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We investigated an axisymmetric unsteady two-dimensional flow of nonconducting, incompress-
ible second grade fluid between two circular plates. The similarity transformation is applied to
reduce governing partial differential equation (PDE) to a nonlinear ordinary differential equation
(ODE) in dimensionless form. The resulting nonlinear boundary value problem is solved using
homotopy analysis method and numerical method. The effects of appropriate dimensionless
parameters on the velocity profiles are studied. The total resistance to the upper plate has been
calculated.

1. Introduction

Squeezing flows are induced by externally normal stresses or vertical velocities by means
of moving boundary. Squeezing flows have many applications in food industry, especially
in chemical engineering. Some practical examples of squeezing flow include polymer
processing, compression and injection molding. In addition, the lubrication system can also
be modeled by squeezing flows. The study of squeezing flows has its origins in the 19th
century and continues to receive considerable attention due to the practical applications
in physical and biophysical areas. Stefan [1] published a classical paper on squeezing
flow by using lubrication approximation. Such types of flow exist in lubrication when
there is squeezing flow between two parallel plates. The tackiness of liquid adhesives also
reflects squeeze film effects [2]. The squeeze film geometry has been studied extensively
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since 1947. Other applications in the biomechanics area relate to squeezing flow between
parallel plates and the alternation between contraction and expansion of the blood vessels.
In addition, polymer extrusion processes are modeled using squeezing flow of viscous
fluids [3]. The squeezing flow between parallel plates when the confining walls have a
transverse motion has great importance in hydrodynamic lubrication theory Langlois [4]
and Salbu [5] have analyzed isothermal compressible squeeze films neglecting inertial
effects. Thorpe [6] presented an explicit solution of the squeeze flow problem taking
inertial terms into account. Later, P. S. Gupta and A. S. Gupta [7] showed that the
solution given by [6] fails to satisfy the boundary conditions. Gupta solution, however,
is restricted only to small Reynolds number. Squeeze film between two plane annuli
with fluid inertia effects has been studied by Elkouh [8]. Some numerical solutions of
squeezing flow between parallel plates has been conducted by Verma [9] and later by
Singh et al. [10]. In addition, Hamza [11] has considered suction and injection effects
on flow between parallel plates reflecting squeezing flow. Further work on second grade
fluid flow between parallel plates has been carried out by Rajagopal and Gupta [12]
and by Dandapat and Gupta [13]. Both papers consider the problem of flow between
rotating parallel plates. Barron and Wiley [14] have also considered this fluid model to
extend the Newtonian flow theory for slender bodies in a dusty gas. This fluid model
has also been considered even in flow of a dusty liquid. For example, Debnath and
Ghosh [15, 16] used this fluid model to study the flow of dusty fluids in rotating and
oscillating cases, in the presence of magnetic fields. Hamdan and Barron [17] used this fluid
model to analyse the steady squeezing flow of incompressible dusty fluids between two
cylindrical plates. The theoretical and experimental studies of squeezing flows have been
conducted by many researchers [18–28]. In this work the unsteady 2-dimensional flow of
nonconducting, incompressible second grade fluid between circular plates that are moving
symmetrically about the line of axial symmetry and giving rise to the squeezing flow is
studied. The unsteady equations of motion are reduced to a single nonlinear fifth-order
ordinary differential after employing a similarity transformation. The resulting nonlinear
boundary value problem is solved with homotopy analysis method (HAM) and numerical
method.

Most scientific problems and phenomena are modeled by nonlinear ordinary or
partial differential equations. In most cases, these problems do not have precise analytic
solution. Recently, much attention has been devoted to the newly developed methods to
construct approximate analytic solutions of nonlinear equations. The HAM is developed
in 1992 by Liao [28–35] and Rashidi et al. [36–38]. Liao applied this method to solve
many types of nonlinear equations in science and engineering and then, this method
has been successfully applied to solve many other nonlinear evolution equations. In
recent years, the application of HAM in nonlinear problems has been developed by
scientists and engineers. We know all perturbation methods require small parameter in
nonlinear equation and the approximate solutions of equation containing this parameter
are expressed as series expansions in the small parameter. Selection of small parameter
requires a special skill. A proper choice of small parameter gives acceptable results,
while an improper choice may result in incorrect solutions. The HAM, does not require
a small parameter in equation modeling phenomena. Briefly speaking, Liao’s method
is a universal one which can solve various kinds of nonlinear equations, thus many
researchers applied this method to various linear and nonlinear problems. A substantial
amount of research work has been invested in the study of linear and nonlinear systems
of PDEs.
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Figure 1: Geometry of the problem.

In Sections 2 and 3 description and mathematical formulation of the problem is
presented. Sections 4 and 5 discussed the methods of solution of the problem. The results
are discussed in Section 6 and Section 7 concludes finding of the present work.

2. Problem Description

The unsteady two-dimensional squeezing flow of nonconducting, incompressible second
grade fluid between two circular plates is studied. The distance between the plates at any
time t is 2a(t). The central axis of the channel is taken as the r-axis and z-axis is normal to
it. It is assumed that the circular plates move symmetrically with respect to the central axis
z = 0 and flow is axisymmetric about r = 0. The velocity components along the radial and
axial directions are u(r, z, t) and w(r, z, t), respectively (Figure 1). The fluid is assumed to
have density ρ and kinematics viscosity υ.

3. Mathematical Formulation

The basic equations governing the motion of a homogeneous incompressible second grade
fluid neglecting the thermal effects are [37]
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where

T = −pI + μA1 + α1A2 + α2A
2
1, (3.3)

where V is the velocity vector, P is the pressure, T is the stress tensor, μ is the coefficient of
viscosity and α1 and α2 are material constants. The Rivlin-Ericksen tensors Ai are defined as

A1 = ∇V + (∇V )T ,

A2 =
dA1

dt
+A1(∇V ) + (∇V )TA1.

(3.4)

Now we formulate the equations of motion for unsteady two dimensional flow. Assuming
that

V = [u(r, z, t), 0,w(r, z, t)], (3.5)

and introducing the vorticity functionΩ(r, z, t) and generalized pressure gradient h(r, z, t) as
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We find that the equations of motion (3.1) and (3.2) reduce to
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where ∇2 = ∂2/∂r2 + (1/r)(∂/∂r) + ∂2/∂z2 is Laplacian operator.
Eliminating the generalized pressure h between (3.10) and (3.11) to obtain
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The boundary conditions on u(r, z, t) andw(r, z, t) are

u(r, z, t) = 0, w(r, z, t) = vw(t), z = a,

w(r, z, t) = 0,
∂u(r, z, t)

∂z
= 0, z = 0,

(3.13)

where vw(t) = da/dt denotes the velocity of the plates. The first two conditions are due to
the no-slip condition at the upper plate and the remaining two follow from the symmetry of
the flow at z = 0.

If the dimensionless variable η = z/a(t) is introduced, (3.6), (3.9), and (3.12) become
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The boundary conditions on u(r, z, t) andw(r, z, t) are

u
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r, η, t

)
= 0, w

(
r, η, t

)
= vw(t), η = 1, (3.17)
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If we define the velocity components as follows Singh et al. [10] and Birkhoff [39]
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It follows that (3.14) takes the form
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substituting (3.18) and (3.19) in (3.15) and (3.16), we find that the continuity equation is
identically satisfied and (3.16) becomes
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where prime denotes differentiation with respect to η. The boundary conditions are
determined from (3.17), (3.18), and (3.19) to be

f(1) = 1, f ′(1) = 0,

f(0) = 0, f ′′(0) = 0.
(3.22)

Thus for a similarity solution we define
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(3.23)

where Re, Q and We1 and We2 are functions of t but for a similarity solution Re, Q, We1, and
We2 are considered to be constants. After integrating the first equation of (3.23), we have

a(t) = (Kt + a0)1/2, (3.24)
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where K and a0 are constants. When K > 0 and a0 > 0, the plates move apart symmetrically
with respect to η = 0. In addition, when K < 0 and a0 > 0, the plates approach each other and
squeezing flow exists with similar velocity profile as long as (Kt + a0) > 0. From (3.23) and
(3.24), it follows that Q = −1, and (3.21) becomes
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)
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(3.26)

This nonlinear boundary value problem is solved by the homotopy analysis method as well
as numerically in the following sections.

4. Basic Idea of the HAM

Let us consider the following differential equation

N[f(η)] = 0, (4.1)

where N is a nonlinear operator, η denotes independent variable, f(η) is an unknown
function, respectively. For simplicity, we ignore all boundary or initial conditions, which
can be treated in the similar way. By means of generalizing the traditional HAM, Liao [30]
constructs the so-called zero-order deformation equation

(
1 − p

)L[ϕ(η; p) − f0
(
η
)]

= p�H
(
η
)N[ϕ(η; p)], (4.2)

where p ∈ [0, 1] is the embedding parameter, �/= 0 is a nonzero auxiliary parameter,
H(η)/= 0 is an auxiliary function, L is an auxiliary linear operator, f0(η) is an initial guess of
f(η), ϕ(η; p) is a unknown function, respectively. It is important, that one has great freedom
to choose auxiliary things in the HAM. Obviously, when p = 0 and p = 1, it holds

ϕ
(
η; 0
)
= f0
(
η
)
, ϕ

(
η; 1
)
= u
(
η
)
, (4.3)
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respectively. Thus as p increases from 0 to 1, the solution ϕ(η; p) varies from the initial guess
f0(η) to the solution f(η). Expanding ϕ(η; p) in Taylor series with respect to p, we have

ϕ
(
η; p
)
= f0
(
η
)
+

+∞∑
m=1
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(
η
)
pm, (4.4)

where
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. (4.5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter �, and the auxiliary
function are so properly chosen, the series (4.4) converges at p = 1, then we have
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which must be one of solutions of original nonlinear equation, as proved by Liao [30]. As
� = −1 and H(η) = 1, (4.2) becomes
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which is used mostly in the homotopy analysis method, where as the solution obtained
directly, without using Taylor series [38].

According to the definition (4.5), the governing equation can be deduced from the
zero-order deformation equation (4.2). Define the vector
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Differentiating (4.2) m times with respect to the embedding parameter p and then setting
p = 0 and finally dividing them bym!, we have the so-calledmth-order deformation equation
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(4.10)
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It should be emphasized that fm(η) for m ≥ 1 is governed by the linear equation (4.9) with
the linear boundary conditions that come from original problem, which can be easily solved
by symbolic computation software such as Maple and Mathematica.

5. Application

Consider (3.22) and (3.25) and let us solve them through the HAM. Following the HAM, we
start with initial approximation f0(η) = −0.5η3 + 1.5η and the linear operator

L[f(η)] = ∂4ϕ
(
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)

∂η4
, (5.1)

and nonlinear operator is defined as
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(5.2)

Using the above definition, with assumption H(η) = 1, we construct the zero-order
deformation equation
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Obviously, when p = 0 and p = 1,
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Differentiating the zero-order deformation equation (5.3) m times with respect to p, and
finally dividing by m!, we have the mth-order deformation equation
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Then

L[fm(η) − χmfm−1
(
η
)]

= �Rm

(
�fm−1
)
,

χm =

⎧⎨
⎩
0, m ≤ 1,

1, m > 1.

(5.7)

We choose auxiliary functions as follow:

H(η) = 1. (5.8)

Following the HAM and trying higher iterations with the unique and proper assignment of
the results converge to the exact solution:

f
(
η
) ≈ f0

(
η
)
+ f1
(
η
)
+ f2
(
η
)
+ · · · + fm

(
η
)
, (5.9)

using the symbolic software Mathematica to solve the system of linear equations, (5.5), with
the boundary conditions (3.22), and successively obtain

f1
(
η
)
= −0.058567�η + 0.115348�η3 − 0.054996�η5 − 0.001786�η7 (5.10)

6. Results and Discussion

In this work the unsteady 2-dimensional flow of nonconducting, incompressible second
grade fluid between two circular plates is considered. The squeezing flow is generated by
moving the plates symmetrically with respect to the central region z = 0. The unsteady
equations of motion are reduced to a single nonlinear 5th-order ordinary differential by using
a similarity transformation. The resulting nonlinear boundary value problem is solved using
the homotopy analysis method and numerical technique. The effect of the Reynolds number
Re on velocity profiles is depicted. In these profiles we fixed the nonNewtonian parameters
We1 = 0.0, We2 = 0.05 and varied Re as Re = 1.0, 1.5, 2.0 (Figures 11 and 12). It is noted that
the normal velocity increases as the Reynolds number increases. It is also observed that at a
given time and for a fixed positive value of Reynolds number the normal velocity increases
monotonically from η = 0 to η = 1 presents effect of Reynolds number on the longitudinal
velocity. It is observed that this component of velocity increases near the central axis of the
channel but deceases near the walls. The influence of nonNewtonian parameter We1 on the
normal and longitudinal velocity components is depicted. we varied We1 = 0.0, 0.05, 0.75
fixing We2 = 0.05, Re = 1.0. This observation on the velocity components is similar to that of
Reynolds number Re presents the effects of nonNewtonian parameter We2 on the squeezing
flow of the second grade fluid. It is noted that effect of We2 on the velocity components is
opposite to that of the nonNewtonian parameterWe1.

The HAMwas applied successfully to find an explicit, totally analytic, uniformly valid
solution for unsteady squeezing flow between circular parallel plates. The validity of our
analytic solutions is verified by numerical results. The results show that HAM is very accurate
(Figures 3, 4, 6, 7, 9, and 10). Also, the HAM gives rapidly convergent series with specific
significant features for each scheme (Figures 2, 5, and 8). The accuracy of the method is very
good.
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ħ
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Figure 2: � curve by the HAM with x = 0.00001, K = 1.732, L = 1, M = 0, and N = 0.05, by 20th-order
approximation solution.

7. Conclusions

A similarity solution of the problem for the unsteady flow of nonconducting, incompressible
second grade fluid between two circular plates approaching or receding from each other
has been investigated. It is noted that a similarity solution exists only when the distance
between the plates varies as (Kt + a0)

1/2, and squeezing flow takes place for K < 0 and
a0 > 0 as for as Kt + a0 > 0, Approximate solutions for the fluid velocity have been found
for the flow of unsteady 2-dimensional second grade fluid between two circular plates by the
homotopy analysis method and numerical method. The major finding of the present paper
can be summarized as follows:

The Reynolds number Re and nonNewtonian parameterWe1 have similar effect on
the normal and longitudinal velocity components.

The nonNewtonian parameter We2 has opposite trend on the velocity profiles to
that of Reynolds number andWe1.

It is found that at a given time and for a fixed positive value of Reynolds number,
nonNewtonian parameters We1, We2, the normal velocity increases monotonically
from η = 0 to η = 1.

The longitudinal component of velocity increases near the central axis of the
channel but deceases near the walls when Re increases from 1.0 to 2.0. Similar effect
of We2 on this component is observed when We2 varies from 0.0 to 0.1.

The results are recovered forWe → 0.

The obtained results are valid for all values of Reynolds number and nonNewto-
nian parameters.
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Figure 3:Obtained solution by the HAMwith � = −1,K = 1.732, L = 1,M = 0, andN = 0.05, by 20th-order
approximation solution.
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Figure 4:Obtained solution by the HAMwith � = −1,K = 1.732, L = 1,M = 0, andN = 0.05, by 20th-order
approximation solution.
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Figure 5: � curve by the HAM with x = 0.00001, K = 2.121, L = 1.5, M = 0, and N = 0.05, by 20th-order
approximation solution.
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Figure 6: Obtained solution by the HAM with � = −1, K = 2.121, L = 1.5, M = 0, and N = 0.05, by
20th-order approximation solution.
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Figure 7: Obtained solution by the HAM with � = −1, K = 2.121, L = 1.5, M = 0, and N = 0.05, by
20th-order approximation solution.
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Figure 8: � curve by the HAM with x = 0.00001, K = 2.449, L = 2, M = 0, and N = 0.05, by 10th-order
approximation solution.
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Figure 9:Obtained solution by the HAMwith � = −1,K = 2.449, L = 2,M = 0, andN = 0.05, by 20th-order
approximation solution.
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Figure 10: Obtained solution by the HAM with � = −1, K = 2.449, L = 2, M = 0, and N = 0.05, by
20th-order approximation solution.
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Figure 11: The effect of Re on the axial velocity profiles.
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Figure 12: The effect of Re on the radial velocity profiles.
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Nomenclature

ρ: Density
ν: Kinematic viscosity
V : Velocity vector
P : Pressure
T : Stress tensor
μ: Viscosity coefficient
α1: Material constant
α2: Material constant
Ω: Vorticity function
h: Pressure gradient
∇2: Laplacian operator
η: Dimensionless variable
�: Auxiliary linear parameter
Ai: Rivlin-Ericksen tensor
u: Velocity component along the radial
w: Velocity component along the axial
2a(t): Distance between the plates at any time t
We1: Non-Newton parameter
We2: Non-Newton parameter
Re: Reynolds number.
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