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The objective function and the constraints can be formulated as linear functions of independent
variables in most of the real-world optimization problems. Linear Programming (LP) is the
process of optimizing a linear function subject to a finite number of linear equality and inequality
constraints. Solving linear programming problems efficiently has always been a fascinating
pursuit for computer scientists and mathematicians. The computational complexity of any linear
programming problem depends on the number of constraints and variables of the LP problem.
Quite often large-scale LP problems may contain many constraints which are redundant or cause
infeasibility on account of inefficient formulation or some errors in data input. The presence of
redundant constraints does not alter the optimal solutions(s). Nevertheless, they may consume
extra computational effort. Many researchers have proposed different approaches for identifying
the redundant constraints in linear programming problems. This paper compares five of such
methods and discusses the efficiency of each method by solving various size LP problems and
netlib problems. The algorithms of each method are coded by using a computer programming
language C. The computational results are presented and analyzed in this paper.

1. Introduction

Many researchers [1–17] have proposed different algorithms to identify the redundancies
and removed them to get a reduced model for linear programming. In 1965, Zionts [17]
suggested some improvements upon the implementation of Boot method, but not to the point
where it achieved practical value. In addition, a number of other methods were developed
that deal with redundancy, among which the geometric vertex enumeration method is the
most well known. In geometric vertex enumeration method, the essential characteristic
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is the establishment of a number of situations in which redundancy can be recognized
immediately without further computations.

In 1971, Lisy [12] used the rules given by Ziont to identify all redundant constraints
in systems of linear constraints. Gal [7] enlarged this approach by adding rules for situations
in which constraints can be identified immediately as being nonredundant. Gal proposed
another method to classify constraints as redundant or necessary. They produce results that
are unconditionally correct; they perform iterations of an active set linear programming
algorithm. Later Caron et al. [6] appended the above methods by adding rules to deal with
degeneracy.

Brearly et al. [4] proposed a simple method to identify redundant constraints from
a system of linear constraints. This method involves the lower and upper bounds of the
variables. Telgan [15] proposed a deterministic method to identify redundant constraints by
usingminimum ratio criteria as in simplex method. Stojković and Stanimirović [13] proposed
a method to identify redundant constraints by applying the maximum and minimum
principle. Paulraj et al. [14] proposed a heuristic method to identify redundant constraints
by using the intercept matrix of constraints of a linear programming problem. Gutman and
Ioslovich [8] described a new approach to preprocess nonnegative large-scale problems so
as to reduce the dimensions considerably by defining and removing redundant constraints
and variables. This test is applicable to all nonnegative large-scale linear programming
problem with group constraints. Group constraints only contain zeros and ones coefficients.
Constraints and variables are removed by primal and dual tests. This method is applicable to
constraints of knapsack problems.

A brief introduction to the redundant constraints of linear programming problems is
presented in Section 2. Section 3 discusses the methods for identifying redundant constraints
in linear problems. Section 4 deals with the computational results of the methods, and
Section 5 concludes the paper.

2. Redundant Constraints

A redundant constraint is a constraint that can be removed from a system of linear constraints
without changing the feasible region.

Consider the following system of m nonnegative linear inequality constraints and n
variables (m ≥ n):

AX ≤ b, X ≥ 0, (2.1)

where A ∈ Rmxn, b ∈ Rm,X ∈ Rn, and 0 ∈ Rn.
Let AiX ≤ bi be the ith constraint of the system (2.1) and let S = {X ∈ Rn/AiX ≤

bi, X ≥ 0} be the feasible region associated with system (2.1).
Let Sk = {X ∈ Rn/AiX ≤ bi, X ≥ 0, i /= k} be the feasible region associated with the

system of equations AiX ≤ bi, i = 1, 2, . . . , m, i /= k. The kth constraint AkX ≤ bk(1 ≤ k ≤ m)
is redundant for the system (2.1) if and only if S = Sk.

Definition 2.1. Redundant constraints can be classified as weakly and strongly redundant
constraints.
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Weakly Redundant Constraints

The constraint AiX ≤ bi is weakly redundant if it is redundant and AiX = bi for some X ∈ S.

Strongly Redundant Constraints

The constraint AiX ≤ bi is strongly redundant if it is redundant and AiX < bi for all X ∈ S.

Binding Constraint

Binding constraint is the one which passes through the optimal solution point. It is also called
a relevant constraint.

Nonbinding Constraint

Nonbinding constraint is the one which does not pass through the optimal solution point.
But it can determine the boundary of the feasible region.

Example 2.2. Consider the following linear inequality constraints:
(1) 2x1 + 1x2 ≤ 8,
(2) 4x1 + 0x2 ≤ 15,
(3) 1x1 + 3x2 ≤ 9,
(4) 1x1 + 2x2 ≤ 14,
(5) 1x2 ≤ 4,
(6) 1x1 + 1x2 ≤ 5,

where x1 + x2 ≤ 0.
In Figure 1, the region OABCD is the feasible region and the vertex C is the optimal

point. The constraints (1), (3), and (6) are binding, (4) and (5) are strictly redundant. The 2nd
constraint is non-binding. Among the binding constraints, (6) is weakly redundant.

3. Methods for Identification of Redundant Constraints

Many methods are available in the literature to identify the redundant constraints in
linear programming problems. In this paper, the following five methods are discussed and
compared

(1) bounds method [4]

(2) linear programming method [6]

(3) deterministic method [15]

(4) stojković and Stanimirović method [13]

(5) heuristic method [14].

3.1. Bounds Method

Brearly et al. [4] proposed a simple method for identifying redundant constraints for a Linear
Programming Problem (LPP) with bounded variables. This method involves the lower and
upper bounds of the variables. The upper and lower bounds of each constraint are computed
and compared with the right-hand side of that constraint to decide if it is a redundant
constraint or not.
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Procedure of the Method.

The general form of an LPP with bounded variables is

max z =
n∑

j =1

cjxj ,

Subject to
n∑

j =1

aijxj ≤ bi (i = 1, 2, . . . , m),

lj ≤ xj ≤ uj

(
j = 1, 2, . . . , n

)
.

(3.1)

Step 1. Compute upper and lower bounds for each constraint by

Ui =
∑

j∈Pi

aijuj +
∑

j∈Ni

aij lj ,

Li =
∑

j∈Pi

aij lj +
∑

j∈Ni

aijuj ,

(3.2)

where Pi = {j;aij > 0}, andNi = {j;aij < 0}, Li may be 0, and Ui may be +∞.

Step 2. Test whether Ui ≤ bi, i = 1, 2, . . . , m. The ith constraint
∑n

j =1 aijxj ≤ bi is redundant if
Ui ≤ bi.
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Example 3.1. Consider the following LPP:

max z = 4x1 + 2x2 + x3,

subject to 2x1 + x2 + x3 ≤ 30,

3x1 + x2 + x3 ≤ 26,

x2 + x3 ≤ 13,

x1 + 2x2 + x3 ≤ 45,

0 ≤ x1 ≤ 8.67,

0 ≤ x2 ≤ 13,

0 ≤ x3 ≤ 13.

(3.3)

Solution 1.

Step 1. Define

P1 = {1, 2, 3}, N1 = ϕ,

P2 = {1, 2, 3}, N2 = ϕ,

P3 = {2, 3}, N3 = ϕ,

P4 = {1, 2, 3}, N4 = ϕ,

(3.4)

where ϕ is the empty set.

Step 2. Compute

L1 = 0, U1 = 17.34 + 13 + 13 = 43.34,

L2 = 0, U2 = 26.01 + 13 + 13 = 52.01,

L3 = 0, U3 = 13 + 13 = 26,

L4 = 0, U4 = 8.67 + 26 + 13 = 47.67.

(3.5)

Since all Ui ≥ bi, i = 1, 2, 3, 4, there is no redundant constraint found by this method.

3.2. Linear Programming Method

Caron et al. [6] developed an algorithm for identifying redundant constraints. This method
will take more computational effort to identify the redundant constraints. To identify the
redundant constraints, the left-hand side of each constraint is optimized subject to the
remaining constraints. The optimal objective functional value is compared with the right-
hand side value of corresponding constraints to decide if it is redundant or not. In this
method, the objective function of the original LPP is not considered.
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Let P denote the given linear programming problem.
Let Pi denote the LP Problem without the ith constraint

∑n
j=1 aijxj ≤ bi of P and let the

objective function of LP problem Pi be max zi =
∑n

j=1 aijxj .

Step 1. Find the optimal objective function value to the problem Pi, i = 1, 2, . . . , m, by using
the simplex method. Let zi be the optimal objective function value of problem Pi.

Step 2. Check whether zi ≤ bi. The ith constraint
∑n

j=1 aijxj ≤ bi is redundant if zi ≤ bi.
Otherwise, it is not redundant.

Example 3.2. Consider the Example 3.1 presented in Section 3.1.

Solution 2. By solving the above Example 3.2, we get z = 43.33, x1 = 4.33, x2 = 13.00, and
x3 = 0.

Step 1. For i = 1, 2, 3, 4, consider the problem Pi as follows:

max zi = left-hand side of constraint i,

subject to 3x1 + x2 + x3 ≤ 26,

x2 + x3 ≤ 13,

x1 + 2x2 + x3 ≤ 45,

x1, x2, x3 ≥ 0.

(3.6)

Using the simplex method,

the solution of problem P1 is z1 = 21.67, x1 = 4.33, x2 = 13.00, and x3 = 0.00.

the solution of problem P2 is z2 = 45, x1 = 15, x2 = 0.00, and x3 = 0.00.

the solution of problem P3 is z3 = 26, x1 = 0.0, x2 = 19.00, and x3 = 7.00.

the solution of problem P4 is z4 = 30.33, x1 = 4.33, x2 = 13.0, and x3 = 0.00.

Step 2. Here z1 < b1, z2 > b2, z3 > b3, and z4 < b4. Therefore, the constraints (1) and (4) are
redundant.

3.3. Deterministic Method

Telgan [15] developed an algorithm for identifying redundant constraints and implicit
equalities in system of linear constraints using minimum ratio criteria as in the simplex
method.

Procedure of the Method

Assume that a basic feasible solution is given, and the corresponding contracted simplex
tableau is set up. Let yij be the entries of this tableau with yi0 the right-hand side coefficients,
and let xB

j and xN
j represent the basic and nonbasic variables, respectively. Let H be the set

of all indices of constraints to be identified as either redundant or nonredundant.
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Table 1

x1 x2 x3 RHS
u1 2 1 1 30
u2 3 1 1 26
u3 0 1 1 13
u4 1 2 1 45
HereH = {1, 2, 3, 4}.

Let uk be the slack variable corresponding to the kth constraint.

Step 1. If the solution is nondegenerate, all uk = xN
j correspond to nonredundant inequalities,

remove k from H and continue with Step 3.

Step 2. In a degenerate solution check all nonbasic variables uk = xN
p with k ∈ H. Check

the property yip ≥ 0 for all i with yi0 = 0. If this holds, then the constraint Akx ≤ bk is not
redundant, and remove k from H.

Step 3. Check all basic variables uk = xB
r with k ∈ H for the property yij ≤ 0 for all j. If this

holds, then the constraint Akx ≤ bk is redundant, and remove k fromH.

Step 4. Check all basic variables uk = xB
i with k ∈ H for the property yr0/yrs =

min{yio/yis, yis > 0} is attained at a unique r for some s. If this holds, the constraintAkx ≤ bk
is not redundant, and remove k from H.

Step 5. IfH = ϕ, then stop. Else, go to Step 6.

Step 6. If there is no basic variable uk = xB
i with k ∈ H, then introduce a nonbasic variable

uk = xN
j with k ∈ H (e.g., the one with the smallest index k) into the basis and continue with

Step 1.

Step 7. Select a basic variable uk = xB
j with k ∈ H (e.g., the one with the smallest index k) and

perform a feasible pivot step in column p with yip = maxyij . Continue with Step 1.

Example 3.3. Consider Example 3.1 presented in Section 3.1.

Solution 3.

Iteration 1. Contracted simplex table, see Table 1.

Step 1. x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0 are not redundant.

Step 4. Now, divide the RHS values by the first column and take the minimum of it
min{15, 8.66,−, 45} = 8.66, which corresponds to the 2nd row. Therefore, constraint (2) is
not redundant. Now, H = {1, 3, 4}.

Step 7. Select u1 and find the maximum {2, 1, 1} = 2, which corresponds to the 1st column.
Therefore, pivoting on y21, we obtain, see what is Table 2.

Iteration 2. Divide the RHS values by the 2nd column and take minimum of it.
min{38, 26, 13, 21.8} = 13, which corresponds to the 3rd row. Therefore, constraint (3) is not
redundant. Now, H = {1, 4}.
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Table 2

u2 x2 x3 RHS
u1 −2/3 1/3 1/3 38/3
x1 1/3 1/3 1/3 26/3
u3 0 1 1 13
u4 −1/3 5/3 2/3 109/3

Step 4. Selecting u1, u3 we cannot pivot. So select u4 and the maximum {−1/3, 5/3, 2/3} =
5/3 corresponds to the 2nd column. Therefore, pivoting on y32, we obtain, see what is Table 3.

Step 3. In the first and last row, all the coefficients are ≤0.
Step 5. H = ϕ. Therefore, Constraints (1) and (4) are redundant.

3.4. Stojković and Stanimirović Method

This method is proposed by Stojković and Stanimirović [13]. It is a simple method. It verifies
the existence of the saddle point of payoff matrix for the game problem by applying the
maxmin and minmax principles.

Procedure of the Method

Step 1. Compute dij = aij/bicj , i = 1, 2, . . . , m, and j = 1, 2, . . . , n.

Step 2. If max1≤i≤m min1≤j≤n dij = min1≤i≤n max1≤i≤m dij , then there are no redundant
constraints. Stop.

Else, if there exist k and l such that dkj ≤ dlj , for all j = 1, 2, . . ., then the kth constraint
is redundant.

Example 3.4. Consider the Example 3.1 presented in Section 3.1.

Solution 4.

Step 1.

dij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
120

1
60

1
30

3
104

1
52

1
26

0
52

1
26

1
13

1
180

2
90

1
45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

min⎡
⎢⎢⎢⎢⎢⎣

0.01666 0.01666 0.0333

0.02885 0.01923 0.0385

0.0 0.0385 0.0769

0.0055 0.0222 0.0222

⎤
⎥⎥⎥⎥⎥⎦

0.01666
0.01923
0.0

0.0055.

max 0.02885 0.0385 0.0769

(3.7)
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Table 3

u2 u3 x3 RHS
u1 −2/3 −1/3 0 25/3
x1 1/3 −1/3 0 13/3
x2 0 1 1 13
u4 −1/3 −5/3 −1 44/3

Step 2.

max
1≤i≤4

min
1≤j≤3

dij = 0.01923,

min
1≤j≤3

max
1≤i≤4

dij = 0.02855,

max
1≤i≤3

min
1≤j≤4

dij /=min
1≤j≤4

max
1≤i≤4

dij .

(3.8)

There must be at least one redundant constraint in the above problem.
Here d1j ≤ d2j , j = 1, 2, 3, hence the constraint (1) is redundant.

3.5. Heuristic Method

Paulraj et al. [14] proposed a heuristic method to identify redundant constraint by using the
intercept matrix of constraints of a linear programming problem.

Procedure of the Method

Step 1. Let I be the set of subscripts associatedwith the initial basic variables (slack variables).
Initially let that set be I = {1, 2, . . . , m}.

Let J be the set of subscripts associated with the initial decision variables. Initially let
that set be J = {1, 2, . . . , n}.

Step 2. Construct an intercept matrix “θ” using the following relationship

θji =
bi
aij

, aij > 0, for j ∈ J, i ∈ I. (3.9)

Step 3. Determine the entering variables making use of the following steps.

(i) Calculate zj − cj = CBB
−1aj − cj for all nonbasic variables aj = (a1j , a2j , . . . , amj)

T .

(ii) Let βj = min{θji}, for j ∈ J, i ∈ I.

(iii) Compute z′j − c′j = βj(zj − cj) for j ∈ J .

Step 4. (i) Let z′k − c′k = minj∈J{z′j − c′j}.
(ii) If z′k − c′k ≥ 0, then the problem has no redundant constraints and stop.
(iii) Otherwise, take away the element k from the set J , that is, J = J − {k}.
(iv) Let θkl = mini∈I{θki} = βk.
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Table 4

Basic variables
Decision variables S1 S2 S3 S4 zj − cj βj z′j − c′j
X1 15 8.67 — 45 −4 8.67 −34.68
X2 30 26 13 22.5 −2 13 −26
X3 30 26 13 45 −1 13 −13

Table 5

Iteration number k J l I J

1 1 {2, 3} 2 {1, 3, 4} {2, 3}
2 2 {3} 3 {1, 4} {3}
3 3 Φ 3 {1, 4} ϕ

(v) Take away the element l from the set I, that is, I = I − {l}.
(vi) Find p such that min {θpl} = βp for p ∈ J . If so, take away such p elements from

the set J , that is, J = J − {p}.

Step 5. If J = ϕ, then go to Step 6. Otherwise, go to Step 4.

Step 6. If I = ϕ, then the problem has no redundant constraints and stop. Otherwise, all the
constraints i ∈ I whose intercepts on coordinate axis j satisfy the condition θji ≥ max{βj}
where i ∈ I and j = 1, 2, . . . , n are redundant. Stop.

Example 3.5. Consider the Example 3.1 presented in Section 3.1

Solution 5.

Step 1. (i) I = {1, 2, 3, 4}, (ii) J = {1, 2, 3}.

Step 2. [see Table 4].

Step 3. [see Table 4].

Step 4. [see Table 5].

Step 5. J = ϕ. Constraints (1) and (4) are redundant constraints.

4. Numerical Results

The comparative results of the five methods are presented in the following tables. Table 6
shows the comparison results of small-scale problems, Table 7 shows the comparison results
of medium-scale problems, and Table 8 shows the comparison results of netlib problems [18].
Comparison results of large size problems from OR library [19] are presented in Table 9.

In Figures 2, 3, 4 and 5, the comparative results of small scale problems, medium scale
problems, netlib

problems and large size problems are shown graphically. Figure 2 shows that the
heuristic and linear programming methods identify more redundant constraints than the
other three methods. Figure 3 indicates that the Stojkovic and stanimirovic method identifies



Mathematical Problems in Engineering 11

0

1

2

3

4

5

6

0 2 4 6 8 10

Problem number

N
um

be
r
of

re
d
un

d
an

tc
on

st
ra
in
ts

Brearly
Linear programming

Deterministic
Heuristic

Stojkovic-Stanimirovic

Small-scale problems

Figure 2

0

10

20

30

40

50

60

N
um

be
r
of

re
d
un

d
an

tc
on

st
ra
in
ts

0 2 4 6 8

Problem number

Brearly
Linear programming

Deterministic
Heuristic

Stojkovic-Stanimirovic

Medium-scale problems

Figure 3



12 Mathematical Problems in Engineering

Ta
b
le

6:
C
om

pa
ri
so
n
of

fi
ve

m
et
ho

d
s:
sm

al
l-
sc
al
e
pr
ob

le
m
s.

S.
no

.
1

2
3

4
5

6
7

8
9

10

N
o.

of
co
ns

tr
ai
nt
s

3
3

3
4

4
3

4
5

5
7

N
o.

of
va

ri
ab

le
s

2
2

2
3

3
3

5
2

4
10

B
re
ar
ly
’s
m
et
ho

d
(c
on

st
ra
in
tn

o.
)

0
0

0
1
(4
)

1
(4
)

1
(3
)

1
(4
)

0
0

2
(3
,7
)

N
o.

of
m
ul
ti
pl
ic
at
io
n/

d
iv
is
io
ns

W
it
h
re
d
un

d
an

t
93

93
93

31
1

31
1

33
6

33
6

50
5

53
5

18
94

W
it
ho

ut
re
d
un

d
an

t
93

93
93

16
7

16
7

18
6

18
6

50
5

53
5

88
3

L
in
ea
r
pr
og

ra
m
m
in
g
m
et
ho

d

(c
on

st
ra
in
tn

o.
)

1
(3
)

0
1
(3
)

2
(3
,4
)

2
(1
,4
)

1
(3
)

2
(3
,4
)

4
(2
,3
,4

,5
)

2
(2
,4
)

5
(2
,3
,4

,6
,7
)

N
o.

of
m
ul
ti
pl
ic
at
io
n/

d
iv
is
io
ns

W
it
h
re
d
un

d
an

t
93

93
93

31
1

31
1

33
6

33
6

50
5

53
5

18
94

W
it
ho

ut
re
d
un

d
an

t
42

93
42

76
75

97
88

70
50

16
1

D
et
er
m
in
is
ti
c
m
et
ho

d

(c
on

st
ra
in
tn

o.
)

1
(3
)

0
1
(3
)

1(
3)

2
(1
,4
)

2
(2
,3
)

2
(3
,4
)

2
(3
,5
)

1
(2
)

0

N
o.

of
m
ul
ti
pl
ic
at
io
n/

d
iv
is
io
ns

W
it
h
re
d
un

d
an

t
93

93
93

31
1

31
1

33
6

33
6

50
5

53
5

18
94

W
it
ho

ut
re
d
un

d
an

t
42

93
42

16
8

75
88

88
15

9
50

18
94

St
oj
ko

vi
ć-
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Table 7: Comparison of five methods: medium-scale problems.

S. no. Size of the problem Number of redundant constraints identified by

no. of
constraints

no. of
variables

Brearly’s
method

linear
programming

method

deterministic
method

Stojković-
Stanimirović

method

heuristic
method

1 16 6 14 13 5 1 14
2 20 5 17 18 1 0 17
3 25 6 17 23 3 0 23
4 30 3 24 29 18 0 29
5 37 5 29 35 12 0 35
6 40 2 38 39 38 0 39
7 45 3 34 43 10 0 43
8 50 5 28 49 11 0 49

Table 8: Comparison of five methods: netlib problems.

S. no. and
File name

Size of the problem Number of redundant constraints identified by

No. of
constraints

No. of
variables

Brearly’s
method

Linear
programming

method

Deterministic
method

Stojković-
Stanimirović

method

Heuristic
method

(1) afiro 20 20 9 3 0 0 4
(2) fit1d 24 24 2 10 0 0 13
(3) fit2d 25 25 0 19 0 7 19
(4) sc50b 28 28 0 7 0 0 10
(5) sc50a 29 29 1 11 0 2 11
(6) kb2 39 39 3 13 0 14 14
(7) vtpbase 51 51 1 21 0 4 30
(8) bore3d 52 52 42 17 0 22 18

no redundant constraints where as deterministic method identifies very low redundant
constraints compared with other methods. Figure 4 indicates that the deterministic method
identifies nothing; brearly’s, Stojkovic and stanimirovic methods identify very low redundant
constraints and the remaining methods more or less coincide. Figure 5 shows that the
Stojkovic and stanimirovic method identifies very less redundant constraints where as
heuristic method identify more redundant constraints than the others.

The tables deal with the identification of the number of redundant constraints in linear
programming problems by using the five methods. It is very easy to identify quickly the
best method in finding redundant constraints of LP problems. Heuristic method seems to be
less time consuming, and it requires less computational effort. It also finds more redundant
constraints when compared with the other four methods. So this method would be easy and
reliable method for identifying redundant constraints. Even though the LP method identifies
more redundant constraints, it needs more computational work and takes more time.
Brearly’s method identifies less redundant constraints with less computational effort than
heuristic and LP methods. Deterministic methods identify more redundant constraints with
more computational effort. So time consumption is bigger when compared with heuristic
method. Stojković and Stanimirović identified a smaller number of redundant constraints
than the others.
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Table 9: Comparison of five methods: Large Size Problems.

S. no. and
File name

Size of the problems Number of redundant constraints identified by

No. of
constraints

No. of
variables

Brearly
method

Linear
programming

method

Deterministic
method

Stojković
Stanimirović

method

Heuristic
method

(1) scpcyc06 240 192 197 235 201 0 236
(2) scpe2 50 500 31 40 38 0 43
(3) scp43 200 1000 142 195 136 143 196
(4) scp52 200 2000 187 197 163 98 198
(5) scpa3 300 3000 165 181 123 93 293
(6) scpd3 400 4000 243 305 315 64 395
(7) scpcyc08 1792 1024 800 1512 1328 54 1780
(8) scpc1r13 4095 715 1023 3608 3204 0 4083

The efficiency of the algorithms was also tested by solving the first set of Linear
Programming Problems mentioned before and after removing the redundant constraints,
identified by each method. Table 6 gives the computational results.

5. Conclusions

In this paper, the heuristic approach [14] for identifying redundant constraints has been
compared with other four methods. Each method has its own role in viewing computational
effort and time factor. Linear programming method [6] and deterministic method [15]
more or less coincide with heuristic method in most of the problems. Brearly et al. [4]
method depends on the upper and lower bounds of the decision variables for identifying the
redundant constraints. Hence, the heuristic method is more useful than the other methods.
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