
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 652306, 22 pages
doi:10.1155/2010/652306

Research Article
Fractal Geometry-Based Hypergeometric Time
Series Solution to the Hereditary Thermal Creep
Model for the Contact of Rough Surfaces Using
the Kelvin-Voigt Medium

Osama M. Abuzeid,1 Anas N. Al-Rabadi,2
and Hashem S. Alkhaldi1

1 Mechanical Engineering Department, The University of Jordan, Amman 11942, Jordan
2 Computer Engineering Department, The University of Jordan, Amman 11942, Jordan

Correspondence should be addressed to Anas N. Al-Rabadi, a.alrabadi@ju.edu.jo

Received 28 January 2010; Accepted 23 May 2010

Academic Editor: Ming Li

Copyright q 2010 Osama M. Abuzeid et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper aims at constructing a continuous hereditary creep model for the thermoviscoelastic
contact of a rough punch and a smooth surface of a rigid half-space. The used model considers
the rough surface as a function of the applied load and temperatures. The material of the rough
punch surface is assumed to behave as Kelvin-Voigt viscoelastic material. Such a model uses
elastic springs and viscous dashpots in parallel. The fractal-based punch surface is modelled
using a deterministic Cantor structure. An asymptotic power law, deduced using approximate
iterative relations, is used to express the punch surface creep which is a time-dependent inelastic
deformation. The suggested law utilized the hypergeometric time series to relate the variables of
creep as a function of remote forces, body temperatures, and time. The model is valid when the
approach of punch surface and half space is in the order of the size of the surface roughness. The
closed-form results are obtained for selected values of the system parameters; the fractal surface
roughness and various material properties. The obtained results show good agreement with
published experimental results, and the methodology can be further extended to other structures
such as the Kelvin-Voigt medium within electronic circuits and systems.

1. Introduction

Surface topography plays a significant role in tribology, that is, in problems of friction, wear,
lubrication, and contact [1]. Therefore, the problem of analysis of rough surfaces attracts the
attention of engineers and applied mathematicians. Historically, the following engineering
parameters, statistical in nature, were used for the characterization of surface roughness: (1)
the root mean square of the heights, σ, (2) the root mean square of slopes, σ2

m, (3) and the root
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mean square of curvatures, σ2
k . However, it was realized that the topography of engineered

surfaces is too complex to be described completely by a few statistical parameters. Thus, it
was found that roughness has a multiscale nature and requires sophisticated mathematical
techniques for its description.

First attempts to model the distribution of heights of surface asperities utilize the
classical random field theory which assumed that the functions of surface model are
differentiable. In particular, this implies that limiting values for σ2

m and σ2
k should exist as

the sample interval tends to “0” [1]. However, it turned out that such limiting behavior is
in contradiction with the results of advanced investigations of surfaces. For example, the
exponential behavior of the autocorrelation function implies that the engineering parameters
should tend to infinity rather than to constant values when the sampling interval is infinitely
reduced [2]. Furthermore, it was shown that the profiles of a large number of both natural and
artificial surfaces have the following form of the spectral density functionG(ω) ∼ 1/ωυ where
υ ≈ 2, and ω is the spatial frequency (see (1.13)). It follows from this that all wavelengths are
equally represented in the profile and that there exists no characteristic scale; in other words,
after arbitrary magnification roughness looks like before. Moreover, it was found that the
values of engineering parameters depend on the measurement scale, that is, these parameters
are scale dependent [2, 3].

The fractal approach was introduced as an attempt to give a scale-invariant character-
ization of surface topography. The idea of fractality of roughness was experimentally verified
on real surfaces as well as when applied to mathematically simulated profiles [4]. Figure 1
shows a picture of popular fractals, that is, the middle-third Cantor set, the von Koch curve,
graph of the Weierstrass-Mandelbrot function C in the range 0 ≤ x ≤ 3 (p = 1.5 and γ = 0.5
where p and γ are two numerical parameters (see (1.17)) where the trend of the function is
∼ x2, and trajectories of a fractional Brownian process for different Hurst indexH and fractal
dimension D [5–7]. The index H is the key parameter of the fractal surface which describes
the smoothness of the surface.

Evidently, roughness of the surface of a body has a great influence on stress fields that
arise when two deformable bodies are pressed together. Analysis of the effect of roughness
on the contact interaction of solids has attracted wide attention [8].

One of the most popular models for studying contact of rough bodies is the
Greenwood and Williamson (GW) model based on the use of the Hertz theory [9], where
it is important to mention that (GW) model is a nonscale-invariant [10]. Currently, the
development of models of contact between nominally flat fractal rough surfaces presented for
the Cantor profile is an active area of research [11]. Various contact problems utilizing Cantor
profile were considered [12–17]. All these models consider the one-level Cantor profile. It is
argued that such profile is simple for analytical analysis. However, it has a minor drawback:
all asperities of the profile have one-level character, while all real roughness has a hierarchical
structure [17].

It is accepted that fractal dimension is not a compressive geometric parameter
that could characterize alone the behavior of contacting rough bodies [1]. Moreover, the
employment of the fractal approach in the study of surfaces has several drawbacks. The
proposed model can be both fractal and nonfractal depending on values of the structural
parameters. Regardless of this, the model profile remains rough and possesses certain self-
affine properties. The iterative regular construction of the profile allows us to analyze its
prestructures, that is, prefractals, of arbitrary generation.

In this introduction, important and relevant definitions and methods that are
attributed to fractal geometry with the application to the modeling of rough surfaces will be
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Figure 1: Common fractals: (a) the middle-third Cantor set, (b) the von Koch curve, (c) the Weierstrass-
Mandelbrot function C in the range 0 ≤ x ≤ 3 (p = 1.5 and γ = 0.5), and (d) trajectories of a fractional
Brownian process for differentH and D.

fully presented. Furthermore, the important differences between mathematical and utilized
physical fractals will be explicitly highlighted.

1.1. Mathematical Definition of Fractals

Mandelbrot stated that a set in ametric space is called a fractal set if theHausdorff-Besicovitch
dimension of the set is greater than its topological dimension [18]. Let X be a compact metric
space and O be the totality of open balls in X. The Hausdorff s-measure of a subset S ⊂ X
which is defined for s ≥ 0 as the following limit:

mH(S, s) = lim
σ→ 0

inf
G∈O

{∑
V∈G

(dimV )s : S ⊆
⋃
V∈G

V,diamV ≤ δ

}
. (1.1)

Here G is finite or denumerable subset of O. It was proven that there exists a value s0 such
that

mH(S, s) =

⎧⎨
⎩
∞, for s < s0,

0, for s > s0.
(1.2)

The Hausdorff dimension of the set S, denoted by dimHS, is the number s0 such
that (1.2) holds. Unfortunately, the calculation of the Hausdorff dimension of mathematical
objects often demands a lot of effort. Even to find some estimations of the dimension, it is
necessary to overcome a number of rather complex mathematical difficulties [19]. This issue
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called for the use of other definitions of dimension which are useful in applied mathematics
for the characterization of fractal objects. One such alternative is the box dimension [1].
The analytical calculation of the box dimension is usually easier since the corresponding
definition of this dimension involves coverings by spheres of equal radii.

Let E be the Euclidean dimension of the space in which a set S is embedded. For δ > 0,
let N(δ) be the smallest number of E-dimensional balls or cubes of diameter d needed to
cover the set S. The box counting dimension or box dimension, denoted by dimBS, can be
defined if the following limit exists:

dimBS = lim
δ→ 0+

logN(δ)
− log δ

. (1.3)

It can be proven that dimBS does not change if one takes N(δ) to be either the
smallest number of δ-cubes that cover S: the number of δ-mesh cubes that intersect S; or
the smallest number of sets of diameter at most d that cover S; or the largest number of
disjoint δ-balls with centers in S. Unfortunately, the box dimension is not always equal to the
Hausdorff dimension. For example, the set S = { 0, 1, 1/2, . . . , 1/n . . .} has unequal values for
the Hausdorff and box dimensions for dimHS/=dimBS = 1/2.However, it can be proven that
dimHS ≤ dimBS.

As a simple alternative to the Hausdorff measure, we can introduce the s-measure ms

of a set as the following limit:

ms(S) = lim
δ→ 0+

N(δ)δs (1.4)

and define the box dimension as the value s = D such that ms(S) has a jump from 0 to ∞
similar to the behavior of mH(S, s) in (1.2).

On the other hand, the difficulties involved with calculating the Hausdorff dimension
are the reason for the opinion that the Hausdorff dimension is not generally used in
applications in the study of fractal and non fractal curves that are originated in other sciences
such as in biology, engineering, physics, quantum physics and computing [20–27].

1.2. Physical Concept of Fractals

Evidently, it is impossible to carry out the scaling procedure for any real physical object
down to infinitely small scales. Hence, the mathematical concept of the Hausdorff measure
is applicable only to mathematical models of objects rather than to the objects themselves
and, of course, the Hausdorff dimension cannot be obtained by experimental procedures.
In this sense there are no actual fractal objects in nature. For physical objects, the box
dimension cannot be calculated analytically but it is estimated by experimental or numerical
calculations. However, various errors can arise during such numerical calculations. There is
no canonical definition of physical fractals and there are numerous methods for the practical
estimation of the fractal dimension of an object. The cluster fractal dimension is taken as the
first example of a physical fractal dimension definition.

Let a whole cluster be imagined as consisting of elementary parts of the size δ∗ [1]. An
object can be modeled as a fractal cluster with dimensionD when the model considers scales
R such that δ∗ < R < Δ∗ , where δ∗ and Δ∗ are the upper and lower cutoffs for the fractal
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representation. To get the value D of the dimension, the considered region is discretized into
cubes with side length δ∗. Then the smallest number of E-dimensional cubes needed to cover
the cluster (N(δ∗)) is counted. One says that the cluster is fractal if the numbersN(δ∗) satisfy
the so-called number-radius relation for different sizes of the considered region of the cluster
R as follows:

N(δ∗) ≈
(
R

δ∗

)D

, δ∗ < R < Δ∗. (1.5)

The value of D is estimated as the slope of linear growth of ln(N(δ∗)) plotted against
ln(R). The power D is usually called the cluster dimension or mass dimension.

In literature, various methods were utilized to estimate the fractal dimension of a
physical object. However, the notion of fractal dimension is not well-defined in that the
relative value does depend on the approach used. Indeed, only for the mathematical box
dimension of a fractal set S it is proven that dimBS is the same when using various specific
schemes of covering [28], while for physical fractals the estimations of the fractal dimension
inevitably involve various techniques, distinct scale ranges, and various computation rules.
Therefore, the obtained values can differ strongly and it is unlikely that they could be
fruitfully compared for distinct objects. Thus, even in the case of physical objects of a similar
nature, it would be wrong to consider the fractal dimension of these objects as their specific
property without referring to the estimation technique involved.

1.3. Self-Similarity and Self-Affinity of Surfaces

Let us recall that a one-to-one mapping M of a plane π onto a plane π ′ is called a similarity
mapping with coefficient λ > 0, or simply a similarity, when the following property holds: if
{A,B} are any two points of π , and {A′, B′} are their images under M, then |A′B′| = λ|AB|
[29]. It is known that any similarity transformation of a plane is a homogeneous (isotropic)
dilation of coordinates {x′ = λx, z′ = λz} up to a rotation and translation. A set S is called
statistically self-similar if under homogeneous scaling with the coefficient λ, where 1 > λ > 0,
it is identical from the statistical point of view to the set S′ = λS.

In practice, it is impossible to verify that all statistical moments of the two distributions
are identical. Frequently, a set S is said to be self-similar if only a fewmoments do not change
under scaling [30]. A one-to-one mapping M of a plane π onto a plane π ′ is called an affine
mapping, if the images of any three collinear points are collinear in turn [29]. In general, an
affine transformation of a plane may be given in any coordinate system as a nondegenerative
linear transformation. In practical studies of rough surfaces, one often considers a particular
affine mapping, with anisotropic scaling, that is given coordinate wise by x′ = λx and z′ =
λHz. Here z is a graph of a surface profile and H is some scaling exponent.

One says that a fractal is self-affine if it is invariant from the statistical point of
view under quasihomogeneous (anisotropic) scaling. It is possible to show that usually a
quasihomogeneous transformation is a particular case of Lipschitz homeomorphism [1, 17].
The Hausdorff dimension of a set S does not change under the action of the Lipschitz
homeomorphism L as follows:

dimHS = dimHL(S). (1.6)
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The ideas of self-similarity and self-affinity are very popular in studying surface
roughness because experimental investigations show that usually profiles of vertical sections
of real surfaces are statistically similar to themselves under repeatedly magnifications;
however, the profiles should be scaled differently in the direction of nominal surface plane
and in the vertical direction. The self-affine fractals were used in a number of papers as a
tool for description of rough surfaces [3, 31, 32]. Two standard examples of self-affine fractals
are the trace of the fractional Brownian motion and the Weierstrass function. The former is a
statistical fractal while the latter is a deterministic fractal.

1.4. Brownian Surfaces and Random Fractals

Fractional Brownian processes are widely used in creating computer-generated surfaces, in
particular landscapes. For example, a profile can be constructed as a graph of 1D(fBm)VH(x)
of index H, where x is taken as the time and z is the random variable of the single valued
function VH(x) with the following property:

〈
[VH(x + δ) − VH(x)] 2

〉
∼ δ2H, 0 < H < 1, (1.7)

where 〈〉 denotes averaging over the ensemble, and H is the Hurst index. The scaling
behavior of the different traces, VH(x), is characterized by a particular H which relate the
typical change in Δz(x), where z(x) = VH(x), is the trace of the fBm, and the change in the
spatial coordinate Δx by the simple scaling law [30, 33, 34]:

Δz(x) ∼ ΔxH. (1.8)

It is known that, with probability equal to “1”, the following holds [28]:

dimHVH(x) = dimBVH(x) = 2 −H. (1.9)

The autocorrelation function is one of the main tools for studying statistical models of
rough surfaces. The autocorrelation function R(δ) of the profile is

R(δ) = lim
T →∞

1
2T

∫T

−T
[z(x + δ) − z][z(x) − z]dx = 〈[z(x + δ) − z] [z(x) − z]〉 (1.10)

or

R(δ) = lim
T →∞

1
2T

∫T

−T
z(x + δ)z(x)dx − (z)2, (1.11)

where z is the average value of the profile function z(x).
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Another tool for the characterization of surfaces is the spectral density function G(ω)
which is the Fourier transform of R(δ):

G(ω) =
2
π

∫ ∞

0
R(δ) cosωδdδ,

R(δ) =
2
π

∫ ∞

0
G(ω) cosωδdω.

(1.12)

In general, it is accepted in fractional Brownian motion that [14]:

(i) if the autocorrelation function R(δ) of the profile z(x) satisfiesR(0)−R(δ) ∼ δ2 (2−s),
then it is reasonable to expect that the box dimension of the graph z(x) is equal to s,
note that one can find R(0) − R(δ) ∼ δ2H for the fBm defined by (1.7).

(ii) if the profile z(x) has spectral density:

G(ω) ∼ 1
ωυ

, (1.13)

then it is reasonable to expect that the box dimension of the graph z(x) is equal
to (5 − υ)/2 [1]. The above conclusions are valid for mathematical models of the
profile, for which the relation 2(5 − s) = υ − 1 or υ = 5 − 2s holds. The exponent υ
varies typically between 0 and 2. Usually, it is assumed that the same conclusions
concerning the box dimension are valid for physical fractals as well. It is shown that
real surfaces approximately satisfy the property in (1.13) in wide range of scales
[35]. The moments mn of the spectral density G(ω) provide a useful description of
the surface roughness:

mn =
∫∞

ω0

ωnG(ω)dω, (1.14)

where ω0 = 2π/λ0 is the wave number corresponding to the profile length λ0. It
is possible to show that m0 is the variance of heights (rms height) of the surface,
m1 is the variance of slopes (rms slope) and m3 is the variance of curvatures (rms
curvature) [36].

1.5. Weierstrass-Type Functions and Modeling of Rough Surfaces

A number of researchers have used the Weierstrass-type functions for fractal modeling
of surface roughness [3, 31, 32] and fractal modeling applications such as in quantum
computing [20, 21]. The real Weierstrass-type function can be defined as:

W
(
x; p

)
=

∞∑
n=0

p−γnh
(
pnx

)
, p > 1, 0 < γ < 1, (1.15)
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where h is a bounded Hölder function of order greater than β. The following complex
generalization of theW(x; p)was considered:

W̃
(
x; p

)
=

∞∑
n=−∞

p−γn
[(

1 − eip
nt
)
eiΦn

]
, p > 1, 0 < γ < 1, (1.16)

where Φn are arbitrary phases [29].
The Weierstrass-type functions are continuous everywhere and differentiable

nowhere. In addition, their graphs are curves whose fractal dimension exceeds one. Fractal
properties of these functions including the Weierstrass-Mandelbrot (WM) function C and the
Takagi-Hopson function T:

C
(
x; p

)
=

∞∑
n=−∞

p−γn
(
1 − cos pnx

)
, p > 1, 0 < γ < 1, (1.17)

T
(
x; p

)
=

∞∑
n=−∞

p−γn
∣∣∣∣pnx −

[
pnx +

1
2

]∣∣∣∣, p > 1, 0 < γ < 1, (1.18)

have been studied in numerous papers [2, 14, 29, 31]. By direct calculations, one may obtain:

∣∣∣W̃(
x + δ; p

) − W̃
(
x; p

)∣∣∣ ∼ δγ , (1.19)

which is similar to the behavior of (1.7) of fractional Brownian motion. The box dimension of
the Weierstrass function graphs isD = 2− γ and it is believed that their Hausdorff dimension
is the same [28, 37]. Currently, the only known bounds for the Hausdorff dimensions are
D − (c/ log p) ≤ dimH graph C ≤ D, provided that p is large and constant c is large enough
[19]. It is possible to calculate the spectral density of the WM function W̃(x; p) as follows:

G(ω) =
∞∑

n=−∞

δ
(
ω − pn

)
p2(2−D)n

, (1.20)

where δ is the Dirac delta function. Some arguments for approximating this discrete spectral
density by a continuous spectral density G̃(ω) ∼ 1/ω5−2D, whose exponent (5-2D) is in
agreement with (1.13) with respect to the box dimension were suggested [2]. The following
truncated WM function

W̃1
(
x; p

)
= A(D−1)

∞∑
n=n1

p(D−2)n cos 2πpnx (1.21)

is often used for fractal characterization of the surface topography [3, 31, 32]. Here n1 is an
integer number, which corresponds to the low cutoff frequency of the profile, and A is the so-
called characteristic length scale of the profile. The number n1 depends on the length L of the
sample and is given by pn1 = 1/L and the parameter A determines the position of the spectral
density along the logG axis. It was stated that both parametersA andD of the functionW1 are
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scale-invariant characteristics of the roughness. However, the extensive experimental studies
of this fractal characterization model showed that the values of parameters A and D are not
unique and depend on instruments or resolution of a given instrument [1].

Evidently, the function C(x; p) is not homogeneous. Nevertheless, it exhibits the
property C(pkx; p) = pkγC(x; p), with k ∈ Z where Z is the set of all integers which looks
similar to the definition of a homogeneous function hd of degree d, that is, hd(λx) = λdhd(x)
for λ > 0.

Thus, the graph of the function C(x; p) near any point x0 is repeated in scaling form
near all points pkx0, k ∈ Z. This scaling (self-affine) property was often attributed to fractal
features of the graph. However, this discrete scaling property is the main property of the so-
called parametric-homogeneous (PH) functions introduced [1, 17] which strictly satisfy the
equation bd(pkx; p) = pkdbd(x; p),with k ∈ Z where d is degree of homogeneity. As examples
of 1-dimensional fractal PH-curves we can consider the graphs of functions b1 and b2 with
degrees d = 1 and d = 2, respectively:

b0
(
x; p

)
= x−γC

(
x; p

)
,

b1
(
x; p

)
= xb0

(
x; p

)
,

b2
(
x; p

)
= x2b0

(
x; p

)
.

(1.22)

Because of (1.6), these functions have the same Hausdorff dimension as the WM
function C(x; p)whose box-dimension is D.

Another consequence is that the WM function C(x; p), with C(x; p) ∼ x2-D can be
used only as an example of fractal profile and it cannot be considered as the general fractal
functional model for simulations of the rough surface profiles. The assumption that the
WM function represents the general fractal properties of rough profiles can lead to wrong
conclusions concerning surface roughness parameters and their distributions.

The solution to the problem ofmechanical contact between elastically deforming solids
was obtained byHertz [8]. Subsequently, several approaches were used to analyze the contact
interaction between the soft layer and the indenting object surface [38–42]. Thesemethods are
based upon Radok’s technique of replacing the elastic constants in the elastic solution by the
corresponding integral or differential operators, which appear in the stress-strain relations
for linear viscoelastic materials. Furthermore, these studies assumed that the surfaces of
contacting solids are smooth, excluding from consideration all real solids, which have a
certain degree of roughness and waviness regardless of how fine their finish is [43].

Various models for the approach of the fractal punches were considered [11–16]. In
the previously cited works, different constitutive relations were considered: (1) linear elastic
material [11], (2) rigid-perfectly plastic material [13], (3) elastic-perfectly plastic material
[12], (4) linear viscoelastic creep model via Maxwell medium [14], (5) linear viscoelastic
creep model via standard linear solid (SLS) material [15], and (6) linear thermoviscoelastic
relaxation model via Maxwell medium [16].

The objective of this work is to introduce an alternative approach, using fractal
geometry, to study the deformation of a viscoelastic surface as a function of the force applied
and the bulk temperature. In this model friction force effect is assumed to be negligible. The
development of the fractal model of the rough surface is carried out using fractional Brownian
motion in conjunction with Cantor set. The Radok’s technique [44] is then used to derive the
thermoviscoelastic model from the corresponding elastic model. The main contribution of
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this work is a mathematical model for the time-dependent-creep of a rough surface (cf. (6.7)).
This model relates the creep to time, temperature, external applied load, fractal dimension of
the rough surface, and various material properties.

Section 2 presents the fractal model, where the Cantor structure is built and its fractal
dimension is presented. Section 3 presents the discrete and continuous elastic model. In
Sections 4 and 5, the effect of temperature on the viscoelastic behavior is presented and
the Arrhenius’s relation is introduced. In Section 6, the elastic viscoelastic correspondence
is presented which consists of replacing the elastic constant in the elastic solution by the
corresponding integral or differential operators from the viscoelastic stress-strain relations.
Also, in Section 6 a new continuous model for the creep contact of a thermovisco-elastic
punch is presented. In Section 7, the results obtained from the new model is presentd and
compared with an experimental results obtained from literature. In Section 8, conclusions
and future work are presented.

2. Fractal Model

The surface profile of the punch, in contact with a rigid half-space, will be constructed on
the basis of Cantor set [11]. The contacting surface is constructed by joining the segments
obtained at successive stages of the construction of a Cantor set to one another, Figure 2,
where L0 correspond to the profile nominal length, and h0 is equal to the twice rms height of
the roughness.

At each stage of profile construction, the middle section of each initial segment is
discarded so that the total length of the remaining segments is 1/a times the length of the
initial segment, where a > 1. The depth of the recesses (measured from the last step) at the
(i+ 1)th construction step of the fractal surface is 1/b times less than the depth of the ith step,
where b > 1. From this it can easily be shown that the horizontal length and recess depth of
the (i + 1)th step are, respectively

Li+1 = a−1Li = a−(i+1)L0, (2.1)

hi+1 = b−1hi = b−(i+1)h0, (2.2)

where it is assumed that the surface is smooth in a direction perpendicular to the plane of the
page. This restriction is not expected to have a significant effect since it is possible to construct
a fractal Cantor surface perpendicular to the plane of the page [11].

At the ith generation, the Cantor structure contains N = 2i segments, each of length
δi = (2a)−iL0 [11]. The profile of the surface in Figure 2 can be considered as a certain graph
of a step function.

It can be seen that, during an iterative step in constructing the surface, scaling in the
horizontal direction is Δχi+1 = (2a)−1Δχi, while in the vertical direction, the corresponding
fluctuations Δzi at the ith generation can be defined by considering the probability of
obtaining the value, zi = b−ih0.

The fluctuation Δzi at the ith generation can be obtained by assuming the Δzi scales
as the expected value ziP(zi) in which Δzi ∝ ziP(zi) [8], where P(zi) is the probability of
obtaining the value zi, that is, P(zi) = (Li − Li+1)/L0, and it is found that P(zi) = a−i(1 − 1/a).

Thus, the expected value of the fluctuation at the (i + 1)th generation is related to the
expected value of the fluctuation at the ith generation through zi+1P(zi+1) = (ab)−iziP(zi).
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L0

bh0

h0
h1h2

L0, E0

L1, E1

L2, E2

L3, E3

Figure 2: The fractal middle-third Cantor structure, where E0 is the initiator step, E1, E2, and E3 are the
other generated step of cantor structure, L’s are the lengths of the E’s steps, h’s are the heights of E’s steps,
and F is the applied load.

Hence Δzi+1 = (ab)−iΔzi, and thus (Δzi+1/Δzi) = (Δχi+1/Δχi)
2-D, from which the self-affine

fractal dimension for the contour of the Cantor structure is derived as:

D = 1 +
ln 2
ln 2a

− ln b
ln 2a

= 1 +Dc − ln b
ln 2a

for (1 < D < 2), (2.3)

where Dc is the fractal dimension of the Cantor set (0 < Dc < 1). Equation (2.3) will be used
in the next section in the development of the approach-force model.

3. The Continuous Elastic Model

Qualitatively, two size scales are manifested in the contact problem [8]:

(1) the bulk scale, for which the elastic compression would be calculated by the Hertz
theory and its limitations,

(2) the roughness scale, where the asperities act like a compliant layer on the surface,
and so all the deformations are limited in a surface layer which represents all the
asperities; bh0 in Figure 2, and their deformation is assumed to be linear elastic [45].

In this paper, the approach of the punch of Cantor structure surface and length L0 will
be considered. It is to be noted that the obtained relation may be applied for all problems
with surfaces having the same fractal dimension. The contact between two rough surfaces
can be modeled as the contact of an effective surface with a rigid flat surface [10]. Hence, a
solution for the deformation of an equivalent surface generated using the Cantor structure
can be modified for the problem at hand. The bodies treated in this work will be assumed to
be isotropic and homogeneous, and obey linear force-displacement laws. The yield strength
σy, the modulus of elasticity E, and coefficient of thermal expansion α, are all assumed to be
independent of temperature.

Furthermore, it is assumed, with reference to Figure 2, that there exists a series of one-
dimensional elastic bars, distributed in a way such that the distance from the initiator step
E0 to the generated step E3 is indicated by h0, from E1 to E3 is indicated by h1, from E2 to E3

is indicated by h2, and so forth, [14–16]. By letting F3 be the force required to compress E3
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until E2, F2 be the force require to compress E3 and E2 until E1, and F1 be the force required to
compress E3, E2, and E1 until E0, and assuming unit depth, one obtains the following discrete
force-displacement relations:

F3 = h2k3,

F2 = (h1 − h2 )k2 + h1k3,

F1 = (h0 − h1 )k1 + (h0 − h2)k2 + h0k3,

(3.1)

where ki = ELi/bh0 is the stiffness of the ith step, E is the modulus of elasticity of the material
used, bh0 could be understood from Figure 2, and hi and Li can be calculated using (2.1) and
(2.2), respectively.

It is to be noted that thermal forces and deflections may arise in heated body
either because of a nonuniform temperature distribution, or external constraints, or as a
combination of these causes. The problem is assumed to be a steady state one with no internal
heat source.

Next, by lettingΔFi+1 = Fi−Fi+1, then from (3.1) one can conclude the general equation
for any number of steps as follows:

ΔFi+1 =
EL0

b
(b − 1)b−ia−i. (3.2)

In order to find a recursive relation as in (3.2) for the approach u, one lets Fi+1 be the
limit force for protrusion of the (i + 1)th generation. It is assumed that when the limit load is
reached, the punch approaches a distance Δui+1, equals to the difference between the heights
protrusion of ith and (i + 1)th generations. Consequently the second generation E2 deflects
a distance u2 = h1, E1 deflects a distance u1 = h0, and E0 deflects a distance u0 = bh0, so
Δu1 = u0 − u1 = h0(b − 1), and Δu2 = h0b

−1 (b − 1). Accordingly:

Δui+1 = h0(b − 1)b−i. (3.3)

The above-mentioned assumptions are sufficient to determine the dependence of the
limit load F on the approach u. The effects of the remote load and the bulk temperature will
be first studied separately and then superimposed. Using the fact that, when the limit load
increases from Fi+1 to Fi, the punch is approached by an amount Δui+1, and by utilizing (3.2)
and (3.3), the remote load effect is given by the discrete force displacement relation:

ΔFi+1

Δui+1
=

EL0

bh0
a−i. (3.4)

As i → ∞, (3.4) yields the following asymptotic behavior for the strain ε:

ε =
(
bχ

E

F

L0

)1/ (χ+1)

, (3.5)
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where the strain ε could be defined as u/h0 and χ = lna/ ln b [14–16]. It is to be noted
that, the effect of the applied external load should not exceed a limiting yield load Fy, where
Fy = σyL0.

Since the interest of this work is to consider the viscoelastic behavior, the principle
of correspondence [44] will be used in the next section to obtain a viscoelastic model
corresponding to the elastic model presented in (3.5).

4. Effect of Temperature

Temperature has a dramatic influence on rates of viscoelastic response, and in practical work
it is often necessary to adjust a viscoelastic analysis for varying temperature. This strong
dependence of temperature can also be useful in experimental characterization, for example,
if a viscoelastic transition occurs too quickly at room temperature, for easy measurement, the
experimenter can lower the temperature to slow things down and vice versa.

In some viscoelastic materials, the relation between time and temperature can be
described by correspondingly simple models. Such materials are termed “thermorheologi-
cally simple” [46]. For such simple materials, the effect of lowering the temperature is simply
to shift the viscoelastic response (plotted against log-time) to the right without change in
shape. This is equivalent to increasing the relaxation time τ , without changing the relaxation
modulus.

A time-temperature shift factor (aT ) can be defined as the horizontal shift that must
be applied to a response curve, measured at an arbitrary temperature T in order to move it to
the curve measured at some reference temperature Tref.

If the creep time obeys an Arrhenius relation, the shift factor can be shown to be [47]:

logaT =
Q

2.303R

(
1
T
− 1
T0

)
, (4.1)

where Q is the activation energy (J/mol), R is the gas constant (J/mol·K), and T is the
temperature (K).

5. Arrhenius Relation

The creep properties of materials are usually described by reference to the dependence of the
creep (ε) on the applied stress, time and temperature, which may be written as:

ε = f(σ, t, T). (5.1)

One way to simplify this function is to make it to be separable into three functions of
stress, time and temperature as follows [38]:

ε = f1(σ)f2(t)f3(T). (5.2)

Temperature has a significant effect on the creep of materials. In some steels, it is found
that the temperature has a pronounced effect than the strain rate [48].
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F F

u

Ee

η

Figure 3: The linear Kelvin-Voigt model, where η is the Newtonian viscosity, Ee is the elastic modulus, F
is the applied load and u indicates the points to be displaced.

Thermal forces and deflections may arise in a heated body either because of a
nonuniform temperature distribution, or external constraints. The problem is assumed to
be a steady state one with no internal heat. Arrhenius relation is a simple, but remarkably
accurate, formula for the temperature dependence, where according to Arrhenius law, the
temperature dependence is given as [49]:

f3(T) = B exp
(

Q

RT

)
, (5.3)

where B is a constant,Q is the activation energy and R is the ideal gas constant. The functions
f1(σ) and f2(t) will be included in (6.4) in Section 6.

It is clear that at the reference temperature, T0, the temperature function f3(T) is equal
to unity, and the creep will be a function of the stress and time, as it was shown in (5.1). From
(5.3) at the reference temperature T0, it can be easily shown that the value of the constant B
will be:

B = exp
( −Q
RT0

)
. (5.4)

6. Elastic Viscoelastic Correspondence

The simplest approach to this problem consists of replacing the elastic constant in the elastic
solution by the corresponding integral or differential operators from the viscoelastic stress-
strain relations [44]. This approach can be applied to the contact problem provided that the
loading program is such that the contact area is increasing throughout [38].

A Kelvin-Voigt linear model is employed to describe the viscoelastic behavior of
the compliant layer. Such a model is an arrangement of spring and dashpot in parallel, as
shown in Figure 3, in which η and Ee are the Newtonian viscosity and the elastic modulus,
respectively. The time-dependent force-displacement relation could bewritten in the operator
form using the linear differential time operator ∂t ≡ ∂/∂t as shown in (6.1) [50]:

ε =
σ

Ee + η ∂t
. (6.1)
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It is clear that simple the constant of proportionality between stress and strain does
no longer exist. The viscoelastic operator corresponding to the modulus E in (3.5) could be
written as [50]:

1
E

−→ 1
Ee

1
1 + τ ∂t

, (6.2)

where (τ ≡ η/Ee) is a characteristics parameter with units of time called the retardation time.
Creep test is a widely used standard test, wherein a force P0 is suddenly applied at time

t = 0 on the viscoelastic model and then maintained constant thereafter, while measuring the
approach as a function of time. The applied force can be expressed as a function of time with
the aid of the unit step function [U(t)]. Thus

F = P0[U(t)]. (6.3)

By substituting (6.1)–(6.3) in (3.5) one obtains

f1(σ)f2(t) =
(
u(t)
h0

)
1
=
(

bχ

τEe

P0

L0

) 1/(χ+1) t1/(1+χ)

Γ
((
2 + χ

)
/
(
1 + χ

)) 1F1

[
1

1 + χ
;
2 + χ

1 + χ
;− t

τ

]
(6.4)

Tables of Laplace transforms [51] were utilized to obtain (6.4), where Γ represent the
gamma function, and 1F1[c;d;x] is the Kummer’s confluent hypergeometric function which
could be expressed as [52]

1F1[c;d;x] = 1 +
c

d
x +

c(c + 1)x2

d(d + 1)2!
+

c(c + 1)(c + 2)x3

d(d + 1)(d + 2)3!
+ · · · (6.5)

or

1F1[c;d;x] =
∞∑
n=0

(c)n
(d)n

xn

n!
. (6.6)

By substituting the value of the constant B from (5.4) into (5.3), and substituting (3.5)
and (5.3) into (5.2), the creep stain as a function of stress, time, and temperature, is obtained
as follows:

ε = f1(σ)f2(t)f3(T) =
u(t)
h0

=
(

bχ

τEe

P0

L0

) 1/(χ+1) t1/(1+χ)

Γ
((
2 + χ

)
/
(
1 + χ

)) 1F1

[
1

1 + χ
;
2 + χ

1 + χ
;− t

τ

]

× exp
(
Q

R

(
1
T
− 1
T0

))
,

(6.7)

where u(t)/h0 is the approach, P0/L0 is the applied stress per unit depth, T is the bulk
temperature, T0 is the reference temperature, τ ≡ η/Ee is the retardation time, η is the
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Newtonian viscosity, Ee is the elastic modulus, Q is the activation energy, and R is the ideal
gas constant. The effect of the fractal dimension D appears through the constant χ which
combines the two scaling parameters {a, b}, that is, χ = lna/ ln b (cf. (2.3)). The results
obtained using this analytical model are presented and discussed in the next section.

7. Results and Discussion

A new continuous model for the creep contact of a thermovisco-elastic punch has been
presented in (6.7). The model presents an approximate closed form solution for the approach
u(t)/h0 of the fractal surface as a function of the applied load P0/L0. In order to use (6.7),
values for the system parametersEe, η, a and b are needed. The constant parameters a and b, in
this equation, characterize the Cantor structure of the rough surface and are related through
the fractal dimension D of the rough surface. For the Kelvin-Voigt model to be capable of
describing the experimental results of various viscoelastic materials, the viscous coefficients,
η(GPa·sec), and the elastic modulus Ee (GPa), should be selected properly. In this study the
modulus Ee is selected to be 130GPa and the retardation time, τ ≡ η/Ee, is selected to be
of the order “1” [53]. The value of n is taken large enough for the result to converge to an
accepted accuracy; it is assumed that n = 550.

The Cantor structure, shown in Figure 2, is built from the middle-third Cantor set
where the parameter a = 1.5 is held fixed, giving a Cantor set dimension Dc = 0.63093
[18]. Two different values of the parameter b (b = 1.155 and b = 1.29) yield two different
dimensions of the Cantor structure; D = 1.5 and D = 1.4, respectively, which are used to
verify the proposed analytical model. It was pointed out [11] that only for b ≤ 2 the profile of
the surface of the contacting body is fractal.
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In order to examine the validity of the presented model, results obtained using this
model for selected values of the system parameters were compared with those obtained
experimentally by the results in [12, 54]. These results displayed the approach-force relation
between a flat rough surface and an ideally smooth and rigid counter surface. The specimens
used in these experiments were made of carbon steel (0.45 percent carbon). Their surface
roughness resulted from different finishing processes; face turning, grinding, and bead-
blasting. The experiments were conducted using MATLAB for a wide range of the nominal
load, up to 600MPa. The error in the experimental measurements was determined to be
approximately ∓0.5μm for the approach, and ∓5MPa for the load [54]. Furthermore, the
fractal dimension, D, of a ground stainless steel surfaces is D = 1.5 [12]. The value of h0,
which corresponds to twice rms height for the ground surface, is taken as 6.6μm [54], and
the valueD = 1.5 [37] is used to calculate the value of the parameter b, using (2.3), for a fixed
value of the parameter a.

Figure 4 shows a set of numerical creep data obtained by applying the model which
was presented in (6.7). In Figure 4, the strain u/h0 is plotted versus the nondimensional time
record t/τ for ΔT = 0, with two different fractal dimensions D = 1.5 and D = 1.4, and two
applied stresses σ1 = 300MPa and σ2 = 500MPa. As might be expected, higher strain rates
occur for higher temperatures for a constant stress.

Figure 5 shows the strain u/h0 versus the nondimensional time record t/τ . It shows,
also, a set of numerical creep data obtained applying (6.7) for three temperature differences
ΔT = 0, ΔT = 100 and ΔT = 200 with two different fractal dimensions D = 1.5 and D = 1.4,
and constant applied stress σ1 = 300MPa. The behavior is also similar to the known typical
creep curves; it indicates that higher strain rates occur for higher temperatures.

Figure 6 is similar to Figure 5 in all of its aspects except for the applied stress, where
in this case σ = 500MPa.
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Figure 8: Experimental results and analytical isochronous Stress-Strain curves for constant t/τ ≈ 42 for
three temperature differences ΔT = 0, ΔT = 100 and ΔT = 200, with D = 1.5.

Figures 4–6 show that higher strain rates result for higher fractal dimensions,
which could be explained from the definition of the fractal dimension itself. Lower fractal
dimensions means less roughness and consequently the bulk material dominates, while
higher fractal dimensions means excessive roughness and consequently the asperities
deformation dominate.

Figure 7 presents the isochronous stress-strain creep curves accompanied by experi-
mental results available in the literature [54] for nondimensional time durations t/τ ≈ 44
(which is held constant), fractal dimension D = 1.4, and for three temperature differences
ΔT = 0, ΔT = 100 and ΔT = 200.

Figure 8 also presents the isochronous stress-strain creep curves accompanied by
experimental results available in the literature [54] which are conducted at the room
temperature. The analytical results are shown for the nondimensional time durations t/τ ≈ 42
(which is held constant), fractal dimension D = 1.5, and for temperature differences ΔT = 0,
ΔT = 100 and ΔT = 200.

Figures 7 and 8 show good agreement between the presented proposed model and the
experimental data. For D = 1.4 the nondimensional time duration, t/τ , required to get an
agreement between the experimental results and the isochronous curves is about 44.2, while
it is about 44 for the fractal dimension D = 1.5.

It is clear that the relatively longer duration of agreement occurs for lower fractal
dimensions which could be attributed to the same reason mentioned above, that is, lower
fractal dimensions means less roughness and consequently the bulk material dominates,
while higher fractal dimensions means excessive roughness and consequently the asperities
deformation dominate. The mathematical model also shows instability when t/τ exceeds 45.
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8. Conclusions and Future Work

Aswell known, creep analysis is a nonlinear time-dependent phenomenon. The model which
is modified in this work presents a solution to the thermal creep-contact of rough surfaces as
a hypergeometric time series. Fractal geometry, via Cantor set, is utilized to model roughness
of the creeping contact surfaces. The results obtained by this model turn out not to be too
far from reality, since tests, at room temperatures, on the actual contact area of ground metal
surfaces show that they contain sets of parallel ragged-edged scratches of different depths.

Since the construction of the Cantor structure is periodic in its nature, it undergoes the
same construction procedure at each hierarchical level producing contact areas that are all of
the same size. Therefore, the presented analytical model provides an approximate, not exact,
simulation of the approach of the viscoelastic rough surfaces, where the presented model
shows a fairly good agreement with the available experimental results. As linearity is an
inherent assumption, it is not expected from this model to be able to describe exactly the
real material behavior; roughness and deformation. A nonlinear thermoviscoelastic stress-
strain relation is required for the reproduction of real material behavior. It is also clear that
the specific character of the fractal model has little effect on the asymptotic behavior of the
process, and the fractal dimensionD which provides a measure of the rate at which a surface
is changing is of most importance. The solution obtained in this work provides further insight
into the effect that surface structure has on the deformation process, and it also provides
indications of the effect that different surface forming processes may have on the subsequent
surface deformation. Furthermore, in the averaged sense, the Cantor structure model appears
to provide fairly reasonable results.

For future work, it is intended to extend the methodology which is used in this paper
for the application to the contact-surfaces within electronic and electrical devices and circuits
such as resistors, capacitors and inductors that arise in electronic manufacturing systems.
Furthermore, it is intended to further investigate the applications of fractals in the emerging
quantum computing domain.
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[20] D. Wójcik, I. Białynicki-Birula, and K. Zyczkowski, “Time evolution of quantum fractals,” Physical

Review Letters, vol. 85, no. 24, pp. 5022–5025, 2000.
[21] A. N. Al-Rabadi, Reversible Logic Synthesis: From Fundamentals to Quantum Computing, Springer, Berlin,

Germany, 2004.
[22] C. Cattani and A. Kudreyko, “Application of periodized harmonic wavelets towards solution of

eigenvalue problems for integral equations,” Mathematical Problems in Engineering, vol. 2010, Article
ID 570136, 8 pages, 2010.

[23] E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to
coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article
ID 428903, 13 pages, 2010.

[24] G. Toma, “Specific differential equations for generating pulse sequences,” Mathematical Problems in
Engineering, vol. 2010, Article ID 324818, 11 pages, 2010.

[25] G. Mattioli, M. Scalia, and C. Cattani, “Analysis of large amplitude pulses in short time intervals:
application to neuron interactions,”Mathematical Problems in Engineering, vol. 2010, Article ID 895785,
15 pages, 2010.

[26] S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded
structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167–176, 2008.

[27] S. Y. Chen, Y. F. Li, Q. Guan, and G. Xiao, “Real-time three-dimensional surface measurement by color
encoded light projection,” Applied Physics Letters, vol. 89, no. 11, Article ID 111108, 2006.

[28] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons,
Chichester, UK, 1990.

[29] P. S. Modenov and A. S. Parkhomenko, Geometric Transformations. Vol. 1: Euclidean and Affine
Transformations, Academic Press, New York, NY, USA, 1965.

[30] R. F. Voss, “Random fractal forgeries,” in Fundamental Algorithms in Computer Graphics, R. A.
Earnshaw, Ed., pp. 805–835, Springer, Berlin, Germany, 1985.

[31] A. Majumdar and C. L. Tien, “Fractal characterization and simulation of rough surfaces,” Wear, vol.
136, no. 2, pp. 313–327, 1990.

[32] J. Lopez, G. Hansali, H. Zahouani, J. C. Le Bosse, and T. Mathia, “3D fractal-based characterisation
for engineered surface topography,” International Journal of Machine Tools and Manufacture, vol. 35, no.
2, pp. 211–217, 1995.

[33] M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article
ID 157264, 26 pages, 2010.

[34] M. Li and J.-Y. Li, “On the predictability of long-range dependent series,” Mathematical Problems in
Engineering, vol. 2010, Article ID 397454, 9 pages, 2010.



22 Mathematical Problems in Engineering

[35] R. S. Sayles and T. R. Thomas, “Surface topography as a nonstationary random process,” Nature, vol.
271, no. 5644, pp. 431–434, 1978.

[36] S. R. Brown, “Simple mathematical model of a rough fracture,” Journal of Geophysical Research, vol.
100, no. 4, pp. 5941–5952, 1995.

[37] M. V. Berry and Z. V. Lewis, “On theWeierstrass-Mandelbrot fractal function,” Proceedings of the Royal
Society of London. Series A, vol. 370, no. 1743, pp. 459–484, 1980.

[38] E. H. Lee and J. R. M. Radok, “The contact problem for viscoelastic bodies,” Journal of Applied
Mechanics, vol. 27, pp. 438–444, 1960.

[39] T. C. T. Ting, “The contact stress between a rigid indenter and a viscoelastic half-space,” Journal of
Applied Mechanics, vol. 33, pp. 845–854, 1966.

[40] T. C. T. Ting, “Contact problems in the linear theory of viscoelasticity,” Journal of Applied Mechanics,
vol. 35, pp. 248–254, 1968.

[41] G. R. Nghieh, H. Rahnejat, and Z. M. Jin, “Contact mechanics of viscoelastic layered surface,” in
Contact Mechanics III, M. H. Aliabadi and A. Samartin, Eds., pp. 59–68, Computational Mechanics
Publications, Boston, Mass, USA, 1997.

[42] K. J. Wahl, S. V. Stepnowski, andW. N. Unertl, “Viscoelastic effects in nanometer-scale contacts under
shear,” Tribology Letters, vol. 5, no. 1, pp. 103–107, 1998.

[43] D. J. Whitehouse and J. F. Archard, “The properties of random surfaces of significance in their
contact,” Proceedings of the Royal Society of London. Series A, vol. 316, pp. 97–121, 1970.

[44] J. R. M. Radok, “Visco-elastic stress analysis,” Quarterly of Applied Mathematics, vol. 15, pp. 198–202,
1957.

[45] P. E. D’yachenko, N. N. Tolkacheva, G. A. Andreev, and T.M. Karpova, The Actual Contact Area between
Touching Surfaces, Consultant Bureau, New York, NY, USA, 1964.

[46] N. J. Distefano and K. S. Pister, “On the identification problem for thermorheologically simple
materials,” Acta Mechanica, vol. 13, no. 3-4, pp. 179–190, 1972.

[47] T. Junisbekov, V. Kestelman, and N. Malinin, Stress Relaxation in Viscoelastic Materials, Science
Publishers, Enfield, NH, USA, 2nd edition, 2003.

[48] W.-S. Lee and C.-Y. Liu, “The effects of temperature and strain rate on the dynamic flow behaviour of
different steels,”Materials Science and Engineering A, vol. 426, no. 1-2, pp. 101–113, 2006.

[49] J. Boyle and J. Spencer, Stress Analysis for Creep, Butterworths-Heinemann, London, UK, 1st edition,
1983.

[50] I. H. Shames and F. A. Cozzarelli, Elastic and Inelastic Stress Analysis, Prentice-Hall International,
Englewood Cliffs, NJ, USA, 1992.

[51] G. E. Roberts and H. Kaufman, Table of Laplace Transforms, W. B. Saunders, Philadelphia, Pa, USA,
1966.

[52] L. J. Slater,Confluent Hypergeometric Functions, CambridgeUniversity Press, NewYork, NY, USA, 1960.
[53] W. Nowacki, Thermoelasticity, Pergamon Press, Oxford, UK, 2nd edition, 1986.
[54] Z. Handzel-Powierza, T. Klimczak, and A. Polijaniuk, “On the experimental verification of the

Greenwood-Williamson model for the contact of rough surfaces,” Wear, vol. 154, no. 1, pp. 115–124,
1992.


