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We discuss a two-species Lotka-Volterra mutualism system with stochastic perturbation. We show
that there is a unique nonnegative solution of this system. Furthermore, we investigate that there
exists a stationary distribution for this system, and it has ergodic property.

1. Introduction

It is well known that the differential equation

ẋ1(t) = x1(t)[r1 − a11x1(t) + a12x2(t)],

ẋ2(t) = x2(t)[r2 + a21x1(t) − a22x2(t)]
(1.1)

denotes the population growth of mutualism system for the two species. x1(t) and x2(t)
represent the densities of the two species at time t, respectively, and the parameters ri, aij , i, j =
1, 2 are all positive. Goh [1] showed that the asymptotic stability equilibrium state of (1.1)
in local must be asymptotic stability in global. That is, if ri > 0, aij > 0, i, j = 1, 2, and
a11a22 − a12a21 > 0, then

x1(t) −→ x∗
1, x2(t) −→ x∗

2, as t −→ ∞, (1.2)
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where x∗ = (x∗
1, x

∗
2) is the unique positive equilibrium of system (1.1) and

x∗
1 =

r1a22 + r2a12

a11a22 − a12a21
> 0, x∗

2 =
r2a11 + r1a21

a11a22 − a12a21
> 0. (1.3)

While if a11a22 − a12a21 < 0, then the population of both species increase to infinite. There are
extensive literature concerned with mutualism system; see [2–7].

The papers mentioned above are all deterministic models, which do not incorporate
the effect of fluctuating environment. In fact, environmental fluctuations are important
components in the population system. Most of natural phenomena do not follow strictly
deterministic laws, but rather oscillate randomly around some average values, hence the
deterministic equilibrium is no longer an absolutely fixed state [8]. Therefore stochastic
differential equation models play a significant role in various branches of applied sciences
including the population system, as they provide some additional degree of realism
compared to their deterministic counterpart [9–13]. Recently, many authors have paid
attention to how population systems are affected by random fluctuations from environment
(see, e.g., [14–18]). However, as far as we known, there is few paper consider how
environmental noises affect the dynamical behaviors of the mutualism system, Zeng et
al. [19] discussed the effects of noise and time delay on C(s) (the normalized correlation
function) and Tc (the associated relaxation time) of a mutualism system, in which they
considered the intraspecies interaction parameters were stochastically perturbed. Motivated
by this, the main aim of this paper is to study the dynamical behaviors of the mutualism
system with stochastic perturbation.

In this paper, considering the effect of randomly fluctuating environment, we
incorporate white noise in each equation of system (1.1). Here we assume that fluctuations in
the environment will manifest themselves mainly as fluctuations in the natural growth rates
ri, i = 1, 2. Suppose ri → ri + σiḂi(t), where Bi(t), i = 1, 2 are mutually independent one
dimensional standard Brownian motions with Bi(0) = 0, and σi > 0, i = 1, 2 are the intensities
of white noises. The stochastic version corresponding to the deterministic system (1.1) takes
the following form:

dx1(t) = x1(t)[(r1 − a11x1(t) + a12x2(t))dt + σ1dB1(t)],

dx2(t) = x2(t)[(r2 + a21x1(t) − a22x2(t))dt + σ2dB2(t)].
(1.4)

This paper is organized as follows. In Section 2, we show there is a unique positive
solution of (1.4) if a11a22 −a12a21 > 0, and give out the estimation of the solution. The stability
of system (1.4) is investigated in Section 3. Since (1.4) does not have interior equilibrium, we
cannot discuss the stability as the deterministic system. First, we show there is a stationary
distribution of (1.4) and it has ergodic property. Next, by estimating the p moment, we
explore some properties of the solution.

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets). Let R2

+ denote the positive cone of R2, namely
R2

+ = {x ∈ R2 : xi > 0, i = 1, 2}. If A is a vector, its transpose is denoted by A�. For
x ∈ R2, |x| = |x1| + |x2|.
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2. The Existence and Estimation of the Solution

To investigate the dynamical behavior, the first concern thing is whether the solution is
global existence. Moreover, for a population model, whether the value is nonnegative is also
considered. Hence in this section we first show the solution of (1.4) is global and nonnegative.
As we have known, for a stochastic differential equation to have a unique global solution for
any given initial value, the coefficients of the equation are generally required to satisfy the
linear growth condition and local Lipschitz condition (cf. Arnold [20], Mao [21]). However,
the coefficients of (1.4) do not satisfy the linear growth condition, though they are locally
Lipschitz continuous, so the solution of (1.4) may explode at a finite time. In this section,
following the way developed by Mao et al. [17], we show there is a unique positive solution
of (1.4).

Theorem 2.1. There is a unique positive solution x(t) of system (1.4) for any given initial value
x(0) = x0 ∈ R2

+ provided a11a22 > a12a21.

Proof. The proof is similar to Theorem 2.1 in [17]. Here we define aC2-function V : R2
+ → R+:

V (x1, x2) = a21

[
x1 − x∗

1 − x∗
1 log

x1

x∗
1

]
+ a12

[
x2 − x∗

2 − x∗
2 log

x2

x∗
2

]
, (2.1)

where x∗ = (x∗
1, x

∗
2)

� satisfies

r1 − a11x
∗
1 + a12x

∗
2 = 0,

r2 + a21x
∗
1 − a22x

∗
2 = 0.

(2.2)

Remark 2.2. Theorem 2.1 shows stochastic equation (1.4) also has a global positive solution
under the same condition of the corresponding deterministic system (1.1). That is to say, the
white noise does not affect the existence of the unique global positive solution.

In the remaining of this section, we give the estimation of the solution of system (1.4).
Jiang and Shi [22] discussed a randomized nonautonomous logistic equation:

dN(t) =N(t)[(a(t) − b(t)N(t))dt + α(t)dB(t)], (2.3)

where B(t) is 1-dimensional standard Brownian motion, N(0) = N0 and N0 is independent
of B(t). They showed the following.

Lemma 2.3 (see [22]). Assume that a(t), b(t) and α(t) are bounded continuous functions defined
on [0,∞), a(t) > 0 and b(t) > 0. Then there exists a unique continuous positive solution of (2.3) for
any initial valueN(0) =N0 > 0, which is global and represented by

N(t) =
e
∫ t

0[a(s)−α2(s)/2]ds+α(s)dB(s)

1/N0 +
∫ t

0 b(s)e
∫s

0 [a(τ)−α2(τ)/2]dτ+α(τ)dB(τ)ds
, t ≥ 0. (2.4)
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Theorem 2.4. Assume that a11a22 > a12a21 and x(t) ∈ R2
+ is the solution of system (1.4) with initial

value x0 ∈ R2
+. Then x(t) has the property that

x1(t) ≥ φ1(t), x2(t) ≥ φ2(t), (2.5)

where φ1(t) and φ2(t) are the solutions of equations:

dφ1(t) = φ1(t)
[(
r1 − a11φ1(t)

)
dt + σ1dB1(t)

]
, φ1(0) = x1(0), (2.6)

dφ2(t) = φ2(t)
[(
r2 − a22φ2(t)

)
dt + σ2dB2(t)

]
, φ2(0) = x2(0). (2.7)

The result of Theorem 2.4 follows directly from the classical comparison theorem of
stochastic differential equations (see [23]).

Remark 2.5. From Lemma 2.3, we see

φ1(t) =
e(r1−σ2

1/2)t+σ1B1(t)

1/x1(0) + a11
∫ t

0 e
(r1−σ2

1/2)s+σ1B1(s)ds
, φ2(t) =

e(r2−σ2
2/2)t+σ2B2(t)

1/x2(0) + a22
∫ t

0 e
(r2−σ2

2/2)s+σ2B2(s)ds
.

(2.8)

This together with Theorem 2.4 shows that if ri > (σ2
i /2)(i = 1, 2), then both species will not

extinct.

3. Stationary Distribution and Ergodicity for System (1.4)

In the introduction, we have mentioned that if ri > 0, aij > 0, i, j = 1, 2, and a11a22 − a12a21 >
0, then the unique positive equilibrium (x∗

1, x
∗
2) of (1.1) is globally stable. But there is none

positive equilibrium for (1.4). We investigate there is a stationary distribution for system
(1.4) instead of asymptotically stable equilibria [24]. Before giving the main theorem, we first
give a lemma (see [25]).

Assumption B. There exists a bounded domain U ⊂ El with regular boundary Γ, having the
following properties.

(B.1) In the domain U and some neighbourhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(B.2) If x ∈ El \ U, the mean time τ at which a path issuing from x reaches the set U is
finite, and supx∈KExτ <∞ for every compact subset K ⊂ El.

Lemma 3.1 (see [25]). If (B) holds, then the Markov processX(t) has a stationary distribution μ(A).
Let f(·) be a function integrable with respect to the measure μ. Then

Px

{
lim
T→∞

1
T

∫T
0
f(X(t))dt =

∫
El

f(x)μ(dx)

}
= 1 (3.1)

for all x ∈ El.
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Theorem 3.2. Assume a11a22 > a12a21, σ1 > 0, σ2 > 0 and δ < min{m1(x∗
1)

2, m2(x∗
2)

2}. Then
there is a stationary distribution μ(A) for system (1.4) and it has ergodic property. Here (x∗

1, x
∗
2)

is the solution of (2.2), δ = (a21x
∗
1σ

2
1 + a12x

∗
2σ

2
2)/2, m1 = a11a21 − a12a21/ε0 > 0 and m2 =

a12a22 − ε0a12a21 > 0, where ε0 > 0 satisfies a12/a11 < ε0 < a22/a21.

Proof. Define V : El = R2
+ → R+:

V (x1, x2) = a21

(
x1 − x∗

1 − x∗
1 log

x1

x∗
1

)
+ a12

(
x2 − x∗

2 − x∗
2 log

x2

x∗
2

)
. (3.2)

Then

dV = a21

(
1 − x∗

1

x1

)
dx1 +

a21

2
x∗

1

x2
1

(dx1)
2 + a12

(
1 − x∗

2

x2

)
dx2 +

a12

2
x∗

2

x2
2

(dx2)
2

= a21
(
x1 − x∗

1

)
[(r1 − a11x1 + a12x2)dt + σ1dB1(t)] +

1
2
a21x

∗
1σ

2
1dt

+ a12
(
x2 − x∗

2
)
[(r2 + a21x1 − a22x2)dt + σ2dB2(t)] +

1
2
a12x

∗
2σ

2
2dt

:= LVdt + a21σ1
(
x1 − x∗

1

)
dB1(t) + a12σ2

(
x2 − x∗

2
)
dB2(t),

(3.3)

where

LV = a21
(
x1 − x∗

1

)
(r1 − a11x1 + a12x2) +

1
2
a21x

∗
1σ

2
1

+ a12
(
x2 − x∗

2
)
(r2 + a21x1 − a22x2) +

1
2
a12x

∗
2σ

2
2

= a21
(
x1 − x∗

1

)[−a11
(
x1 − x∗

1

)
+ a12

(
x2 − x∗

2
)]

+ a12
(
x2 − x∗

2
)[
a21
(
x1 − x∗

1

) − a22
(
x2 − x∗

2
)]

+ δ

= −a11a21
(
x1 − x∗

1

)2 + 2a12a21
(
x1 − x∗

1

)(
x2 − x∗

2
)

− a12a22
(
x2 − x∗

2
)2 + δ,

(3.4)

according to the equality (2.2). By Young inequality, we have

2a12a21
∣∣x1 − x∗

1

∣∣∣∣x2 − x∗
2

∣∣ ≤ a12a21

[(
x1 − x∗

1

)2

ε0
+ ε0

(
x2 − x∗

2
)2

]
. (3.5)

Then

LV ≤ −
(
a11a21 − a12a21

ε0

)(
x1 − x∗

1

)2 − (a12a22 − ε0a12a21)
(
x2 − x∗

2
)2 + δ

= −m1
(
x1 − x∗

1

)2 −m2
(
x2 − x∗

2
)2 + δ.

(3.6)
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Note that δ < min{m1(x∗
1)

2, m2(x∗
2)

2}; then the ellipsoid

−m1
(
x1 − x∗

1

)2 −m2
(
x2 − x∗

2
)2 + δ = 0 (3.7)

lies entirely in R2
+. We can take U to be any neighborhood of the ellipsoid with U ⊆ El = R2

+,
so for x ∈ U\El, LV ≤ 0, which implies that condition (B.2) in Lemma 3.1 is satisfied. Besides,
there is M > 0 such that

n∑
i,j=1

(
n∑
k=1

gik(x)gjk(x)

)
ξiξj = σ2

1x
2
1ξ

2
1 + σ

2
2x

2
2ξ

2
2 ≥M

∣∣∣ξ2
∣∣∣ x ∈ U, ξ ∈ R2, (3.8)

which implies condition (B.1) is also satisfied. Therefore, the stochastic system (1.4) has a
stable a stationary distribution μ(A) and it is ergodic.

Remark 3.3. If a11a22 > a12a21 and a22 > a21, we can choose ε0 = (1/2)(a12/a11 +a22/a21), then
m1 = a11a12(a22 − a21)/(a11a22 + a12a21) and m2 = a12(a11a22 − a12a21)/2a11.

Since system (1.4) is ergodic, next we explore some properties of the solution.
Consider the equation

·
N (t) =N(t)[a − bN(t)] (3.9)

with initial value N0 > 0. It is well known, when a, b > 0, (3.9) has a unique positive solution

N(t) =
eat

1/Ñ0 + (b/a)(eat − 1)
, t ≥ 0, (3.10)

lim
t→∞

N(t) =
a

b
, lim

t→∞
logN(t)

t
= 0. (3.11)

Lemma 3.4. Suppose that r1 > σ
2
1/2 and φ1(t) is the solution of (2.6), then one has

ψ1(t)e−σ1(max0≤s≤tB1(s)−B1(t)) ≤ φ1(t) ≤ ψ1(t)e−σ1(min0≤s≤tB1(s)−B1(t)), (3.12)

where ψ1(t) is the solution of

ψ̇1(t) = ψ1(t)

[
r1 −

σ2
1

2
− a11ψ1(t)

]
,

ψ1(0) = x1(0).

(3.13)
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Proof. From the representation of the solution φ1(t), we have

1
φ1(t)

=
1

x1(0)
e−(r1−σ2

1/2)t−σ1B1(t) + a11

∫ t
0
e−(r1−σ2

1/2)(t−s)−σ(B1(t)−B1(s))ds

= e−σ1B1(t)

[
1

x1(0)
e−(r1−σ2

1/2)t + a11

∫ t
0
e−(r1−σ2

1/2)(t−s)eσ1B1(s)ds

]

≤ e−σ1B1(t)

[
1

x1(0)
e−(r1−σ2/2)t + a11e

σ1max0≤s≤tB1(s)
∫ t

0
e−(r1−σ2

1/2)(t−s)ds

]

≤ eσ1[max0≤s≤tB1(s)−B1(t)]

[
1

x1(0)
e−(r1−σ2

1/2)t + a11

∫ t
0
e−(r1−σ2

1/2)(t−s)ds

]
,

(3.14)

where the last inequality is based on the property of Brownian motion that B(0) = 0. Similarly,
we have

1
φ1(t)

≥ eσ1(min0≤s≤tB1(s)−B1(t))

[
1

x1(0)
e−(r1−σ2

1/2)t + a11

∫ t
0
e−(r1−σ2

1/2)(t−s)ds

]
. (3.15)

Therefore

eσ1(min0≤s≤tB1(s)−B1(t)) 1
ψ1(t)

≤ 1
φ1(t)

≤ eσ1(max0≤s≤tB1(s)−B1(t)) 1
ψ1(t)

, (3.16)

which is as required.

Lemma 3.5. Suppose that r1 > σ
2
1/2 and φ1(t) is the solution of (2.6), then one has

lim
t→∞

logφ1(t)
t

= 0. (3.17)

Proof. It is easy to drive from Lemma 3.4 that

σ1

(
B1(t) − max

0≤s≤t
B1(s)

)
≤ logφ1(t) − logψ1(t) ≤ σ1

(
B1(t) − min

0≤s≤t
B1(s)

)
. (3.18)

Note that the distribution of max0≤s≤tB1(s) is the same as |B1(t)|, and that min0≤s≤tB1(s) has
the same distribution as—max0≤s≤tB1(s), then by (3.11) and the strong law of large numbers,
we get

lim
t→∞

logφ1(t)
t

= lim
t→∞

logψ1(t)
t

= 0. (3.19)

This completes the proof of Lemma 3.5.
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Now consider the solution of (2.7), by the same reasons as Lemmas 3.4 and 3.5, we
have the following.

Lemma 3.6. Suppose that r2 > σ
2
2/2 and φ2(t) is the solution of (2.7), then one has

lim
t→∞

logφ2(t)
t

= 0. (3.20)

Lemma 3.7. LetM(t) =
∫ t

0 e
sdB(s), where B(t) is 1-dimensional standard Brownian motion, then

lim sup
t→∞

∣∣e−tM(t)
∣∣√

log t
= 1 a.s. (3.21)

Proof. The proof can be found on [21, page 70].

Based on these lemmas, now we show the main result in this section.
Let y1(t) = logx1(t), y2(t) = logx2(t); then by Itô’s formula we obtain

dy1(t) =

(
r1 −

σ2
1

2
− a11x1(t) + a12x2(t)

)
dt + σ1dB1(t),

dy2(t) =

(
r2 −

σ2
2

2
+ a21x1(t) − a22x2(t)

)
dt + σ2dB2(t).

(3.22)

If a11a22 > a12a21 and 2r1 > σ
2
1 , 2r2 > σ

2
2 , then the equation

r1 −
σ2

1

2
− a11x1 + a12x2 = 0,

r2 −
σ2

2

2
+ a21x1 − a22x2 = 0

(3.23)

has a unique positive solution:

x̃∗
1 =

a22
(
r1 − σ2

1/2
)
+ a12

(
r2 − σ2

2/2
)

a11a22 − a12a21
, x̃∗

2 =
a21
(
r1 − σ2

1/2
)
+ a11

(
r2 − σ2

2/2
)

a11a22 − a12a21
. (3.24)
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Lemma 3.8. Assume a11a22 > a12a21 and 2r1 > σ
2
1 , 2r2 > σ

2
2 . Then for any initial value x0 ∈ R2

+, the
solution x(t) of system (1.4) has the following property:

lim
t→∞

x1(t) = x̃∗
1, lim

t→∞
x2(t) = x̃∗

2, (3.25)

where xi(t) = (1/t)
∫ t

0 xi(s)ds, i = 1, 2.

Proof. It follows from (3.22) that

y1(t)
t

=
y1(0)
t

+ r1 −
σ2

1

2
− a11x1(t) + a12x2(t) + σ1

B1(t)
t

,

y2(t)
t

=
y2(0)
t

+ r2 −
σ2

2

2
+ a21x1(t) − a22x2(t) + σ2

B2(t)
t

.

(3.26)

Obviously, to prove the result, it is an easy consequence of

lim
t→∞

yi(t)
t

= lim
t→∞

logxi(t)
t

= 0, i = 1, 2 a.s. (3.27)

We first show that

lim inf
t→∞

logxi(t)
t

≥ 0, i = 1, 2 a.s. (3.28)

In fact, the results of Theorem 2.4 and Lemmas 3.5 and 3.6 imply that (3.28) is true.
Next, we will prove

lim sup
t→∞

logxi(t)
t

≤ 0, i = 1, 2 a.s. (3.29)

If a11a22 > a12a21, then there exist positive constants c1, c2, m1, m2 such that

−a11c1 + a21c2 = −m1,

a12c1 − a22c2 = −m2.
(3.30)
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From (3.22) we get

d
(
c1y1(t) + c2y2(t)

)
= c1d logx1(t) + c2d logx2(t)

= c1

[(
r1 −

σ2
1

2
− a11x1(t) + a12x2(t)

)
dt + σ1dB1(t)

]

+ c2

[(
r2 −

σ2
2

2
+ a21x1(t) − a22x2(t)

)
dt + σ2dB2(t)

]

=

[(
r1 −

σ2
1

2

)
c1 +

(
r2 −

σ2
2

2

)
c2 + (a21c2 − a11c1)x1(t) + (a12c1 − a22c2)x2(t)

]
dt

+ c1σ1dB1(t) + c2σ2dB2(t)

=

[(
r1 −

σ2
1

2

)
c1 +

(
r2 −

σ2
2

2

)
c2 −m1x1(t) −m2x2(t)

]
dt

+ c1σ1dB1(t) + c2σ2dB2(t),

d
[
et
(
c1y1(t) + c2y2(t)

)]
= etd

(
c1y1(t) + c2y2(t)

)
+ et

(
c1y1(t) + c2y2(t)

)
dt

= et
[(

r1 −
σ2

1

2

)
c1 +

(
r2 −

σ2
2

2

)
c2 + c1y1(t) −m1e

y1(t) + c2y2(t) −m2e
y2(t)

]
dt

+ et[c1σ1dB1(t) + c2σ2dB2(t)].

(3.31)

Note that the function c1y1 − m1e
y1 has its maximum value c∗1 = c1 log(c1/m1) − c1 at y1 =

log(c1/m1), and the function c2y2 −m2e
y2 has its maximum value c∗2 = c2 log(c2/m2) − c2 at

y2 = log(c2/m2); then

d
[
et
(
c1y1(t) + c2y2(t)

)] ≤ et
[(

r1 −
σ2

1

2

)
c1 +

(
r2 −

σ2
2

2

)
c2 + c∗1 + c

∗
2

]
dt

+ et[c1σ1dB1(t) + c2σ2dB2(t)]

:= c∗etdt + et[c1σ1dB1(t) + c2σ2dB2(t)],

(3.32)
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where c∗ = (r1 − σ2
1/2)c1 + (r2 − σ2

2/2)c2 + c∗1 + c
∗
2. Integrating both sides of it from 0 to t, yields

et
(
c1y1(t) + c2y2(t)

) ≤ c1y1(0) + c2y2(0) + c∗
(
et − 1

)
+
∫ t

0
es[c1σ1dB1(s) + c2σ2dB2(s)],

c1y1(t) + c2y2(t) ≤ c∗ +
(
c1y1(0) + c2y2(0) − c∗

)
e−t + e−t

∫ t
0
es[c1σ1dB1(s) + c2σ2dB2(s)]

≤ c∗ + c1y1(0) + c2y2(0) + e−t
∫ t

0
es[c1σ1dB1(s) + c2σ2dB2(s)]

:= c + e−t
∫ t

0
es[c1σ1dB1(s) + c2σ2dB2(s)],

(3.33)

where c = c∗ + c1y1(0) + c2y2(0). It is easy to drive from Lemma 3.7 that

c1y1(t) + c2y2(t) ≤ c +Oa.s.

(√
log t

)
, (3.34)

which implies

c1lim sup
t→∞

y1(t)
t

+ c2lim sup
t→∞

y2(t)
t

≤ 0, a.s. (3.35)

Moreover (3.35) together with (3.28) shows that

c1lim sup
t→∞

y1(t)
t

≤ −c2lim sup
t→∞

y2(t)
t

≤ −c2lim inf
t→∞

y2(t)
t

≤ 0, a.s. (3.36)

that is,

lim sup
t→∞

y1(t)
t

≤ 0, a.s. (3.37)

Similarly, we have

lim sup
t→∞

y2(t)
t

≤ 0, a.s. (3.38)

which is as required.

Lemma 3.9. Assume a11 > a12 and a22 > a21. Then for any initial value x0 ∈ R2
+, there exists a

positive constant K(p) such that the solution x(t) of system (1.4) has the following property:

E
[
c1x

p

1(t) + c2x
p

2(t)
]
≤ K(p), ∀t ∈ [0,∞], p > 1. (3.39)
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Proof. By Itô’s formula and Young inequality, we compute

d

(
1
p
x
p

1

)
= xp−1

1 dx1 +
p − 1

2
x
p−2
1 (dx1)

2

=
[(

r1 +
p − 1

2
σ2

1

)
x
p

1 − a11x
p+1
1 + a12x

p

1x2

]
dt+σ1x

p

1dB1(t)

≤
[(

r1 +
p − 1

2
σ2

1

)
x
p

1 − a11x
p+1
1 +

a12p

p + 1
x
p+1
1 +

a12

p + 1
x
p+1
2

]
dt + σ1x

p

1dB1(t),

d

(
1
p
x
p

2

)
= xp−1

2 dx2 +
p − 1

2
x
p−2
2 (dx2)

2

=
[(

r2 +
p − 1

2
σ2

2

)
x
p

2 + a21x1x
p

2 − a22x
p+1
2

]
dt+σ2x

p

2dB2(t)

≤
[(

r2 +
p − 1

2
σ2

2

)
x
p

2 +
a21

p + 1
x
p+1
1 +

a21p

p + 1
x
p+1
2 − a22x

p+1
2

]
dt + σ2x

p

2dB2(t).

(3.40)

Hence, for positive constants c1 and c2, we have

c1d

(
1
p
x
p

1

)
+ c2d

(
1
p
x
p

2

)
≤
[
c1

(
r1 +

p − 1
2

σ2
1

)
x
p

1 −
(
c1a11 −

c1a12p

p + 1
− c2a21

p + 1

)
x
p+1
1

+ c2

(
r2 +

p − 1
2

σ2
2

)
x
p

2 −
(
c2a22 − c1a12

p + 1
− c2a21p

p + 1

)
x
p+1
2

]
dt

+ c1σ1x
p

1dB1(t) + c2σ2x
p

2dB2(t).
(3.41)

Next, we claim that there are c1 > 0, c2 > 0 such that

c1a11 −
c1a12p

p + 1
− c2a21

p + 1
> 0, c2a22 − c1a12

p + 1
− c2a21p

p + 1
> 0, (3.42)

if a11 > a12 and a22 > a21. In fact, we only need a21/(a11(p + 1) − a12p) < c1/c2 < (a22(p +
1) − a21p)/a12, which can be simplified to a12a21 < [a11(p + 1) − a12p][a22(p + 1) − a21p]. It is
obviously true, if a11 > a12 and a22 > a21.
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Let α1 := p(r1 + ((p − 1)/2)σ2
1), α2 := p(r2 + ((p − 1)/2)σ2

2), β1 := c
−(p+1)/p
1 p(c1a11 −

c1a12p/(p + 1) − c2a21/(p + 1)), β2 := c
−(p+1)/p
2 p(c2a22 − c1a12/(p + 1) − c2a21p/(p + 1)). Then

α1 > 0, α2 > 0, β1 > 0, β2 > 0 and

d
(
c1x

p

1 + c2x
p

2

)
≤
[
c1α1x

p

1 + c2α2x
p

2 − c(p+1)/p
1 β1x

p+1
1 − c(p+1)/p

2 β2x
p+1
2

]
dt

+
c1

p
σ1x

p

1dB1(t) +
c2

p
σ2x

p

2dB2(t)

≤
[
max{α1, α2}

(
c1x

p

1 + c2x
p

2

)
− min

{
β1, β2

}(
c
(p+1)/p
1 x

p+1
1 + c(p+1)/p

2 x
p+1
2

)]
dt

+
c1

p
σ1x

p

1dB1(t) +
c2

p
σ2x

p

2dB2(t).

(3.43)

Hence,

dE
[
c1x

p

1 + c2x
p

2

]
≤
{

max{α1, α2}E
[
c1x

p

1 + c2x
p

2

]
− min

{
β1, β2

}
E
[
c
(p+1)/p
1 x

p+1
1 + c(p+1)/p

2 x
p+1
2

]}
dt

≤
{

max{α1, α2}E
[
c1x

p

1 + c2x
p

2

]
− 2−p min

{
β1, β2

}
E
[
c1x

p

1 + c2x
p

2

](p+1)/p
}
dt.

(3.44)

By comparison theorem, we can get

lim sup
t→∞

E
[
c1x

p

1 + c2x
p

2

]
≤
[

2p max{α1, α2}
min{β1, β2}

]p
:= C

(
p
)
, (3.45)

which implies that there is a T > 0, such that

E
[
c1x

p

1 + c2x
p

2

]
≤ 2C

(
p
)
, ∀t > T. (3.46)

Besides, note that E[c1x
p

1 + c2x
p

2] is continuous, then there is a C̃(p) > 0 such that

E
[
c1x

p

1 + c2x
p

2

]
≤ C̃(p), ∀t ∈ [0, T]. (3.47)

Let K(p) = max{2C(p), C̃(p)}, then

E
[
c1x

p

1 + c2x
p

2

]
≤ K(p), ∀t ∈ [0,∞]. (3.48)
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By the ergodic property, for m > 0, we have

lim
t→∞

1
t

∫ t
0

(
x
p

i (s) ∧m
)
ds =

∫
R2
+

(
z
p

i ∧m
)
μ(dz1, dz2), a.s. (3.49)

On the other hand, by dominated convergence theorem, we can get

E

[
lim
t→∞

1
t

∫ t
0

(
x
p

i (s) ∧m
)
ds

]
= lim

t→∞
1
t

∫ t
0
E
[
x
p

i (s) ∧m
]
ds ≤ K(p), i = 1, 2, (3.50)

which together with (3.49) implies

∫
R2
+

(
z
p

i ∧m
)
μ(dz1, dz2) ≤ K

(
p
)
, i = 1, 2. (3.51)

Letting m → ∞, we get

∫
R2
+

z
p

i μ(dz1, dz2) ≤ K
(
p
)
, i = 1, 2. (3.52)

That is to say, functions f1(x) = x
p

1 and f2(x) = x
p

2 are integrable with respect to the measure
μ. Therefore one has the following.

Theorem 3.10. Assume a11 > a12, a22 > a21, 2r1 > σ2
1 > 0, 2r2 > σ2

2 > 0 and δ <

min{m1(x∗
1)

2, m2(x∗
2)

2}, where δ = (a21x
∗
1σ

2
1 +a12x

∗
2σ

2
2)/2,m1 = a11a12(a22−a21)/a11a22+a12a21

and m2 = a12(a11a22 − a12a21)/2a11. Then for any initial value x0 ∈ R2
+, the solution x(t) of system

(1.4) has the following property:

P

{
lim
t→∞

x1(t) =
∫
R2
+

z1μ(dz1, dz2) = x̃∗
1

}
= 1, P

{
lim
t→∞

x2(t) =
∫
R2
+

z2μ(dz1, dz2) = x̃∗
2

}
= 1.

(3.53)

Moreover, we can get the following.

Theorem 3.11. Assume a11 > a12, a22 > a21 and 2r1 > σ2
1 , 2r2 > σ2

2 . Then for any initial value
x0 ∈ R2

+, the solution x(t) has following property

lim
t→∞

1
t

∫ t
0

(
a11a21x

2
1(s) − a12a22x

2
2(s)

)
ds = a21r1x̃

∗
1 − a12r2x̃

∗
2, (3.54)

where (x̃∗
1, x̃

∗
2) is defined as in (3.24).
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Proof. By (3.39), for δ > 0, we have

P

{
ω : sup

(n−1)δ≤t≤nδ

x1(t)
t

> δ

}
≤

E
[
x
p

1

]
(n − 1)pδ

≤ K
(
p
)

(n − 1)pδ
, p > 1. (3.55)

In view of the well-known Borel-Cantelli lemma, we see that for almost all ω ∈ Ω,

sup
(n−1)δ≤t≤nδ

x1(t)
t

≤ δ (3.56)

holds for all but finitely many n. Hence there exists a n0(ω), for all ω ∈ Ω excluding a P -null
set, for which (3.56) holds whenever n ≥ n0. Consequently, letting δ → 0, we have, for almost
all ω

lim
t→∞

x1(t)
t

= 0. (3.57)

Similarly, we can obtain

lim
t→∞

x2(t)
t

= 0. (3.58)

Besides, by (3.39) and its ergodic property, we get

lim
t→∞

1
t

∫ t
0
x1(s)dB1(s) = 0, lim

t→∞
1
t

∫ t
0
x2(s)dB2(s) = 0. (3.59)

On the other hand, we have

d(a21x1 − a12x2) = [a21x1(r1 − a11x1) − a12x2(r2 − a22x2)]dt + a21σ1x1dB1(t) − a12σ2x2dB2(t).
(3.60)

Then

a21
x1(t)
t

− a12
x2(t)
t

= a21
x1(0)
t

− a12
x2(0)
t

+ a21r1
1
t

∫ t
0
x1(s)ds − a12r2

1
t

∫ t
0
x2(s)ds

− a11a21
1
t

∫ t
0
x2

1(s)ds + a12a22
1
t

∫ t
0
x2

2(s)ds + a21σ1
1
t

∫ t
0
x1(s)dB1(s)

− a12σ2
1
t

∫ t
0
x2(s)dB2(s).

(3.61)
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The deterministic and stochastic mutualism systems

Figure 1: The solution of system (1.1) and system (1.4) with (x1(0), x2(0)) = (1.2, 3.5), a11 = 0.6, a12 =
0.4, a21 = 0.3, a22 = 0.5, σ1 = 0.02, σ2 = 0.02, and Δt = 0.001 such that a11a22 > a12a21. The imaginary
lines represent the solution of system (1.1), and the real lines represent the solution of system (1.4).

Therefore, (3.25), (3.57), (3.58), and (3.59) imply

lim
t→∞

1
t

∫ t
0

(
a11a21x

2
1(s) − a12a22x

2
2(s)

)
ds = a21r1x̃

∗
1 − a12r2x̃

∗
2. (3.62)

At the end of this section, to conform the results above, we numerically simulate the
solution of (1.4). By the method mentioned in [26], we consider the discretized equation:

x1,k+1 = x1,k + x1,k

[
(r1 − a11x1,k + a12x2,k)Δt + σ1ε1,k

√
Δt +

1
2
σ2

1

(
ε2

1,kΔt −Δt
)]
,

x2,k+1 = x2,k + x2,k

[
(r2 + a21x1,k − a22x2,k)Δt + σ2ε1,k

√
Δt +

1
2
σ2

1

(
ε2

1,kΔt −Δt
)]
,

(3.63)

given the values of (x1,0, x2,0) and parameters in the system, by Matlab software we get
Figure 1.

Figure 1 gives the solutions of (1.1) and (1.4), and the real lines and the imaginary
lines represent the deterministic and the stochastic, respectively. In this figure, we choose
parameters such that the conditions said in theorems are satisfied. Hence, although there is
no equilibrium of the stochastic system (1.4) as the deterministic system (1.1), but the solution
of (1.4) is ergodicity. From the figure, we can see that the solution of system (1.4) is fluctuating
around a constant.
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