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An analysis is performed to study the heat transfer characteristics of steady mixed convection flow
over a permeable vertical flat plate embedded in an anisotropic fluid-saturated porous medium.
The effects of uniform suction and injection on the flow field and heat transfer characteristics are
numerically studied by employing an implicit finite difference Keller-box method. It is found that
dual solutions exist for both assisting and opposing flows. The results indicate that suction delays
the boundary layer separation, while injection accelerates it.

1. Introduction

Transport processes through porous media play important roles in diverse applications, such
as in geothermal operations, petroleum industries, and many others. Excellent reviews on
this topic can be found in the books by Ingham and Pop [1], Vafai [2], Nield and Bejan
[3], Vadasz [4], and in the review paper by Magyari et al. [5]. The study of convective heat
transfer and fluid flow in porous media has received great attention in recent years. Most of
the earlier studies (Minkowycz and Cheng [6], Cheng and Minkowycz [7], and Badr and Pop
[8]) were based on Darcy’s law which states that the volume-averaged velocity is proportion
to the pressure gradient. Kaviany [9] used the line integral method to study the heat transfer
from a semi-infinite flat plate embedded in a fluid-saturated porous medium. Jang and
Shiang [10] studied the mixed convection along a vertical adiabatic surface embedded in
a porous medium. Few studies of convective boundary-layer flows in porous media using
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Figure 1: Physical model and coordinate system.

the Darcy-Brinkman equation model are considered for the momentum equation, for
example, Hsu and Cheng [11], Rees and Vafai [12], Nazar et al. [13, 14], Ishak et al. [15],
and Harris et al. [16].

All of the works mentioned above are conducted to flows over an impermeable surface
embedded in a Darcian porous medium. The free convections with injection or suction over
permeable vertical and horizontal plates in a porous medium were studied by Cheng [17],
Merkin [18] and Minkowycz et al. [19]. Lai and Kulacki [20, 21] investigated the effects of
injection and suction on mixed convection over horizontal and inclined surfaces embedded
in fluid-saturated porous media. Elbashbeshy and Bazid [22, 23] analyzed the heat transfer
over a continuously moving plate and mixed convection along a vertical plate embedded in a
non-Darcian porous medium. Further, Elbashbeshy [24, 25] investigated the effects of suction
and injection on mixed convection boundary layer flow over horizontal flat plate and mixed
convection boundary layer flow along a vertical plate embedded in a non-Darcian porous
medium.

The aim of this paper is to study the effects of suction and injection on the mixed
convection boundary layer flow over a permeable vertical plate embedded in an anisotropic
porous medium. Injection or withdrawal of fluid through a porous bounding heated or
cooled wall is of general interest in practical problems involving film cooling, control of
boundary layers, and so forth. This can lead to enhance heating (or cooling) of the system
and can help to delay the transition from laminar flow (see Chaudhary and Merkin [26]).
We mention to this end that such a study has also been done by Massoudi [27], Weidman
et al. [28, 29], and Ishak et al. [30] for the classical problems of the boundary layers over a
permeable wedge, moving flat plates, and permeable vertical flat plates. To the best of our
knowledge, this problem has not been studied before and the results are new and original.

2. Problem Formulation

Consider the steady mixed convection boundary layer flow over a semi-infinite vertical
permeable surface with a uniform surface temperature Tw(x) embedded in an anisotropic
fluid-saturated porous medium, as shown in Figure 1. The uniform temperature of the
ambient fluid is T∞, where Tw(x) > T∞ for a heated plate and Tw(x) < T∞ for a cooled plate.
The corresponding velocity components in the x and y directions are u and v, respectively,
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and the surface mass flux Vw is assumed to be constant with Vw > 0 for injection and Vw < 0
for suction. The permeabilities along the two principal axes of the porous matrix are denoted
by K1 and K2. The anisotropy of the porous medium is characterized by the anisotropy
ratio K∗ = K1/K2 and the orientation angle φ, defined as the angle between the horizontal
direction and the principal axis with permeability K2. Under the Boussinesq approximation,
the basic equations of continuity, the generalized Brinkman-extended Darcy’s law, and energy
are given by (see Vasseur and Degan [31] or Bera and Khalili [32])

∂u

∂x
+
∂v

∂y
= 0, (2.1)

au − bv =
μ̃

μ
K1∇

2
u − K1

μ

∂p

∂x
+
gβK1

υ

(
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)

,
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μ̃

μ
K1∇

2
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μ

∂p

∂y
,

(2.2)

u
∂T

∂x
+ v

∂T

∂y
= αm∇

2
T, (2.3)

subject to the boundary conditions

v = Vw, u = 0, T = Tw(x) at y = 0,

u −→ ue(x), T −→ T∞ as y −→ ∞,
(2.4)

where

a = cos2φ +K∗sin2φ, b = 2(K∗ − 1) sinφ cosφ,

c = sin2φ +K∗cos2φ.
(2.5)

Here ue(x) is the free stream velocity, p is the fluid pressure, g is the acceleration due to
gravity, αm is the effective thermal diffusivity, β is the coefficient of volumetric thermal
expansion, μ̃ is the effective dynamic viscosity, μ is the dynamic viscosity, and υ is the
kinematic viscosity.

We now introduce the following nondimensional boundary-layer variables:

x =
x

L
, y = Pe1/2y

L
, u =

u

U∞
, v = Pe1/2 v

U∞
,

T =
T − T∞
ΔT

, ue(x) =
ue(x)
U∞

, Vw = Pe1/2 Vw

U∞
,

(2.6)

where U∞ is the characteristic velocity, L is the characteristic length, ΔT is the characteristic
temperature difference, and Pe = U∞L/αm is the Péclet number. Substituting the
nondimensional variables (2.6) into (2.1)–(2.3), eliminating the pressure gradients from (2.2),
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and imposing the usual boundary layer approximations, we obtain the following boundary-
layer equations for the present problem:

∂u

∂x
+
∂v

∂y
= 0, (2.7)

a
∂u

∂y
= εDa

∂3u

∂y3
+ λ

∂T

∂y
, (2.8)

u
∂T

∂x
+ v

∂T

∂y
=
∂2T

∂y2
, (2.9)

with the boundary conditions (2.4) which become

v = Vw, u = 0, T = Tw(x) at y = 0, (2.10a)

u −→ ue(x), T −→ 0 as y −→ ∞, (2.10b)

where Tw(x) = (T(x) − T∞)/ΔT . Here Da is the Darcy–Brinkman parameter, λ is the mixed
convection parameter, and ε is the modified Péclet number, which are defined as

Da =
K1

L2
, λ =

Ra
Pe

, ε =
μ̃

μ
Pe, (2.11)

where Ra = gK1βΔTL/υαm is the Rayleigh number for the anisotropic porous medium. It
should be noted that λ > 0 is for the assisting flow, λ < 0 is for the opposing flow, and λ = 0
corresponds to forced convection flow.

Integrating (2.8) with the boundary conditions (2.10b) and introducing the stream
function ψ, which is defined as u = ∂ψ/∂y and v = −∂ψ/∂x, we obtain

a

(
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)

= εDa
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(2.12)

with the boundary conditions (2.10a) and (2.10b) which become

−
∂ψ

∂x
= Vw,

∂ψ

∂y
= 0, T = Tw(x) at y = 0,

∂ψ

∂y
−→ ue(x), T −→ 0 as y −→ ∞.

(2.13)
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The physical quantities of interest are the skin friction coefficient Cf and the Nusselt number
Nu, which are defined as

Cf =
τw

ρu2
e

, Nu =
Lqw

kΔT
, (2.14)

where τw is the wall shear stress and qw is the wall heat flux, which are given by

τw = μ
(

∂u

∂y

)

y=0
, qw = −k

(

∂T

∂y

)

y=0

. (2.15)

Substituting variables (2.6) into (2.15), and using (2.14), we obtain

(

Pe1/2

Pr

)

Cf =

(

∂2ψ

∂y2

)

y=0

,
(

Pe−1/2
)

Nu = −
(

∂T
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)

y=0
, (2.16)

where Pr = υ/αm is the Prandtl number for an anisotropic porous medium.
We consider now the case when the free stream velocity ue(x) and the surface

temperature Tw(x) vary linearly with x, namely,

ue(x) = x, Tw(x) = x, (2.17)

and we look for a similarity solution of (2.12) of the form

ψ
(

x, y
)

= xf
(

y
)

, T
(

x, y
)

= xθ
(

y
)

. (2.18)

It should be noted that this similarity solution corresponds to the mixed convection flow in a
porous medium near the stagnation point on a vertical surface with a linear variation in the
wall temperature. The corresponding situation for using the Darcy-Brinkman formulation of
the governing equations and the slip condition on the surface was studied by Harris et al.
[16]. Substituting (2.18) into (2.12), we obtain the following system of ordinary differential
equations:

f ′′′ +A
(

1 − f ′) + Λθ = 0, (2.19)

θ′′ + fθ′ − f ′θ = 0, (2.20)
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where A = a/(εDa) is the anisotropy parameter and Λ = λ/(εDa) is the modified mixed
convection parameter with εDa/= 0, and primes denote differentiation with respect to y. The
transformed boundary conditions are

f(0) = f0, f ′(0) = 0, θ(0) = 1,

f ′(y
)

−→ 1, θ
(

y
)

−→ 0 as y −→ ∞,
(2.21)

where f0 = − Vw is the suction or injection parameter with f0 > 0 for suction and f0 < 0 is for
injection. When εDa = 0 (inertial effect is neglected), (2.19) can be reduced to

1 − f ′ + λ∗θ = 0, (2.22)

where λ∗ = λ/a, which is identical to that derived by Merkin [33] and subjected to the
associated boundary conditions (2.21) with f0 = 0 in his paper. Thus, this case will not be
considered here.

Expressions (2.16) for the skin friction coefficient Cf and the Nusselt number Nu
become

(

Pe1/2

Pr

)

Cf = xf ′′(0),
(

Pe−1/2
)

Nu = −xθ′(0). (2.23)

3. Results and Discussion

Equations (2.19) and (2.20) subject to the boundary conditions (2.21) have been solved
numerically for some values of the governing parameters f0 and Λ using a very efficient
finite-difference scheme known as the Keller-box method, which is described in the book by
Cebeci and Bradshaw [34], and in the review paper by Keller [35]. This method has been
successfully used by the present authors to study various boundary value problems (cf. [36–
41]).

The variations of the skin friction coefficient f ′′(0) with Λ together with their velocity
profiles are shown in Figures 2–4 for A = 1, f0 = 0.2, and f0 = −0.2, respectively, while
the respective Nusselt number −θ′(0) together with their temperature profiles is shown in
Figures 5–7, to support the validity of the numerical results obtained. It is worth mentioning
that all the velocity and temperature profiles satisfy the far field boundary conditions (2.21)
asymptotically. In these figures the solid lines and the dash lines are for the first solution
and second solution, respectively. The results for the skin friction coefficient f ′′(0) and the
Nusselt number −θ′(0) as a function of Λ show that it is possible to get dual solutions of
the similarity equations (2.19) and (2.20) subject to the boundary conditions (2.21) for the
assisting flow (Λ > 0) as well, beside that usually reported in the literature for the opposing
flow (Λ < 0). Also for Λ > 0, there is a favorable pressure gradient due to the buoyancy
effects, which results in the flow being accelerated in a larger skin friction coefficient than
in the nonbuoyant case (Λ = 0). For negative values of Λ, dual solutions (Λc < Λ < 0),
unique solution (Λ = Λc), or no solution (Λ < Λc) is obtained, where Λc is the critical value
of Λ for which the solution exists. At Λ = Λc, both solution branches are connected; thus
a unique solution is obtained. For the assisting flow, dual solutions exist for all values of
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Figure 2: Variation of the skin friction function f ′′(0) with Λ for different values of f0 when A = 1.
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Figure 3: Velocity profiles f ′(y) for different values of f0 when A = 1 and Λ = 1 (assisting flow).

Λ considered in this study, whereas for the opposing flow, the solutions exist up to certain
values of Λ, that is, Λc. Beyond these critical values, the boundary layer separates from the
surface; thus no solution is obtained using the boundary layer approximations. Moreover,
from Figures 2 and 5, we found that the values of |Λ| for which the solution exists increase
as f0 increases. Hence, suction delays the boundary layer separation. Numerical results
for the local Nusselt number as presented in Figure 5 show that −θ′ (0) approaches +∞ as
Λ → 0+, and −∞ as Λ → 0−. In Figure 2, following the first solution for a particular
value of f0, one may expect that the solution suddenly disappears at the separation point
Λ = Λc, but this is not the case. The solution makes a U-turn at this point and form the
second solution. It is worth mentioning that the separation occurs here at the point where
f ′′(0)/= 0. Wilks and Bramley [42] stopped the second solutions when the wall heat transfer



8 Mathematical Problems in Engineering

−0.4

A = 1,Λ = −1
First solution
Second solution

0 2 4 6

y

8 10

−0.2

0

f
′ (
y
)

0.2

f0 = −0.2, 0, 0.2

0.4

0.6

0.8

1

Figure 4: Velocity profiles f ′(y) for different values of f0 when A = 1 and Λ = −1 (opposing flow).
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Figure 5: Variation of the Nusselt number −θ′(0) with Λ for different values of f0 when A = 1.

goes to zero. Although physically it is a realistic thing to do, it was shown by Mahmood
and Merkin [43] that the second solutions could be continued further to the point where
the buoyancy parameter goes to zero and terminated at this point. It seems that Ridha [44]
was the first to show the existence of dual (nonuniqueness) solutions for both aiding and
opposing flow situations. In the present paper, we show that the second solutions exist in
the opposing flow regime (Λ < 0) and they continue into the assisting flow regime (Λ > 0),
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which is in agreement with Ridha [44]. However, as discussed by Ridha [44] and Ishak et al.
[30], the second solutions have no physical sense. Although such solutions are deprived of
physical significance, they are nevertheless of mathematical interest as well as of physical
terms so far as the differential equations are concerned. Besides, similar equations may arise
in other situations where the corresponding solutions could have more realistic meaning
(Ridha [45]).



10 Mathematical Problems in Engineering

4. Conclusions

We have theoretically studied the existence of dual similarity solutions in mixed convection
boundary layer flow over a permeable vertical plate embedded in an anisotropic porous
medium with suction and injection. The governing boundary layer equations have been
solved numerically for both assisting and opposing flow regimes using the Keller-box
method. Discussions for the effects of suction or injection parameter f0 and the modified
mixed convection parameter Λ on the skin friction coefficient f ′′(0) and the Nusselt number
−θ′(0) for A = 1 have been done. It is found that dual solutions exist for both assisting and
opposing flows. It is shown that introducing suction effect increases the range of Λ for which
the solution exists and in consequence delays the boundary layer separation, while it is found
that injection acts in the opposite manner.
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