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This paper is concerned with the problems of exponential admissibility and dynamic output feed-
back (DOF) control for a class of continuous-time switched singular systems with interval time-
varying delay. A full-order, dynamic, synchronously switched DOF controller is considered. First,
by using the average dwell time approach, a delay-range-dependent exponential admissibility
criterion for the unforced switched singular time-delay system is established in terms of linear
matrix inequalities (LMIs). Then, based on this criterion, a sufficient condition on the existence of
a desired DOF controller, which guarantees that the closed-loop system is regular, impulse free
and exponentially stable, is proposed by employing the LMI technique. Finally, some illustrative
examples are given to show the effectiveness of the proposed approach.

1. Introduction

The past decades have witnessed an enormous interest in switched systems, due to their
powerful ability in modeling of event-driven systems, logic-based systems, parameter- or
structure-varying systems, and so forth; for details, see [1–4] and the references therein.
Switched systems are a class of hybrid systems, which consist of a collection of continuous-
or discrete-time subsystems and a switching rule specifying the switching between them.
When focusing on the classification problems in switched systems, it is commonly recognized
that there exist three basic problems [1]: (i) finding conditions for stability under arbitrary
switching; (ii) identifing the limited but useful class of stabilizing switching signals, and
(iii) construct a stabilizing switching signal. Many effective methods have been presented to
tackle these three basic problems such as the multiple Lyapunov function approach [5], the
piecewise Lyapunov function approach [6], the switched Lyapunov function approach [7],
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the convex combination technique [8], and the dwell time or average dwell time scheme [9–
12]. On the other hand, time-delay is very common in engineering systems and is frequently
a source of instability and poor performance [13]. Therefore, control of switched time-delay
systems has received more and more attention in the past few years; see [14–23] and the
references therein.

As far as we know, singular systems (known also as descriptor, implicit or differential
algebraic systems) also provide a natural framework for modeling of dynamic systems and
describe a larger class of systems than the regular system models [24]. Switched singular
systems have strong engineering background such as electrical networks [25], economic
systems [26]. Recently, many results have been obtained in the literature for switched
singular systems, such as stability and stabilization [27–30], reachability [31],H∞ control and
filtering problems [32]. For switched singular time-delay (SSTD) systems, due to the coupling
between the switching and the time-delay and because of the algebraic constraints in singular
model, the behavior of such systems is much more complicated than that of regular switched
time-delay systems or switched singular systems, and thus, to date, only a few results have
been reported in the literature. In [33], the robust stability and H∞ control problems for
discrete-time uncertain SSTD systems under arbitrary switching were discussed by using
switched Lyapunov functions. In [34], a switching signal was constructed to guarantee the
asymptotic stability of continuous-time SSTD systems. However, the aforementioned results
are focused on the basic problem (i), see [33], and problem (iii), see [34], for SSTD systems.
Problem (ii) is to identify stabilizing switching signals on the premise that all the individual
subsystems are stable. Basically, we will find that stability is ensured if the switching is
sufficiently slow [1], and it is well known that dwell time and average dwell time are two
effective tools to define slow switching signals. In [9], it was shown that if all the individual
subsystems are exponentially stable and that the dwell time of the switching signal is not
smaller than a certain lower bound, then the switched systems is exponentially stable. This
result was extended to both continuous-time switched linear time-delay systems [16] and
discrete-time cases [17]. Unfortunately, so far, to the best of the authors’ knowledge, the
problem of solving the basic problem (ii) for SSTD systems via the dwell time or average
dwell time scheme remains open and unsolved. On the other hand, the results in [33] are
derived based on the state feedback controller. In fact, in many practical systems, state
variables are not always available. In this case, the design of a controller that does not require
the complete access to the state vector is preferable. An important example of such controller
is the dynamic output feedback (DOF) controller. However, little attention has been paid to
the DOF controller design problem for SSTD systems. This forms the motivation of this paper.

In this paper, we are concerned with the problems of exponential admissibility and
DOF control for a class of continuous-time switched singular systems with interval time-
varying delay. A full-order, dynamic, synchronously switched DOF controller is designed.
First, by using the average dwell time approach and the piecewise Lyapunov function
technique, a delay-range-dependent exponential admissibility criterion is derived in terms
of LMIs, which guarantees the regularity, nonimpulsiveness, and exponential stability of
the unforced system. A estimation of the convergence of the system is also explicitly given.
Then, the corresponding solvability condition for the desired DOF controller is established
by employing the LMI technique. Finally, some illustrative examples are given to show the
effectiveness of the proposed approach.

Notation. Throughout this paper, Rn denotes the n-dimensional Euclidean space and Rn×n

is the set of all n × n real matrices. P > 0 (P ≥ 0) means that matrix P is positive definite
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(semipositive definite). λmin(P) (λmax(P)) denotes the minimum (maximum) eigenvalue of
symmetric matrix P . Cn,d := C([−d, 0],Rn) denotes the Banach space of continuous vector
functions mapping the interval [−d, 0] to Rn. Let xt ∈ Cn,d be defined by xt := x(t + θ),
θ ∈ [−d, 0]. ‖ · ‖ denotes the Euclidean norm of a vector and its induced norm of a matrix
and ‖xt‖d = sup−d≤θ≤0‖x(t + θ)‖. The superscript “T” represents matrix transposition, the
symmetric terms in a matrix are denoted by “∗”. diag{· · · } stands for a block-diagonal matrix
and Sym{A} is the shorthand notation for A +AT .

2. Preliminaries and Problem Formulation

Consider a class of SSTD systems of the form

Eẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − d(t)) + Bσ(t)u(t),

y(t) = Cσ(t)x(t) + Cdσ(t)x(t − d(t)),

x(t) = φ(t), t ∈ [−d1 − d2, 0],

(2.1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, and y(t) ∈ Rp is the
measured output; σ(t) : [0,+∞) → I = {1, 2, . . . ,N} with integer N > 1 is the switching
signal; E ∈ Rn×n is a singular matrix with rankE = r ≤ n; for each possible value σ(t) = i, i ∈ I,
Ai, Adi, Bi, Ci and Cdi are constant real matrices with appropriate dimensions; φ(t) ∈ Cn,d1+d2

is a compatible vector valued initial function; d(t) is an interval time-varying delay satisfying

d1 ≤ d(t) ≤ d1 + d2, ḋ(t) ≤ μ, (2.2)

where d1 ≥ 0, d2 > 0 and 0 ≤ μ < 1 are constants.

Remark 2.1. Model (2.1) can describe many practical time-delay systems (e.g., chemical
engineering systems, lossless transmission lines, partial element equivalent circuit, etc.) with
time-varying parameters or structures, which may be caused by random failures and repairs
of the components, sudden environment changes, and varying of the operating point of a
system [13, 35]. In real application, the importance of the study of controller design problem
for model (2.1) also arises from the extensive applications in networked control [36].

Since rankE = r ≤ n, there exist nonsingular transformation matrices P , Q ∈ Rn×n such
that PEQ = diag{Ir , 0}. In this paper, without loss of generality, let

E = diag{Ir , 0}. (2.3)

Corresponding to the switching signal σ(t), we denote the switching sequence by S :=
{(i0, t0), . . . , (ik, tk) | ik ∈ I, k = 0, 1, . . .} with t0 = 0, which means that the ik subsystem
is activated when t ∈ [tk, tk+1). To present the objective of this paper more precisely, the
following definitions are introduced.
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Definition 2.2 (see [16, 37]). For the switching signal σ(t) and any delay d(t) satisfying (2.2),
the unforced part of system (2.1)

Eẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − d(t)),

xt0(θ) = x(t0 + θ), θ ∈ [−d1 − d2, 0]
(2.4)

is said to be

(1) regular if det(sE −Ai) is not identically zero for each σ(t) = i, i ∈ I,

(2) impulse free if deg(det(sE −Ai)) = rankE for each σ(t) = i, i ∈ I,

(3) exponentially stable under the switching signal σ(t) if the solution x(t) of system
(2.4) satisfies ‖x(t)‖ ≤ ιe−λ(t−t0)‖xt0‖d1+d2 , for all t ≥ t0, where λ > 0 and ι > 0 are
called the decay rate and decay coefficient, respectively;

(4) exponentially admissible if it is regular, impulse free and exponentially stable under
the switching signal σ(t).

Definition 2.3 (see [9]). For any T2 > T1 ≥ 0, let Nσ(T1, T2) denote the number of switching of
σ(t) over (T1, T2). If Nσ(T1, T2) ≤ N0 + (T2 − T1)/Ta holds for Ta > 0, N0 ≥ 0, then Ta is called
average dwell time. As commonly used in the literature, we choose N0 = 0.

This paper considers the full-order DOF controller of the following form:

Ecẋc(t) = Acσ(t)xc(t) + Bcσ(t)y(t),

u(t) = Ccσ(t)xc(t) +Dcσ(t)y(t),
(2.5)

where xc(t) ∈ Rn is the controller state vector, and Ec, Aci, Bci, Cci and Dci, σ(t) = i, i ∈ I, are
appropriately dimensioned constant matrices to be determined.

Then, the problem to be addressed in this paper can be formulated as follows: given
the SSTD system (2.1), identify a class of switching signal σ(t) and design a DOF controller
of the form (2.5) such that the resultant closed-loop system is exponentially admissible under
the switching signal σ(t).

Before ending this section, we introduce the following lemma, which is essential for
the development of our main results.

Lemma 2.4. For any constant matrix Z ∈ Rn×n, Z = ZT > 0, positive scalar α, and vector function
ẋ : [−τ,∞) → Rn such that the following integration is well defined, then

eατ − 1
α

∫ t
t−d(t)

eα(s−t)ẋT (s)ETZEẋ(s)ds ≥
(∫ t

t−d(t)
Eẋ(s)ds

)T

Z

(∫ t
t−d(t)

Eẋ(s)ds

)
, t ≥ 0,

(2.6)

where 0 ≤ d(t) ≤ τ .
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Proof. The proof is almost the same as Lemma 1 in [20]. Using Schur complement, we have

[
eα(s−t)ẋT (s)ETZEẋ(s) ẋT (s)ET

∗ eα(t−s)Z−1

]
≥ 0. (2.7)

Integrating it from t − d(t) to t, we get

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ t
t−d(t)

eα(s−t)ẋT (s)ETZEẋ(s)ds
∫ t
t−d(t)

ẋT (s)ETds

∗ (eατ − 1)Z−1

α

⎤
⎥⎥⎥⎥⎥⎥⎦
≥ 0. (2.8)

Using Schur complement again, we find that Lemma 2.4 holds.

3. Main Results

In this section, we first apply the average dwell time approach to investigate the exponential
admissibility for SSTD system (2.4), and give the following result.

Theorem 3.1. For prescribed scalars α > 0, d1 ≥ 0, d2 > 0 and 0 ≤ μ < 1, if for each i ∈ I, there
exist matrices Qil > 0, Zil > 0, l = 1, 2, and Pi of the following form

Pi =

[
Pi11 0

Pi21 Pi22

]
(3.1)

with Pi11 ∈ Rr , Pi11 > 0, and Pi22 being invertible, such that

Φi =

⎡
⎢⎢⎣
Φi11 PTi Adi +AT

i UiAdi c1E
TZi1E

∗ Φi22 c2E
TZi2E

∗ ∗ Φi33

⎤
⎥⎥⎦ < 0, (3.2)

whereΦi11 = Sym{PTi Ai}+
∑2

l=1 Qil +αETPi − c1E
TZi1E+AT

i UiAi,Φi22 = −(1−μ)e−α(d1+d2)Qi2 −
c2E

TZi2E + AT
di
UiAdi, Φi33 = −e−αd1Qi1 − c1E

TZi1E − c2E
TZi2E, c1 = (αd1)/(eαd1 − 1), c2 =

(αd2)/(eαd2 − 1) and Ui = d2
1Zi1 + d2

2e
αd1Zi2. Then, system (2.4) with d(t) satisfying (2.2) is

exponentially admissible for any switching sequence S with average dwell time Ta ≥ T ∗a = (ln β)/α,
where β ≥ 1 satisfies

Pi11 ≤ βPj11, Qil ≤ βQjl, Zil ≤ βZjl, l = 1, 2, ∀i, j ∈ I. (3.3)

Moreover, an estimate on the exponential decay rate is λ = (1/2)(α − (ln β)/Ta).
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Proof. The proof is divided into three parts: (i) to show the regularity and nonimpulsiveness;
(ii) to show the exponential stability of the differential subsystem; and (iii) to show the
exponential stability of the algebraic subsystem.

Part (i) regularity and nonimpulsiveness. According to (2.3), for each i ∈ I, denote

Ai =

[
Ai11 Ai12

Ai21 Ai22

]
, Zi1 =

[
Zi111 Zi112

ZT
i112 Zi122

]
, (3.4)

where Ai11 ∈ Rr and Zi111 ∈ Rr . From (3.2), it is easy to see that Φi11 < 0, i ∈ I. Noting
Qil > 0 and Zil > 0, l = 1, 2, we get Sym{PTi Ai} + αETPi − c1E

TZi1E < 0. Substituting Pi, Ai,
Zi1 and E given as (3.1), (3.4) and (2.3) into this inequality and using Schur complement,
we have Sym{AT

i22Pi22} < 0, which implies that Ai22, i ∈ I, is nonsingular. Then by [24] and
Definition 2.2, system (2.4) is regular and impulse free.

Part (ii) exponential stability of the differential subsystem. Define the piecewise
Lyapunov functional candidate for system (2.4) as follows

V (xt) = Vσ(t)(xt)

= xT (t)ETPσ(t)x(t) +
∫ t
t−d1

eα(s−t)xT (s)Qσ(t)1x(s)ds

+
∫ t
t−d(t)

eα(s−t)xT (s)Qσ(t)2x(s)ds

+ d1

∫0

−d1

∫ t
t+θ

eα(s−t)(Eẋ(s))TZσ(t)1(Eẋ(s))dsdθ

+ d2

∫−d1

−d1−d2

∫ t
t+θ

eα(s−t+d1)(Eẋ(s))TZσ(t)2(Eẋ(s))dsdθ.

(3.5)

As mentioned earlier, the ikth subsystem is activated when t ∈ [tk, tk+1). Then, along the
solution of system (2.4) under the switching sequence S, for t ∈ [tk, tk+1), we have

V̇ik(xt) + αVik(xt) ≤ 2xT (t)PTikEẋ(t) + x
T (t)Qik1x(t) − e−αd1xT (t − d1)Qik1x(t − d1)

+ xT (t)Qik2x(t) −
(
1 − μ

)
e−α(d1+d2)xT (t − d(t))Qik2x(t − d(t))

+ (Eẋ(t))T
(
d2

1Zik1 + d2
2e

αd1Zik2

)
(Eẋ(t)) + αxT (t)ETPikx(t)

− d1

∫ t
t−d1

eα(s−t)(Eẋ(s))TZik1(Eẋ(s))ds

− d2

∫ t−d1

t−d(t)
eα(s−t+d1)(Eẋ(s))TZik2(Eẋ(s))ds.

(3.6)
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By replacing Eẋ(t) withAikx(t)+Adikx(t−d(t)) and using Lemma 2.4 and Schur complement,
LMI (3.2) yields

V̇ik(xt) + αVik(xt) < 0. (3.7)

Integrating (3.7) from tk to tk+1 gives

Vσ(t)(xt) = Vik(xt) ≤ e−α(t−tk)Vik(xtk), t ∈ [tk, tk+1). (3.8)

Let x(t) =
[
x1(t)
x2(t)

]
, where x1(t) ∈ Rr and x2(t) ∈ Rn−r . From (2.3) and (3.1), it can be seen

that for each i, i ∈ I, xT (t)ETPix(t) = xT1 (t)Pi11x1(t). Noting this, and using (3.3) and (3.5), at
switching instant tk, we have

Vik(xtk) ≤ βVσ(t−k)
(
xt−

k

)
= βVik−1

(
xt−

k

)
, k = 1, 2, . . . , (3.9)

where t−
k

denotes the left limitation of tk. Therefore, it follows from (3.8), (3.9) and the relation
k =Nσ(t0, t) ≤ (t − t0)/Ta that

Vσ(t)(xt) ≤ e−α(t−tk)βVσ(t−
k
)

(
xt−

k

)
≤ · · · ≤ e−α(t−t0)βkVσ(t0)(t0)

≤ e−(α−(ln β)/Ta)(t−t0)Vσ(t0)(xt0).
(3.10)

According to (3.5) and (3.10), we obtain

λ1‖x1(t)‖2 ≤ Vσ(t)(xt), Vσ(t0)(xt0) ≤ λ2‖xt0‖
2
d1+d2

(3.11)

where λ1 = min∀i∈Iλmin(Pi11), and λ2 = max∀i∈Iλmax(Pi11)+ (1/α)(1−e−αd1)max∀i∈Iλmax(Qi1)+
(1/α)(1 − e−α(d1+d2))max∀i∈Iλmax(Qi2) + (d1/α

2)(αd1 − 1 + e−αd1)max∀i∈I(2λmax(Zi1)(‖Ai‖ +
‖Adi‖)) + (1/α2)(−d2 + αd2

2e
αd1 + d2e

−αd2)max∀i∈I(2λmax(Zi2)(‖Ai‖+ ‖Adi‖)). Then, combining
(3.10) with (3.11) yields

‖x1(t)‖ ≤

√
λ2

λ1
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

. (3.12)

Part (iii) exponential stability of the algebraic subsystem. Since Ai22, i ∈ I, is

nonsingular, set Gi =
[
Ir −Ai12A

−1
i22

0 A−1
i22

]
and H =

[
Ir 0
0 In−r

]
. Then, it is easy to get

Ê := GiEH =

[
Ir 0

0 0

]
, Âi := GiAiH =

⎡
⎣Âi11 0

Âi21 In−r

⎤
⎦, P̂i := G−Ti PiH =

⎡
⎣P̂i11 0

P̂i21 P̂i22

⎤
⎦,
(3.13)
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where Âi11 = Ai11 − Ai12A
−1
i22Ai21, Âi21 = A−1

i22Ai21, P̂i11 = Pi11, P̂i21 = AT
i12Pi11 + AT

i22Pi21, and
P̂i22 = AT

i22Pi22. According to (3.13), denote

Âdi := GiAdiH =

⎡
⎣Âdi11 Âdi12

Âdi21 Âdi22

⎤
⎦, Q̂il := HTQilH =

⎡
⎣Q̂il11 Q̂il12

Q̂il21 Q̂il22

⎤
⎦,

Ẑil := G−Ti ZilG
−1
i =

⎡
⎣Ẑil11 Ẑil12

Ẑil21 Ẑil22

⎤
⎦, l = 1, 2.

(3.14)

Let

ξ(t) =

[
ξ1(t)

ξ2(t)

]
:= H−1x(t) = x(t), (3.15)

where ξ1(t) ∈ Rr and ξ2(t) ∈ Rn−r . Then, for any fixed σ(t) = i, i ∈ I, system (2.4) is restricted
system equivalent (r.s.e.) to

ξ̇1(t) = Âi11ξ1(t) + Âdi11ξ1(t − d(t)) + Âdi12ξ2(t − d(t)), (3.16)

−ξ2(t) = Âi21ξ1(t) + Âdi21ξ1(t − d(t)) + Âdi22ξ2(t − d(t)). (3.17)

By (3.2) and Schur complement, we have
[
Φ′i11 PTi Adi

∗ Φ′i22

]
< 0, where Φ′i11 = Sym{PTi Ai}+

∑2
l=1 Qil+

αETPi − c1E
TZi1E and Φ′i22 = −(1 − μ)e−α(d1+d2)Qi2 − c2E

TZi2E. Pre- and postmultiplying this
inequality by diag{HT,HT} and diag{H,H}, respectively, noting the expressions in (3.13)
and (3.14), and using Schur complement, we have

⎡
⎢⎣Sym

{
P̂ Ti22

}
+

2∑
l=1

Q̂il22 P̂ Ti22Âdi22

∗ −
(
1 − μ

)
e−α(d1+d2)Q̂i222

⎤
⎥⎦ < 0. (3.18)

Pre- and postmultiplying this inequality by [−ÂT
di22I] and its transpose, respectively, and

noting Q̂i122 > 0 and 0 ≤ μ < 1, we obtain ÂT
di22Q̂i222Âdi22 − e−α(d1+d2)Q̂i222 < 0. Then, according

to Lemma 7 in [38], we can deduce that there exist constants �i > 1 and ηi > 0 such that

∥∥∥∥
(
e(1/2)α(d1+d2)Âdi22

)l∥∥∥∥ ≤ �ie
−ηil, l = 0, 1, . . . , ∀i ∈ I. (3.19)

Define

t0 = t, tj = tj−1 − d
(
tj−1
)
, j = 1, 2, . . . , (3.20)

∥∥∥Â21

∥∥∥ = max
∀i∈I

∥∥∥Âi21

∥∥∥,
∥∥∥Âd21

∥∥∥ = max
∀i∈I

∥∥∥Âdi21

∥∥∥,
∥∥∥Âd22

∥∥∥ = max
∀i∈I

∥∥∥Âdi22

∥∥∥, ∀i ∈ I. (3.21)
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As mentioned earlier, under the switching sequence S, for t ∈ [tk, tk+1), the ikth subsystem is
activated. Then, from (3.17) and (3.20), we have

ξ2(t) − Âik21ξ1

(
t0
)
− Âdik21ξ1

(
t1
)
− Âdik22ξ2

(
t1
)
. (3.22)

Similarly, it can be obtained that ξ2(t1) = −Âik21ξ1(t1) − Âdik21ξ1(t2) − Âdik22ξ2(t2). Substituting
this into (3.22), we get ξ2(t) = (−Âdik22)

2ξ2(t2) −
∑1

j=0(−Âdik22)
j(Âik21ξ1(tj) + Âdik21ξ1(tj+1)).

Continuing in the same manner and noting that tj < tj−1, then there exists a finite positive
integer Tik such that

ξ2(t) =
(
−Âdik22

)Tik
ξ2

(
tTik
)
−
Tik−1∑
jik=0

(
−Âdik22

)jik(
Âik21ξ1

(
tjik
)
+ Âdik21ξ1

(
tjik+1
))
, (3.23)

where tTik ∈ (tk−1, tk] and tTik → tk. When t ∈ [tk−1, tk), the ik−1th subsystem is activated.
Then, following a similar procedure as the above, there exists a finite positive integer Tik−1

such that

ξ2

(
tTik
)
=
(
−Âdik−122

)Tik−1
ξ2

(
tTik+Tik−1

)

−
Tik+Tik−1−1∑
jik−1=Tik

(
−Âdik−122

)jik−1−Tik
(
Âik−121ξ1

(
tjik−1

)
+ Âdik−121ξ1

(
tjik−1+1

))
,

(3.24)

where tTik+Tik−1 ∈ (tk−2, tk−1] and tTik+Tik−1 → tk−1. After k-times iterative manipulations, t
belongs to [t0, t1), and there exists a finite positive integer Ti0 such that

ξ2

(
tTik+···+Ti1

)
=
(
−Âdi022

)Ti0
ξ2

(
tTik+···+Ti0

)

−
Tik+···+Ti0−1∑
ji0=Tik+···+Ti1

(
−Âdi022

)ji0−Tik−···−Ti1(
Âi021ξ1

(
tji0
)
+ Âdi021ξ1

(
tji0+1
))
,

(3.25)

where tTik+···+Ti0 ∈ (−d1 − d2, t0] and tTik+···+Ti0 → t0. By a simple induction, we have

ξ2(t) =

⎡
⎣ k∏

j=0

(
−Âdij22

)Tij
⎤
⎦ξ2

(
tTik+···+Ti1+Ti0

)
−
Tik−1∑
jik=0

(
−Âdik22

)jik(
Âik21ξ1

(
tjik
)
+ Âdik21ξ1

(
tjik+1
))

−
k∑
p=1

⎧⎨
⎩
[

k∏
q=p

(
−Âdiq22

)Tiq] Tik+···+Tip−1−1∑
jip−1=Tik+···+Tip

(
ϕ1(t) + ϕ2(t)

)
⎫⎬
⎭,

(3.26)
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where

ϕ1(t) =
(
−Âdip−122

)jip−1−Tik−···−Tip
Âip−121ξ1

(
t
jip−1

)
,

ϕ2(t) =
(
−Âdip−122

)jip−1−Tik−···−Tip
Âdip−121ξ1

(
t
jip−1+1

) (3.27)

Therefore, from (3.15), (3.21), and (3.26), and noting tTik+···+Ti0 ∈ (−d1 − d2, t0], we obtain

‖ξ2(t)‖ ≤ Δ1 + Δ2 + Δ3 + Δ4 + Δ5, (3.28)

where

Δ1 =

⎡
⎣ k∏

j=0

∥∥∥∥
(
Âdij22

)Tij ∥∥∥∥
⎤
⎦‖xt0‖d1+d2

,

Δ2 = Â21

Tik−1∑
jik=0

∥∥∥∥
(
Âdik22

)jik∥∥∥∥
∥∥∥ξ1

(
tjik
)∥∥∥,

Δ3 = Âd21

Tik−1∑
jik=0

∥∥∥∥
(
Âdik22

)jik∥∥∥∥
∥∥∥ξ1

(
tjik+1
)∥∥∥,

Δ4 = Â21

k∑
p=1

⎧⎨
⎩
[

k∏
q=p

∥∥∥∥
(
Âdiq22

)Tiq∥∥∥∥
] Tik+···+Tip−1−1∑
jip−1=Tik+···+Tip

∥∥ϕ1(t)
∥∥
⎫⎬
⎭,

Δ5 = Âd21

k∑
p=1

⎧⎨
⎩
[

k∏
q=p

∥∥∥∥
(
Âdiq22

)Tiq∥∥∥∥
] Tik+···+Tip−1−1∑
jip−1=Tik+···+Tip

∥∥ϕ2(t)
∥∥
⎫⎬
⎭.

(3.29)

Note

t0 ≥ tTik+···+Ti0 = t −
Tik+···+Ti0−1∑

j=0

d
(
tj
)
≥ t − (Tik + · · · + Ti0)(d1 + d2). (3.30)
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Using (3.19) and the relation Ta ≥ T ∗a = (ln β)/α, the first term in (3.28) can be estimated as

Δ1 =

⎡
⎣ k∏

j=0

∥∥∥∥
(
e(1/2)α(d1+d2)Âdij22

)Tij ∥∥∥∥e−(1/2)α(Tik+···+Ti0 )(d1+d2)

⎤
⎦‖xt0‖d1+d2

≤

⎡
⎣ k∏

j=0

�ij e
−ηij Tij

⎤
⎦e−(1/2)α(t−t0)‖xt0‖d1+d2

≤

⎡
⎣ k∏

j=0

�ij e
−ηij Tij

⎤
⎦e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

:= χ1e
−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.31)

By (3.15), (3.12), (3.21), (3.20) and (3.19), we get

∥∥∥∥
(
Âdik22

)jik∥∥∥∥
∥∥∥ξ1

(
tjik
)∥∥∥ ≤

∥∥∥∥
(
Âdik22

)jik∥∥∥∥
√
λ2

λ1
e−(1/2)(α−(ln β)/Ta)(t

jik −t0)‖xt0‖d1+d2

≤

√
λ2

λ1

∥∥∥∥e(1/2)α(d1+d2)
(
Âdik22

)jik∥∥∥∥e−(1/2)(α−(ln β)/Ta)(t
jik
−1−t0)‖xt0‖d1+d2

≤ · · · ≤

√
λ2

λ1

∥∥∥∥
(
e(1/2)α(d1+d2)Âdik22

)jik∥∥∥∥e−(1/2)(α−(ln β)/Ta)(t0−t0)‖xt0‖d1+d2

≤

√
λ2

λ1

(
�ik e

−ηik jik
)
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.32)

Then, the second term in (3.28) can be estimated as

Δ2 ≤ Â21

√
λ2

λ1

⎡
⎣Tik−1∑
jik=0

�ik e
−ηik jik

⎤
⎦e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

≤ �ik Â21

√
λ2

λ1

eηik

eηik − 1
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

:= χ2e
−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.33)

Similarly, the third term in (3.28) can be bounded by

Δ3 ≤ �ik e
(1/2)α(d1+d2)Âd21

√
λ2

λ1

eηik

eηik − 1
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

:= χ3e
−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.34)
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In addition, following a similar deduction as that in (3.32), we obtain

∥∥ϕ1(t)
∥∥ ≤
√
λ2

λ1

(
e(1/2)α(d1+d2)

)Tik+···+Tip(
�ip−1e

−ηip−1 (jip−1−Tik−···−Tip )
)
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.35)

Then, considering this and (3.19), the fourth term in (3.28) can be estimated as

Δ4 ≤ Â21

√
λ2

λ1

k∑
p=1

⎧⎨
⎩
[

k∏
q=p

∥∥∥∥
(
e(1/2)α(d1+d2)Âdiq22

)Tiq∥∥∥∥
] Tik+···+Tip−1−1∑
jip−1=Tik+···+Tip

�ip−1e
−ηip−1 (jip−1−Tik−···−Tip )

⎫⎬
⎭

× e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

≤ Â21

√
λ2

λ1

k∑
p=1

{
�ip−1

[
k∏
q=p

�iqe
−ηiq Tiq

]
e
ηip−1

e
ηip−1 − 1

}
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

:= χ4e
−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.36)

Similarly, the fifth term in (3.28) can be bounded by

Δ5 ≤ e(1/2)α(d1+d2)Âd21

√
λ2

λ1

k∑
p=1

{
�ip−1

[
k∏
q=p

�iqe
−ηiq Tiq

]
e
ηip−1

e
ηip−1 − 1

}
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

:= χ5e
−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

.

(3.37)

Therefore, using (3.31) and (3.33)–(3.37), ‖ξ2(t)‖ can be estimated as

‖ξ2(t)‖ ≤
(
χ1 + χ2 + χ3 + χ4 + χ5

)
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖d1+d2

. (3.38)

Combining (3.15), (3.12) and (3.38) yields that system (2.4) is exponentially stable for any
switching sequence S with average dwell time Ta ≥ T ∗a = (ln β)/α. This completes the proof.

Remark 3.2. In terms of LMIs, Theorem 3.1 presents a delay-range-dependent exponential
admissibility condition for the switched singular systems with interval time-varying delay.
It is noted that this condition is obtained by using the integral inequality (Lemma 2.4); no
additional free-weighting matrices are introduced to deal with the cross-term. Therefore, the
condition proposed here involves much less decision variables than those obtained by using
the free-weighting matrices method [16, 19, 21, 22] if the same Lyapunov function is chosen.

Remark 3.3. Equation (3.26) plays an important role in analyzing the exponential stability of
the algebraic subsystem, which can be seen as a generalization of the iterative equation in
[37] for nonswitched singular time-delay system to switched case.
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Remark 3.4. If β = 1 in Ta ≥ T ∗a = (ln β)/α, which leads to Pi11 ≡ Pj11, Qil ≡ Qjl, Zil ≡ Zjl,
l = 1, 2, for all i, j ∈ I, and T ∗a = 0, then system (2.4) possesses a common Lyapunov function
and the switching signals can be arbitrary.

In the following, we are to deal with the design problem of DOF controller for the
SSTD system (2.1). Applying the DOF controller (2.5) to system (2.1) gives the following
closed-loop system

Eη̇(t) = Aσ(t)η(t) +Adσ(t)η(t − d(t)), (3.39)

where η(t) = [xT (t)xTc (t)]
T , and

E =

[
E 0

0 Ec

]
, Aσ(t) =

[
Aσ(t) + Bσ(t)Dcσ(t)Cσ(t) Bσ(t)Ccσ(t)

Bcσ(t)Cσ(t) Acσ(t)

]

Adσ(t) =

[
Adσ(t) + Bσ(t)Dcσ(t)Cdσ(t) 0

Bcσ(t)Cdσ(t) 0

]
.

(3.40)

The following Theorem presents a sufficient condition for solvability of the DOF controller
design problem for system (2.1).

Theorem 3.5. For prescribed scalars α > 0, γ > 0, d1 ≥ 0, d2 > 0 and 0 ≤ μ < 1, if for each i ∈ I,
and given scalars ξi1 and ξi2, there exist matrices Yi, Âci, B̂ci, Ĉci, D̂ci, Qil11, Qil12, Qil22, Zil11, Zil12,
Zil22, l = 1, 2, and Ri andUi of the following form

Ri =

[
Ri11 0

Ri21 Ri22

]
, Ui =

[
Ui11 0

Ui21 Ui22

]
(3.41)

with Ri11 ∈ Rr×r , Ui11 ∈ Rr×r , Ri11 > 0, Ui11 > 0, Ri22 ∈ R(n−r)×(n−r), Ui22 ∈ R(n−r)×(n−r), and Ri22

andUi22 being invertible, such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υi11 Υi12 Υi13 Υi14 Υi15 0 c1E
TZi111E c1E

TZi112E

∗ Υi22 Υi23 Υi24 Υi25 0 c1E
TZT

i112E c1E
TZi122E

∗ ∗ Υi33 Υi34 Υi35 0 0 0

∗ ∗ ∗ Υi44 Υi45 0 0 0

∗ ∗ ∗ ∗ Υi55 Υi56 c2E
TZi211E c2E

TZi212E

∗ ∗ ∗ ∗ ∗ Υi66 c2E
TZT

i212E c2E
TZi222E

∗ ∗ ∗ ∗ ∗ ∗ Υi77 Υi78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Υi88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.42)

Qil =

[
Qil11 Qil12

∗ Qil22

]
> 0, Zil =

[
Zil11 Zil12

∗ Zil22

]
> 0, l = 1, 2, (3.43)
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whereΥi11 = Sym{ξi1Ai+ξi1BiD̂ciCi+B̂ciCi}+
∑2

l=1 Qil11+αETRi−c1E
TZi111E,Υi12 = Âci+ξi1BiĈci+

ξi2A
T
i + ξi2CT

i D̂
T
ciB

T
i + CT

i B̂
T
ci +
∑2

l=1 Qil12 − c1E
TZi112E, Υi13 = −ξi1I + RT

i + ξi1AT
i + ξi1CT

i D̂
T
ciB

T
i +

CT
i B̂

T
ci, Υi14 = −Yi + ξi2A

T
i + ξi2C

T
i D̂

T
ciB

T
i + CT

i B̂
T

ci, Υi15 = Υi35 = ξi1Adi + ξi1BiD̂ciCdi + B̂ciCdi,
Υi22 = Sym{Âci + ξi2BiĈci} +

∑2
l=1 Qil22 + αETUi − c1E

TZi122E, Υi23 = −ξi2I + ÂT
ci + ξi1Ĉ

T
ciB

T
i ,

Υi24 = −Yi+ÂT
ci+ξi2Ĉ

T
ciB

T
i +U

T
i , Υi25 = Υi45 = ξi2Adi+ξi2BiD̂ciCdi+B̂ciCdi, Υi33 = −2ξi1I+d2

1Zi111+
d2

2e
αd1Zi211, Υi34 = −ξi2I − Yi + d2

1Zi112 + d2
2e

αd1Zi212, Υi44 = −Sym{Yi} + d2
1Zi122 + d2

2e
αd1Zi222,

Υi55 = −(1 − μ)e−α(d1+d2)Qi211 − c2E
TZi211E, Υi56 = −(1 − μ)e−α(d1+d2)Qi212 − c2E

TZi212E, Υi66 =
−(1 − μ)e−α(d1+d2)Qi222 − c2E

TZi222E, Υi77 = −(1 − μ)e−αd1Qi111 − c1E
TZi111E − c2E

TZi211E, Υi78 =
−(1−μ)e−αd1Qi112−c1E

TZi112E−c2E
TZi212E, Υi88 = −(1−μ)e−αd1Qi122−c1E

TZi122E−c2E
TZi222E.

Then, there exists a DOF controller in the form of (2.5), such that system (3.39) is exponentially
admissible for any switching sequence S with average dwell time Ta ≥ T ∗a = ln β/α, where β ≥ 1
satisfies

Ri11 ≤ βRj11, Ui11 ≤ βUj11, Qil ≤ βQjl, Zil ≤ βZjl, l = 1, 2, ∀i, j ∈ I. (3.44)

Moreover, a desired DOF controller realisation is given by

Aci = Y−1
i Âci, Bci = Y−1

i B̂ci, Cci = Ĉci, Dci = D̂ci, ∀i ∈ I. (3.45)

Proof. From Theorem 3.1, we known that system (3.39) is exponentially admissible for any
switching sequence S with average dwell time Ta ≥ T ∗a = (ln β)/α, where β ≥ 1 satisfying
(3.3), if for each i ∈ I, there exist matrices Qil > 0, Zil > 0, l = 1, 2, and Pi with the form of
(3.1) such that the inequality (3.2) with E, Ai and Adi instead of E, Ai and Ci, respectively,
holds. By decomposing Φi in (3.2), we obtain that for each i ∈ I

Φi = ΠiΛiΠT
i < 0, (3.46)

where Ji is any invertible matrix with compatible dimension, and

Πi =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0

Ai Adi 0

0 I 0

0 0 I

⎤
⎥⎥⎥⎥⎥⎦

T

, Λi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Λi11 P
T

i − Ji +A
T

i J
T

i JiAdi c1E
T
Zi1E

∗ −Ji − J
T

i +Ui JiAdi 0

∗ ∗ Λi33 c2E
T
Zi2E

∗ ∗ ∗ Λi44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.47)

with Λi11 = Sym{JiAi} +
∑2

l=1 Qil + αE
T

i P i − c1E
T
Zi1E, Λi33 = −(1 − μ)e−α(d1+d2)Qi2 − c2E

T
Zi2E,

and Λi44 = −e−αd1Qi1 − c1E
T
Zi1E − c2E

T
Zi2E. Hence, Φi < 0 holds if

Λi < 0. (3.48)

Let E = diag{E, E}. For each i ∈ I, define

Pi = diag{Ri,Ui}. (3.49)
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By (2.3) and (3.41), we have

ETRi = RT
i E ≥ 0, ETUi = UT

i E ≥ 0, (3.50)

which combining (3.49) yields

E
T
Pi = P

T

i E ≥ 0. (3.51)

Then, from (3.41), (3.44) and (3.51), it can be deduced that

E
T
Pi ≤ βE

T
Pj , ∀i, j ∈ I. (3.52)

Denote

Ji =

[
ξi1I Yi

ξi2I Yi

]
. (3.53)

Substituting (3.43), (3.49) and (3.53) into (3.48), and defining

Âci = YiAci, B̂ci = YiBci, Ĉci = Cci, D̂ci = Dci, ∀i ∈ I (3.54)

we can easily obtain (3.42). This completes the proof.

Remark 3.6. Note that condition Φi of Theorem 3.1 involves some product terms between the
Lyapunov matrices and the system matrices, which complicates the DOF control synthesis
problem. To solve this problem, in the proof of Theorem 3.5, we have made a decoupling
between the Lyapunov matrices and the system matrices by introducing a slack matrix
Ji in condition Λi. Compared with the variable change method used in [39, 40], the
decoupling technique proposed here simplifies the DOF controller design problem greatly,
which decreases the conservatism in some sense.

Remark 3.7. Scalars ξi1 and ξi2, i ∈ I, in Theorem 3.5 are tuning parameters which need to
be specified first. The optimal values of these parameters can be found by applying some
optimization algorithms such as the program fminsearch in the optimization toolbox of
MATLAB, the branch-and-band algorithm [41].

Remark 3.8. It is noted that in this paper, the derivative matrix E is assumed to be switch-
mode-independent. If E is also switch-mode-dependent, then E is changed to Ei, i ∈ I. In
this case, the transformation matrices P and Q should become Pi and Qi so that PiEiQi =
diag{Iri , 0}, and the state of the transformed system becomes x̃(t) = Q−1

i (t) = [x̃Ti1(t) x̃Ti2(t)]
T

with x̃Ti1(t) ∈ Rri and x̃Ti1(t) ∈ Rn−ri , which implies that there does not exist one common state
space coordinate basis for all subsystems. Then, some assumptions for Ei (e.g., Ei, i ∈ I, have
the same right zero subspace [27]) should be made so that Qi remains the same; in this case,
the method presented in this paper is also valid. How to investigate the general SSTD system
with E being switch-mode-dependent is an interesting problem for future work via other
approaches.
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Table 1: Comparison of allowable upper bound d̃2 for different d1 in Example 4.1.

Methods d̃2 Number of variables
Lemma 1 [21] 1.130 (d1 = 0.1) 1.099 (d1 = 0.3) 1.084 (d1 = 0.7) 84
Theorem 1 [22] 1.130 (d1 = 0.1) 1.099 (d1 = 0.3) 1.084 (d1 = 0.7) 84
Theorem 3.1 1.134 (d1 = 0.1) 1.133 (d1 = 0.3) 1.133 (d1 = 0.7) 30
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Figure 1: State trajectories of the open-loop subsystem 1.

4. Numerical Examples

In this section, some numerical examples are presented to demonstrate the effectiveness of
the proposed methods.

Example 4.1. Consider the switched system (2.4) with E = I, N = 2 (e.g., there are two
subsystems) and the following parameters, which are borrowed from [21]:

A1 =

[
−2 0

0 −0.9

]
, Ad1 =

[
−1 0

0 −1

]
, A2 =

[
−2 0

0 −0.7

]
, Ad2 =

[
−1 0

−1 −1

]
. (4.1)

For μ = 0.4, α = 0.5 and β = 1.1, employing the LMIs in [21, 22] and those in Theorem 3.1
yields an allowable upper bound d̃2 (in this paper d̃2 = d1 + d2) of the delay d(t) that
guarantees the stability of system (2.4). Table 1 shows the values of the upper bound for
various d1 and the number of involved variables by using different methods. It is easily seen
from Table 1 that Theorem 3.1 of this paper not only provides better results than those criteria
in [21, 22] but also reduces the computational overhead to some extent.
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Figure 2: State trajectories of the open-loop subsystem 2.
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Figure 3: Switching signal with the average dwell time Ta > 0.13.

Example 4.2. Consider the switched system (2.4) with N = 2 and the related parameters are
given as follows:

E =

[
1 0

0 0

]
, A1 =

[
0.73 0

0 −1

]
, Ad1 =

[
−1.1 1

0 0.5

]
,

A2 =

[
0.4 0

−0.1 −1

]
, Ad2 =

[
−1 0.1

0 0.1

]
,

(4.2)
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Figure 4: State trajectories of the closed-loop system under DOF control.

and d1 = 0.1, d2 = 0.2, μ = 0.4 and α = 0.5. It can be verified that both of the above two
subsystems are stable. Let β = 1; it can be found that there is no feasible solution to this case,
which implies that there is no common Lyapunov function for the above two subsystems (see
Remark 3.4). Now, we consider the average dwell time scheme, and set β = 1.2. Solving the
LMIs (3.2) gives the following solutions:

P1 =

[
19.7719 0

17.9611 819.3011

]
, Q11 =

[
0.7438 −1.2478

−1.2478 68.3107

]
, Q12 = 103 ×

[
0.0002 0.0102

0.0102 1.0735

]
,

Z11 =

[
624.4425 0.8810

0.8810 379.5848

]
, Z12 =

[
332.4246 −0.4902

−0.4902 373.4311

]
,

P2 =

[
23.3711 0

−26.9375 642.4532

]
, Q21 =

[
0.7501 −0.8269

−0.8269 66.5062

]
, Q22 =

[
0.2201 8.9316

8.9316 917.3497

]
,

Z21 =

[
560.8384 0.7643

0.7643 379.5975

]
, Z22 =

[
294.2097 −0.4003

−0.4003 373.4858

]

(4.3)

which means that the above switched system is exponentially admissible. Moreover, by
further analysis, it can be found that the allowable minimum of β is βmin = 1.046 when α = 0.5;
in this case T ∗a = (ln βmin)/α = 0.0899.
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Example 4.3. Consider the switched system (2.1) with N = 2 and

E =

[
1 0

0 0

]
,

A1 =

[
0.9 0

1 −5

]
, Ad1 =

[
0.5 0.1

1 0.1

]
,

B1 =

[
0.3

0.1

]
, C1 =

[
0.3 0.1

]
, Cd1 =

[
0.1 0.1

]
,

A2 =

[
0.5 0.1

2 −5

]
, Ad2 =

[
0.2 0.5

1.5 0.1

]
, B2 =

[
0.4

0.1

]
,

C2 =
[
0.1 0.3

]
, Cd2 =

[
0.1 0.1

]
,

(4.4)

and d(t) = 0.3 + 0.2 sin(1.5t). A simple calculation yields d1 = 0.1, d2 = 0.4 and μ = 0.3.
By simulation, it can be checked that both of the above two subsystems with u(t) = 0
are unstable, and the state responses of the corresponding open-loop systems are shown in
Figures 1 and 2, respectively, with the initial condition given by φ(t) = [1 2]T , t ∈ [−0.5, 0].
In view of this, our goal is to design a DOF control u(t) in the form of (2.5) such that the
closed-loop system is exponentially admissible.

Set α = 0.5, β = 1.05 (thus Ta ≥ T ∗a = (ln β)/α = 0.0976), and choose ξ11 = 0.9255,
ξ12 = 0.0067, ξ13 = 0.9811, ξ14 = 0.0016. Solving the LMIs (3.41)–(3.44), the corresponding gain
matrices of the DOF controller are computed as

Ac1 =

[
−26.3829 −0.4700

−0.8920 −0.8529

]
, Ac2 =

[
−67.7480 0.6423

9.5961 −0.8803

]
, Bc1 =

[
0.6811

−0.2272

]
,

Bc2 =

[
4.0654

−1.1668

]
, Cc1 =

[
33.6391 0.1324

]
, Cc2 =

[
23.4740 −0.5180

]
,

Dc1 = −22.4825, Dc2 = −17.9093

(4.5)

To show the effectiveness of the obtained DOF controller, giving a random switching signal
with the average dwell time Ta ≥ 0.13 as shown in Figure 3, we get the state trajectories of
the closed-loop system as shown in Figure 4, for the given initial condition φ(t) = [1 2]T ,
t ∈ [−0.5, 0]. It is clear that the designed controller is feasible and ensures the stability of the
closed-loop system despite the switching and the time-varying delay.

5. Conclusions

In this paper, the problems of exponential admissibility and DOF control for a class of
continuous-time switched singular systems with interval time-varying delay have been
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investigated. A class of switching signals has been identified for the switched singular time-
delay systems to be exponentially admissible under the average dwell time scheme. The
DOF controller has been designed, and the corresponding solvability condition has been
established by using the LMI technique. Numerical examples have been provided to illustrate
the effectiveness of the proposed methods.
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[26] B. Cantó, C. Coll, and E. Sánchez, “PositiveN-periodic descriptor control systems,” Systems & Control
Letters, vol. 53, no. 5, pp. 407–414, 2004.

[27] B. Meng and J.-F. Zhang, “Output feedback based admissible control of switched linear singular
systems,” Acta Automatica Sinica, vol. 32, no. 2, pp. 179–185, 2006.

[28] J. Lin, S. Fei, and J. Shen, “Admissibility analysis and control synthesis for switched linear singular
systems,” Journal of Systems Engineering and Electronics, vol. 20, no. 5, pp. 1037–1044, 2009.

[29] G. Zhai, R. Kou, J. Imae, and T. Kobayashi, “Stability analysis and design for switched descriptor
systems,” International Journal of Control, Automation and Systems, vol. 7, no. 3, pp. 349–355, 2009.

[30] R. Shorten, M. Corless, K. Wulff, S. Klinge, and R. Middleton, “Quadratic stability and singular SISO
switching systems,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2714–2718, 2009.

[31] B. Meng and J.-F. Zhang, “Reachability conditions for switched linear singular systems,” IEEE
Transactions on Automatic Control, vol. 51, no. 3, pp. 482–488, 2006.

[32] D. Koenig and B. Marx, “H∞-filtering and state feedback control for discrete-time switched descriptor
systems,” IET Control Theory & Applications, vol. 3, no. 6, pp. 661–670, 2009.

[33] S. Ma, C. Zhang, and Z. Wu, “Delay-dependent stability ofH∞ control for uncertain discrete switched
singular systems with time-delay,” Applied Mathematics and Computation, vol. 206, no. 1, pp. 413–424,
2008.

[34] T. C. Wang and Z. R. Gao, “Asymptotic stability criterion for a class of switched uncertain descriptor
systems with time-delay,” Acta Automatica Sinica, vol. 34, no. 8, pp. 1013–1016, 2008.

[35] E.-K. Boukas, Control of Singular Systems with Random Abrupt Changes, Communications and Control
Engineering Series, Springer, Berlin, Germany, 2008.

[36] D. Zhaoping, Z. Qingling, and C. Guisong, “State feedback stabilization for switched singulå
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