetic field in an electrically conducting fluid introduces a force
called the Lorentz force, which acts against the flow if the magnetic field is applied in the
normal direction, as in the present study. This resistive force slows down the fluid velocity
component as shown in Figure 5. Figure 6 depicts the tangential velocity profiles as the Hall
parameter m increases. We see that f ′ increases as m increases. It can also be observed that
f ′-profiles approach their classical values when the Hall parameter m becomes large (m > 5).
In Figure 7 we observe that the tangential velocity decreases as the values of the permeability
parameter are increased as more fluid is taken away from the boundary layer.
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Figure 2: The variation of the tangential velocity distribution with increasing Dufour number with A0 =
1, Gr = Gm = 1, M = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, and Ec = 1.
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Figure 3: The variation of the tangential velocity distribution with increasing Dufour number with A0 =
1, Gr = Gm = 1, M = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Du = 0, and Ec = 1.

The influence of thermal radiation on the tangential velocity is shown on Figure 8.
Increasing the thermal radiation parameter produces an increase in the tangential velocity
of the flow. This is because large values of R correspond to an increased dominance of
conduction over absorption radiation thereby increasing buoyancy force and thickness of the
momentum boundary layer (thus velocity).
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Figure 4: The variation of the tangential velocity distribution with increasing Eckert parameter with A0 =
1, Gr = Gm = 1, M = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, and Du = 0.
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Figure 5: The variation of the tangential velocity distribution with increasing Hartman number parameter
A0 = 1, Gr = Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.

The effects of Dufour parameter (Du) are depicted in Figure 9. It is observed in this
figure that the lateral velocity component increases with the increase in diffusion thermal
effects. For each value of Dufour there exists a local maximum value for the lateral velocity
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Figure 6: The variation of the tangential velocity distribution with increasing Hall parameter with A0 =
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Figure 7: The variation of the tangential velocity distribution with increasing surface permeability
parameter with A0 = 1, Gr = Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, M = 1, Sc = 1, Sr = 0, Du =
0, and Ec = 1.

profile. Figure 10 shows the effect of Soret number on the lateral velocity distribution. From
the figure it can be seen that this velocity component increases with the increase in Soret
parameter Sr. It can also be seen that at each value of Sr there exist local maximum values in
the lateral velocity profile in the boundary region.
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Figure 8: The variation of the tangential velocity distribution with increasing thermal radiation parameter
with A0 = 1, Gr = Gm = 1, m = 1, Pr = 0.72, M = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.
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Figure 9: The variation of the lateral velocity distribution with increasing Dufour number with A0 =
1, Gr = Gm = 1, M = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, and Ec = 1.

In Figure 11 we have the influence of the magnetic field parameter on the lateral
velocity. It can be seen that as the values of this parameter increase, the lateral velocity
increases.
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Figure 10: The variation of the lateral velocity distribution with increasing Soret number withA0 = 1, Gr =
Gm = 1, M = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Du = 0, and Ec = 1.
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Figure 11: The variation of the lateral velocity distribution with increasing magnetic field withA0 = 1, Gr =
Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.

In Figure 12, we see that h-profiles increase for m ≤ 1 and decrease for m > 1. In
Figure 13, we see the influence of the Eckert number on lateral velocity of the flow. It can be
seen that as the Eckert number increases, this velocity component increases as well. Figure 14
shows that the increase of permeability of the surface reduces the lateral distribution of the
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Figure 12: The variation of the lateral velocity distribution with increasing Hall current with A0 = 1, Gr =
Gm = 1, M = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.
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Figure 13: The variation of the lateral velocity distribution with increasing Eckert number with A0 =
1, Gr = Gm = 1, M = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, and Du = 0.

fluid. The effects of thermal radiation on lateral velocity are shown in Figure 15. We observe
that the lateral velocity increases as the value of the radiation parameter R increases.

Figures 16 and 17 depict the behaviour of Du and Sr, on φ, respectively. In Figure 16
we see the effects of the Dufour number on the concentration profiles. The Dufour effects
reduce the concentration boundary layer in the fluid.
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Figure 14: The variation of the lateral velocity distribution with increasing permeability number with A0 =
1, Gr = Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, M = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.
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Figure 15: The variation of the lateral velocity distribution with increasing thermal radiation with A0 =
1, Gr = Gm = 1, m = 1, Pr = 0.72, Re = 1, Ω = 0, M = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.

Figure 17 shows the influence of the Soret parameter, Sr on the concentration profiles.
It can be seen from this figure that the concentration φ(η) increases with increasing Sr values.
From this figure we observe that the concentration profiles increase significantly with increase
of the Soret number values.
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Figure 16: The variation of the concentration distribution with increasing Dufour number with A0 =
1, Gr = Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, M = 1, Sr = 0, and Ec = 1.
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Figure 17: The variation of the concentration distribution with increasing Dufour number with A0 =
1, Gr = Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, M = 1, Du = 0, and Ec = 1.

Figure 18 depicts the effects of the Dufour parameter on the fluid temperature. It can be
clearly seen from this figure that diffusion thermal effects greatly affect the fluid temperature.
As the values of the Dufour parameter increase, the fluid temperature also increases.
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Figure 18: The variation of the temperature distribution with increasing Dufour number withA0 = 1, Gr =
Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, M = 1, Sr = 0, and Ec = 1.
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Figure 19: The variation of the temperature distribution with increasing Soret number with A0 = 1, Gr =
Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 0, M = 1, Du = 0, and Ec = 1.

The influence of thermal-diffusion effects is shown in Figure 19. We observe that as Sr
increases, there is a decrease in the temperature of the fluid though the changes are not very
significant. As expected the effect of Soret number Sr on the temperature is quite opposite
to that of Du. It is also noticed that the behaviour of Du and Sr on the concentration and
temperature distributions is opposite.
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Figure 20: The variation of the concentration distribution with increasing Eckert number withA0 = 1, Gr =
Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, M = 1, Sc = 1, Sr = 0, and Du = 0.
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Figure 21: The variation of the temperature distribution with increasing magnetic field with A0 = 1, Gr =
Gm = 1, m = 1, Pr = 0.72, R = 1, Re = 1, Ω = 1, Sc = 1, Sr = 0, Du = 0, and Ec = 1.

In Figure 20 we see that the increase in the Eckert number values greatly affects
the temperature of the fluid. The temperature of the fluid, increases as the Eckert number
increases.

Figure 21 shows that the temperature boundary layer becomes thick by increasing the
magnetic parameter. The effects of a transverse magnetic field give rise to a resistive-type
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Figure 22: The variation of the temperature distribution with increasing Hall current with A0 = 1, Gr =
Gm = 1, M = 1, Pr = 0.72, R = 1, Re = 1, Ω = 0, Sc = 1, Sr = 0, Du = 0, and Ec = 1.
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Figure 23: The variation of the temperature distribution with increasing thermal radiation with A0 =
1, Gr = Gm = 1, m = 1, Pr = 0.72, Ω = 1, Re = 1, Ec = 1, M = 1, Sc = 1, Sr = 0, and Du = 0.

force called the Lorentz force. This force has the tendency to slow down the motion of the
fluid and to increase its thermal boundary layer hence increasing the temperature of the flow.

In Figure 22 we see that the temperature profiles approach their classical values when
the Hall parameter m becomes large. Temperature profiles θ decrease with increasing m. The
effect of thermal radiation R on the temperature profiles in the boundary layer is illustrated
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in Figure 23. It is obvious that an increase in the radiation parameter results in increasing the
temperature profiles within the boundary layer as well as an increase in the thermal boundary
layer thickness.

5. Conclusion

This work investigated the effects of diffusion-thermo and thermal-diffusion on MHD
natural convection heat and mass transfer over a permeable vertical plate in the presence
of radiation and hall current. The governing equations are approximated to a system
of nonlinear ordinary differential equations by using suitable similarity transformations.
Numerical calculations are carried out for various values of the dimensionless parameters
of the problem using an efficient and easy to use MATLAB routine bvp4c. The results are
presented graphically and we can conclude that the flow field and the quantities of physical
interest are significantly influenced by these parameters. The velocity increases as the
Soret, Dufour effects, Hall, Eckert parameter, and thermal radiation increase. However, the
tangential velocity was found to decrease as the Hartman parameter increases and the lateral
velocity component was increased by the increased values for the Hartman number. Both
velocity components distributions were reduced by the increased values of the permeability
of the plate.

The fluid temperature was found to increase as the Dufour parameter, Eckert number,
magnetic strength, thermal radiation, and surface permeability increase and to decrease as the
Hall current and Soret effects increase. The concentration decreases as the Dufour number,
Eckert, Hall parameter, and radiation parameters increase and increases as the Soret effect,
magnetic strength, and surface permeability increase.

In addition, the present analysis has shown that the Soret and Dufour numbers have
significant effects on the distributions of the velocity, temperature, and concentration. We
therefore conclude that thermal-diffusion and diffusion-thermo effects have to be considered
in the fluid, heat, and mass transfer.
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