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This paper deals with the problems of robust stability analysis and robust stabilization for
uncertain nonlinear polynomial systems. The combination of a polynomial system stability
criterion with an improved robustness measure of uncertain linear systems has allowed the
formulation of a new criterion for robustness bound estimation of the studied uncertain
polynomial systems. Indeed, the formulated approach is extended to involve the global
stabilization of nonlinear polynomial systems with maximization of the stability robustness bound.
The proposed method is helpful to improve the existing techniques used in the analysis and control
for uncertain polynomial systems. Simulation examples illustrate the potentials of the proposed
approach.

1. Introduction

Being subject of considerable theoretical and practical significance, stability analysis and
control of nonlinear dynamic systems have been attracting the interest of investigators for
several decades [1–3]. The essential aim of robust analysis and nonlinear robust control
theory is to internally stabilize the nonlinear plant while maximizing the upper bound on
the parametric perturbations, such that the perturbed nonlinear system remains stable, as
described in [4–8]. However, each of the published approaches on this subject concerns
particular classes of nonlinear uncertain systems and there is no standard method to
investigate robust stability and stabilization of general high-order nonlinear systems [9–
13]. Therefore, in deep contrast with linear analysis and control methods, which are flexible,
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efficient and allowing to solve a broad class of linear control problems, there are few practical
methods in nonlinear control which can handle real engineering problems with similar
comfort.

In this paper, we are concerned with further developments of robust stability and
feedback stabilization methods of a class of nonlinear polynomial systems with structured
uncertainties. Our motivations for studying polynomial systems mainly comes from the
fact that they provide a convenient unified framework for mathematical modelling of
many physical processes and practical applications such as electrical machines and robot
manipulators, and also the ability to approach any analytical nonlinear dynamical systems,
since, any nonlinear system can be developed into a polynomial form by Taylor series
expansions [14–17]. Moreover, the description of polynomial systems can be simplified using
the Kronecker product and power of vectors and matrices [18]. The parameter uncertainties
in the studied polynomial systems are considered as real structured perturbations which are
assumed to depend linearly on a set of interval parameters.

The purpose of this work is then to find a bound on the size of the parameters for which
the perturbed model remains stable as well as design robustly state feedback controller for the
above-mentioned systems. The presented research is built on the stability and stabilization
conditions of nonlinear polynomial systems proposed in [16, 19, 20] and the measure of
stability robustness of linear systems [12], and makes use of a duality principle between
the linear and nonlinear uncertain systems [21, 22]. The derived results are formulated in
terms of nonlinear optimization problem which is easy to testify by using Matlab Tool-Box.
Let’s mention that previous works of the same research team [21, 22] had considered the
robustness measure of polynomial systems using the Yedavalli robustness measure of linear
uncertain systems [10]. In the present contribution we aim to improve these previous results
by considering a less conservative robustness criterion and to apply the obtained bound
formulation to the robust control synthesis.

This article is organized as follows. Section 2 contains the mathematical notations
and preliminary material on algebraic properties of the Kronecker product and power of
vectors and matrices. Section 3 formulates the problem and the description of the nonlinear
studied systems. Sections 4 and 5 present our main results, which concern the development
of the stability robustness measurement and the design of a robust polynomial state feedback
controller with robustness maximization. Numerical examples illustrating the effectiveness
of the proposed methods are provided. Finally, a conclusion ends the paper.

2. Mathematical Notations and Useful Tools

We use standard notations throughout this paper. R
n denotes the n-dimensional Euclidean

space, R
n×m is the set of all real m× n matrices, and ⊗ is the symbol of the Kronecker product.

0n×m : (n × m) zero matrix, 0: zero matrix of convenient dimension, AT is the transpose of
matrix A, A > 0 (A ≥ 0) is the symmetric positive definite (semidefinite) matrix. The kth row
of a matrix such as A is denoted Ak and the ik element of A will be denoted aik. The identity
matrix of orderm is denoted as Im (or simply I if no confusion arises). |·| stands for the matrix
formed by taking the componentwise absolute value of the matrix. λ(·) is the eigenvalue of
the considered matrix. ρ(·) = |λmax(·)| is the spectral radius of the indicated matrix.

In this section, we propose some algebraic tools and definitions needed to demonstrate
the robustness measure and the stabilizing control, of the studied systems, in the next
sections.
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2.1. Kronecker’s Power of Vectors

The Kronecker power of order i, denoted X[i], of the vector X ∈ R
n is defined as (see [18]):

X[0] = 1,

X[i] = X[i−1] ⊗X = X ⊗X[i−1] for i ≥ 1.
(2.1)

For example, considering the second order, the X[2] vector is given by

X[2] =
[
x2

1, x1x2, . . . , x1xn, x2x1, . . . , x2xn, . . . , xnx1, . . . , x
2
n

]T
, (2.2)

X̃
[i]
i=1,...,r ∈ R

ni , ni =
(
n+i−1
i

)
is the nonredundant Kronecker power of the state vector X defined

as

X̃[1] = X[1] = X,

∀i ≥ 2, X̃[i] =
[
xi1, x

i−1
1 x2, . . . , x

i−1
1 xn, . . . , x

i−2
1 x2

n, . . . , x
i−3
1 x3

2, . . . , x
i
n

]T
,

(2.3)

where the repeated components of the redundant ith-power X[i] are omitted.
The relation between the redundant and the nun-redundant Kronecker power of the

vector X can be stated as follows:

∀i ∈ N ∃! Ti ∈ R
ni×ni ,

X[i] = TiX̃[i],
(2.4)

where Ti is called the transition matrix which a procedure of the determination is given in
[23].

2.2. Mat-Function: mat(·)

If V is a vector of dimension p = n ·m, then M = mat(n,m)(V ) is the (n ×m) matrix verifying
V = vec(M).

2.3. Vec-Function: vec(·)

An important vector valued function of matrix denoted vec(·) was defined in [18] as follows:

C =
[
c1 c2 · · · cq

]
∈ R

p×q, (2.5)

where for all i ∈ {1, . . . , q}, ci ∈ R
p are the columns of C

vec(C) =
[
cT1 cT2 · · · cTq

]T
∈ R

pq. (2.6)
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2.4. Polynomial Vectorial Function

For a polynomial vectorial function denoted a(X) given as follows:

a(X) =
r∑
i=1

AiX
[i], (2.7)

where X ∈ R
n, Ai are (n × ni) constant matrices and r is the polynomial order (considered

odd) defined by r = 2s − 1, with s ∈ N
∗.

We define the (υ × υ) matrixM(a) as

M(a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11(A1) M12(A2) 0 · · · 0

0 M22(A3)
. . . . . .

...

...
. . . . . . . . . 0

...
. . . Ms−1,s−1(A2s−3) Ms−1,s(A2s−2)

0 · · · · · · 0 Ms,s(A2s−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.8)

where υ = n + n2 + · · · + ns, and

(i) for j = 1, . . . , s

Mj,j

(
A2j−1

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

mat(nj−1,nj )

(
A1T

2j−1

)

mat(nj−1,nj )

(
A2T

2j−1

)

...

mat(nj−1,nj )

(
AnT

2j−1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.9)

(ii) for j = 1, . . . , s − 1

Mj,j+1
(
A2j
)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

mat(nj−1,nj )

(
A1T

2j

)

mat(nj−1,nj )

(
A2T

2j

)

...

mat(nj−1,nj )

(
AnT

2j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.10)

Ak =
[
A1T
k

A2
k
· · · AnT

k

]
. (2.11)
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3. System Description and Problem Formulation

Consider the class of uncertain nonlinear polynomial systems with structured uncertainties
described by

Ẋ = f(X) + Δf(X) + BU, (3.1)

where

f(X) =
r∑
k=1

FkX
{k},

Δf(X) =
r∑
k=1

ΔFkX[k],

(3.2)

with

(i) X = [x1, . . . , xn]
T ∈ R

n is the state vector,

(ii) X[k] ∈ R
nk is the kth Kronecker power of the vector X,

(iii) U ∈ R
m is the control input vector,

(iv) Fk ∈ R
n×nk are constant matrices which describe the nominal system,

(v) B ∈ R
n×m is the constant control matrix,

(vi) ΔFk,k=1,...,r ∈ R
n×nk are the matrices of parametric uncertainties.

We note that the structure of the parametric uncertainties ΔFk,k=1,...,r is multiple-
parameter variations given by

ΔFk =
γk∑
j=1

εkjEkj , (3.3)

where Ekj ∈ R
n×nk (for k = 1, . . . , r and j = 1, . . . , γk) are numerically known matrices, εkj

represent the uncertain parameters, and γk represents the number of uncertain parameters of
the matrix Fk.

According to (3.1) and (3.3), let Fk,k=1,...,r be some nominal matrices which present the
parameters of the considered polynomial system. Define the perturbed terms which depend
linearly on a number of parameters εkj which are unknown real scalars.

The objective of this paper is to address the following problems:

(1) in the robust stability analysis, it is assumed that the nominally system described
by

Ẋ = f(X) =
r∑
k=1

FkX
[k] (3.4)
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is globally asymptotically stable, and we wish to find an upper bound η of the
parameters εkj (max(εkj) ≤ η) such that the following nonlinear polynomial
systems without controller (for U(t) = 0):

Ẋ = f(X) + Δf(X) =
r∑
k=1

(Fk + ΔFk)X[k] (3.5)

remains stable, and

(2) the robust control problem consist to design a nonlinear robust controller which
ensures the global stability of the nominal nonlinear systems (3.4) and maximizes
the stability robustness of the controlled system. This means that the stability of the
controlled system is ensured for a maximum value of the uncertainties affecting the
system parameters.

In the next sections, we will address the robustness analysis and synthesis problems for
nonlinear polynomial systems with the above described admissible structured uncertainty
set.

4. Robustness Measure

This section is devoted to the development of a robustness stability measure of the above
class of nonlinear systems. Our main result in this work is based on the duality principle,
presented in the sequel, between the computation of stability robustness bound approach
of linear systems and a previous result about the stability analysis of certain polynomial
systems. First, we beginning by presenting the following basic results.

4.1. Stability Robustness Bound for Linear System

The problem of robust stability of linear state-space systems, for both structured and
unstructured parametric uncertainty involving state space models, has been an active area
of research for quite some time for extensive discussions and references. Let the following
linear dynamical system with linear structured perturbations:

Ẋ = AX(t) +

(
p∑
k=1

εkEk

)
X(t) = (A + ΔA)X(t), (4.1)

where

ΔA =
p∑
k=1

εkEk (4.2)

with A ∈ R
n×n is a nominal Hurwitz matrix with eigenvalues in the open left-half plane,

ΔA presents the additive uncertainty with Ek ∈ R
n×n are constant known matrices and

εk,k=1,...,p denote the unknown real parameters. Note that the uncertain parameters enter the
uncertainty matrix linearly.
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As mentioned in the first section, different results have been obtained for determining
the extent of uncertainty that the system can tolerate without becoming unstable. However,
it remains challenging to develop methods for finding less conservative robustness bounds
in the presence of structured perturbations. we present here two results which have been
applied in our work.

4.1.1. Robustness Measure of Yedavalli

Consider an uncertain linear system described by (4.1) with structured uncertainties given
by (4.2), then it comes out the following Yedavalli result [10].

Theorem 4.1. The uncertain linear system (4.1)-(4.2) is asymptotically stable if:

max|εk| ≤
(
ρ

{
p∑
k=1

∣∣∣ΓkΦ−1
∣∣∣
})−1

, (4.3)

with

Γk = Ek ⊗ In + In ⊗ Ek,

Φ = A ⊗ In + In ⊗A.
(4.4)

4.1.2. Robustness Measure of Gardiner

Next, we review an improved robustness algorithm proposed by Gardiner that gives a
better bound than the methods obtained in [9] and Yedavalli’s works [10, 24, 25] presented
above. Therefore, the following theorem provides am improved robustness bound of linear
uncertain system [12].

Theorem 4.2. The system (4.1)-(4.2) is asymptotically stable if

max|εk| ≤
(
ρ

{
p∑

k1=1

k1−1∑
k2=1

∣∣∣Ξk1A
−1
0 Ξk2A

−1
0 + Ξk2A

−1
0 Ξk1A

−1
0

∣∣∣ +
p∑
k=1

∣∣∣∣
(
ΞkA−1

0

)2
∣∣∣∣
})−1/2

, (4.5)

with

Ξk = Ek ⊗ In + In ⊗ Ek,

Ξki = Eki ⊗ In + In ⊗ Eki ,

A0 = A ⊗ In + In ⊗A.

(4.6)

Before applying these two results for general high-order nonlinear polynomial
systems, we assess recent algebraic stability criterion for the polynomial systems in the certain
case.
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4.2. Stability Criterion of Nonlinear Polynomial Systems

The robustness measure developed in this study is specially based on the pertinent results
presented in the following theorem [15, 16, 19], about the global stability condition of
autonomous polynomial systems described by (3.4). This stability condition is based on the
Lyapunov direct method with quadratic Lyapunov function V(X) = XTPX (P ∈ R

n×n) [26].

Theorem 4.3. The nonlinear polynomial system defined by (3.4) is globally asymptotically stable if
there exist:

(i) an (n × n)-symmetric positive definite matrix P, and

(ii) arbitrary parameters μi,i=1,...,β ∈ R,

such that the (ϑ × ϑ) symmetric matrix Q defined by

Q = ϕ
(
P, μi,i=1,...,β

)
= τT
(
PM
(
f
)
+M
(
f
)TP
)
τ + Π

(
μi,i=1,...,β

)
(4.7)

is negative definite.

The proof elements and the parameters notation of Theorem 4.3 are illustrated in
appendix (see [15, 16, 19, 20] for more details).

4.3. Robustness Stability Measure of Uncertain Polynomial Systems

4.3.1. Duality Approach

Refrying to the stability condition of certain polynomial system (4.7), given by Theorem 4.1,
the uncertain nonlinear polynomial system (3.5) is globally asymptotically stable, if there
exist a positive definite matrix P and real parameters μi,i=1,...,β such that:

Q̃ = Q + ΔQ = ϕ
(
Fk + ΔFk,k=1,...,r)

)
< 0, (4.8)

where

Q = ϕ(Fk,k=1,...,r),

ΔQ = ϕ(ΔFk,k=1,...,r).
(4.9)

It can be verified that

ϕ(ΔFk,k=1,...,r) =
r∑
k=1

γk∑
j=1

εkjΞkj ,

Ξkj = ϕ
(
Λij,i=1,...,r

)
, Λij =

⎧
⎨
⎩
Ekj if i = k,

0 if i /= k.

(4.10)
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Indeed, the system (3.5) is globally asymptotically stable if the matrix Q̃ is negative definite
(i.e., when λi(Q̃) < 0, i = 1, . . . , ϑ). Then, to ensure the negativity of Q̃, it will be sufficient to
guarantee the stability of the following linear uncertain system:

Ż = QZ +

⎛
⎝

r∑
k=1

γk∑
j=1

εkjΞkj

⎞
⎠Z (4.11)

said linear dual system of nonlinear system (3.5). So, the robustness measure of the nonlinear
system (3.5) is equivalent to the robustness measure of the linear dual system (4.11).

In the following we will apply some results on linear robustness measures
determination for characterizing a robustness measure of nonlinear polynomial systems.
In this way, two results will be presented. A previous result based on the Yedavalli linear
robustness measure [21] and a new improved result using the Gardiner linear robustness
bound (4.5).

4.3.2. Yedavalli Based Robustness Measure of Polynomial Systems

Let consider the uncertain nonlinear polynomial system (3.5), We assume that the nominal
system satisfies the stability criterion (4.7) of Theorem 4.3, then we obtain the following result
formulated in Theorem 4.4 [21].

Theorem 4.4. The nonlinear uncertain polynomial system (3.5) is robustly stable, if

η1 = max
∣∣εkj
∣∣ ≤ η�1 (4.12)

with

η�1 = maxp

⎛
⎝ρ

⎧
⎨
⎩

r∑
k=1

γk∑
j=1

∣∣∣
(
ΩkjΘ−1

)∣∣∣
⎫
⎬
⎭

⎞
⎠
−1

, (4.13)

where for k = 1, . . . , r, j = 1, . . . , γk

Ωkj = εkj ⊗ Iϑ + Iϑ ⊗ εkj ,

Θ = Q ⊗ Iϑ + Iϑ ⊗ Q,

Ξkj = ϕ
(
Λij,i=1,...,r

)
; Λij =

⎧
⎨
⎩
Ekj if i = k,

0 if i /= k,

ϑ =
s∑
k=1

(
n + k − 1

k

)
.

(4.14)

This theorem was proved in [21].
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4.3.3. Gardiner Based Robustness Measure of Polynomial Systems

We present now the proposed robustness bound of uncertain polynomial systems based on
the Gardiner’s method.

Theorem 4.5. The nonlinear uncertain polynomial system (3.5) is robustly stable, if

η2 = max
∣∣εkj
∣∣ ≤ η�2, (4.15)

with

η�2=maxP,μi,i=1,...,β

⎛
⎝ρ

⎧
⎨
⎩
∑
k1,j1

∑
k2,j2

∣∣∣Ωk1j1Θ
−1Ωk2j2Θ

−1+Ωk2j2Θ
−1Ωk1j1Θ

−1
∣∣∣+
∑
k,j

∣∣∣∣
(
ΩkjΘ−1

)2
∣∣∣∣

⎫
⎬
⎭

⎞
⎠
−1/2

,

(4.16)

where for k1 = 1, . . . , r, k2 = 1, . . . , k1 − 1, j1 = 1, . . . , γk1 and j2 = 1, . . . , γk2

Ωkj = Ξkj ⊗ Iϑ + Iϑ ⊗ Ξkj ,

Ωkiji = Ξkiji ⊗ Iϑ + Iϑ ⊗ Ξkiji ,

Θ = Q ⊗ Iϑ + Iϑ ⊗ Q,

Ξkj = ϕ
(
Λlj,l=1,...,r

)
; Λlj =

⎧
⎨
⎩
Ekj if l = k,

0 if l /= k,

Ξkiji = ϕ
(
Λlji,l=1,...,r

)
; Λlji =

⎧
⎨
⎩
Ekiji if l = ki,

0 if l /= ki.

(4.17)

Proof. The stability of the polynomial system (3.5) is equivalent to that of the dual linear
system (4.11). Then, applying the above Gardiner criterion [12] leads to the result of
Theorem 4.5, which completes the proof.

Let us remark that Theorem 4.5 leads an improved robustness bound, since it is based
on the linear Gardiner measure which is proved larger than Yedavalli one. Moreover, the
optimization of the new measure is made with regard to P matrix and the μi-parameters while
the previous measure given in Theorem 4.4 is optimized only with regard to the Lyapunov
matrix P .
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4.4. An Illustrative Numerical Example

Consider the following second-order autonomous uncertain polynomial system:

ẋ1 = (a11 + Δa11)x1 + (b11 + Δb11)x2
1 + (b13 + Δb13)x2

2

+ (c11 + Δc11)x3
1 + (c14 + Δc14)x3

2,

ẋ2 = (a22 + Δa22)x2 + (b21 + Δb21)x2
1 + (b23 + Δb23)x2

2

+ (c21 + Δc21)x3
1 + (c24 + Δc24)x3

2.

(4.18)

This system can be written in the following polynomial form:

Ẋ = (F1 + ΔF1)X + (F2 + ΔF2)X[2] + (F3 + ΔF3)X[3], (4.19)

where

F1 =

[
a11 0

0 a22

]
, F2 =

[
b11 0 0 b13

b21 0 0 b23

]
, F3 =

[
c11 0 0 0 0 0 0 c14

c21 0 0 0 0 0 0 c24

]
,

ΔF1 = Δa11

[
1 0

0 0

]
+ Δa22

[
0 0

0 1

]
= Δa11E11 + Δa22E12,

ΔF2 = Δb11

[
1 0 0 0

0 0 0 0

]
+ Δb13

[
0 0 0 1

0 0 0 0

]
+ Δb21

[
0 0 0 0

1 0 0 0

]
+ Δb23

[
0 0 0 0

0 0 0 1

]

= Δb11E21 + Δb13E22 + Δb21E23 + Δb23E24,

ΔF3 = Δc11

[
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

]
+ Δc14

[
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

]

+ Δc21

[
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

]
+ Δc24

[
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

]

= Δc11E31 + Δc14E32 + Δc21E33 + Δc24E34,

(4.20)

with:

a11 = −0.839, a22 = 1.921, b11 = −0.751,

b13 = −0.432, b21 = −1.673,

b23 = −2.786, c11 = −0.753, c14 = −0.634,

c21 = −0.532, c24 = −2.431.

(4.21)
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Then, we have the following uncertain parameters:

[
εij
]
=

⎡
⎢⎢⎣
Δaij , i = 1, 2; j = 1, 2

Δbij , i = 1, 2; j = 1, 3

Δcij , i = 1, 2; j = 1, 4

⎤
⎥⎥⎦. (4.22)

Using the optimization tools offered by the Matlab software as the “fmincon.m” [27]
function which allows the resolution of the nonlinear optimization problem with inequalities
constraints, given by the procedure of computational of the robustness measure, presented
in Theorem 4.5, and after some manipulations concerning the initialization task of the
optimization algorithm under Matlab, we obtain the following optimal solution:

P =

[
0.0124 0

0 0.1001

]
, μ1 = 0.0167, μ2 = 0.0314, μ3 = 0.0100, (4.23)

and the system (4.18) is robustly stable for all uncertainty parameters εkj such that |εkj | ≤ η�2 =
1.71.

For testing the robustness bound gives above, we assume now that the model
parameters are reversed compared to the nominal values, the simulation results, show that
the perturbed system remains stable if the parameter uncertainties are not greater than the
founded bound, which provide the validity of the presented approach. As compared to
previously developed techniques like [21], the presented approach improve the robustness
measure, which enlarges the uncertainties variation domain.

5. Stabilizing Control Synthesis with Robustness Maximization

In this section, we are interested the problem of nonlinear robust control of polynomial
systems. In order to stabilize the considered nonlinear systems, a state feedback control law is
built, based in recent and pertinent results about the polynomial systems stabilization using
the LMI optimization tools (Linear Matrix Inequalities approach) and the robustness stability
measure (4.16), proposed by Theorem 4.5 in Section 4. An optimization algorithm allows to
establish the following two conditions satisfied by the control law synthesis:

(i) the global stability of the nominal (without uncertainties) nonlinear polynomial
system is ensured, and

(ii) the stability of the controlled perturbed system is ensured for a maximum bound
of uncertainties affecting the system parameters.

5.1. Nonlinear State Feedback Controller

We consider now the uncertain polynomial system given by (3.1). Our purpose is to find a
polynomial state feedback controller described by

U = k(X) =
r∑
k=1

KkX
[k], (5.1)
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with Kk,k=1,...,r are constant gains matrices which stabilizes asymptotically and globally the
equilibrium (X = 0) of the considered system (3.1) and to maximize the robustness measure.

The controlled uncertain system is described by the state equation:

Ẋ =
r∑
k=1

(Ak + ΔAk)X[k], (5.2)

where

Ak = Fk + BKk,

ΔAk = ΔFk =
γk∑
j=1

εkjEkj .
(5.3)

5.2. Robust Synthesis for Uncertain Polynomial Systems

The robust stabilization technique presented in this work is specially related to a recent
approach which deals with the global asymptotic stabilization of nonlinear polynomial
systems within the framework of Linear Matrix Inequalities (LMIs) in the certain case,
presented in [20]. The stabilization of nominal polynomial systems can be formulated as the
following matrix inequality problem:

Find

(i) gain matrices Ki,i=1,...,r ,

(ii) a (n × n) matrix P , and

(iii) real parameters μi,i=1,...,β,

such that

P > 0, (5.4)

Qc = Q
(
P, μi,i=1,...,β, Kk,k=1,...,r

)

= τT
(
P(P)M

(
f + Bk

)
+M
(
f + Bk

)TP(P)
)
τ + Π

(
μi,i=1,...,β

)
< 0.

(5.5)

Let us note that this inequality (5.5) is a NLMI (Nonlinear Matrix Inequality) problem
which can be turned into an LMI feasibility problem using specific transformations which
are presented in [20].

Therefore, the proposed synthesis method combines the robust analysis result in the
last section (Theorem 4.5) with the quadratic stabilization technique using the LMI approach
in terms of a global optimization algorithm, presented above. Thus, our aim is to find a
nonlinear state feedback controller (5.1) which stabilizes the closed loop system (5.2) and,
at the same time, maximizes the bound on the perturbation parameters which the considered
system can tolerate without going unstable. Then, our main result concerning the robust
stabilization can be stated in the following theorem.
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Theorem 5.1. The controlled nonlinear uncertain polynomial system (5.2) is robustly asymptotically
stable, if

ηc = max
∣∣εkj
∣∣ ≤ η�c, (5.6)

with

η�c=max(P,μi,Kk)

⎛
⎝ρ

⎧
⎨
⎩
∑
k1,j1

∑
k2,j2

∣∣∣Ωk1j1Ψ
−1Ωk2j2Ψ

−1+Ωk2j2Ψ
−1Ωk1j1Ψ

−1
∣∣∣+
∑
k,j

∣∣∣∣
(
ΩkjΨ−1

)2
∣∣∣∣

⎫
⎬
⎭

⎞
⎠
−1/2

,

(5.7)

where

Ψ = Qc ⊗ Iϑ + Iϑ ⊗ Qc,

Qc = Q
(
P, μi,i=1,...,β, Kk,k=1,...,r

)
= τT
(
PM
(
f + Bk

)
+M
(
f + Bk

)TP
)
τ + Π

(
μi,i=1,...,β

)
.

(5.8)

The above synthesis method can be seen as a nonlinear optimization procedure given
by two step algorithm to found a global optimum of the problem (5.7). It should be mentioned
that the resolution of the nonlinear optimization problem, presented in Theorem 5.1, is
very sensitive to the initialization of the optimization algorithm. This difficulty is overcame
simply when using the systematic results given by the LMI stabilization approach of nominal
controlled polynomial systems, as a starting point for the nonlinear optimization described
by the following algorithm.

Algorithm 5.2. One has the following steps:

Step 1 (Stabilization of the nominal system (Initialization)). Initialize the algorithm by
determining a feasible solution using LMI technique of the nominal polynomial system:
Solving the feasibility problem to find a symmetric positive matrix P , arbitrary parameters
μi,i=1,...,β and gain matrices Kk,k=1,...,r which globally stabilize the closed-loop nominal system.
The obtained solution constitues the initialization parameters P0, μi0 and Kk0 of the next step.
The second step allows the adjustment of the control gains.

Step 2 (Maximization of the robustness bound). Consider the matrices Kk,k=1,...,r , P and
μi,i=1,...,β obtained in Step 1 as initial values (P0, μi0 and Kk0), and determine the optimal
solution ensuring the stability of the controlled system (5.2) such that the following
conditions are verified:

(i) P = PT is positive definite, and

(ii) Qc(Kk, P, μi) = τT (PM(Ak,k=1,...,r)+M(Ak, k = 1, . . . , r)TP)τ+Π(μi,i=1,...,β) is negative
definite, and maximizing the robustness measure

η�c=max(P,μi,Kk)

⎛
⎝ρ

⎧
⎨
⎩
∑
k1,j1

∑
k2,j2

∣∣∣Ωk1j1Ψ
−1Ωk2j2Ψ

−1+Ωk2j2Ψ
−1Ωk1j1Ψ

−1
∣∣∣+
∑
k,j

∣∣∣∣
(
ΩkjΨ−1

)2
∣∣∣∣

⎫
⎬
⎭

⎞
⎠
−1/2

,

(5.9)
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with

P > 0,

Qc = Q
(
P,Ak,k=1,...,r , μi,i=1,...,β

)

= τT
(
PM(Ak,k=1,...,r) +M(Ak,k=1,...,r)TP

)
τ + Π

(
μi,i=1,...,β

)
< 0.

(5.10)

As we indicated above, these two algorithm steps establish a nonlinear optimization problem
under nonlinear constraints [27]. In the sequel, we give illustrative examples to show the
effectiveness of the proposed algorithm.

5.3. Numerical Example and Single Link Manipulator Application

In this section, we present two simulation examples to demonstrate the validity of the
proposed result such as numerical example and flexible manipulator with a single-link case
study.

5.3.1. Example 1: Numerical Example

We consider the uncertain polynomial system described by the state equation (5.11), which
the global asymptotic stabilization of the nominal part is treated in [20]:

Ẋ = (F1 + ΔF1)X + (F2 + ΔF2)X[2] + (F3 + ΔF3)X[3] + BU, (5.11)

where

F1 =

[
−1 1

−1 1.5

]
, F2 =

[
1 1 0 0

−1 −0.5 0 0

]
, F3 =

[
−1 1 0 −1 0 0 0 2

−1 −1 0 0.5 0 0 0 −2

]
, (5.12)

with B = (0 1)T , and

ΔF1 =

[
ΔF11 0

0 ΔF14

]
, ΔF2 =

[
ΔF21 0 0 Δb24

ΔF25 0 0 Δb28

]
, ΔF3 =

[
ΔF31 0 0 0 0 0 0 ΔF38

ΔF39 0 0 0 0 0 0 Δc46

]
.

(5.13)

First, according to Step 1, we are interested with the stabilization of the nominal part (i.e.,
global asymptotic stabilization of the origin equilibrium (X = 0)) of the system (5.11) using
an LMI stabilization method developed in [20]. The obtained solution as initial condition of
the next step is

μ10 = −0.0319,

μ20 = 0.0246,

μ30 = 0.1928,

P0 =

[
0.0246 0.0063

0.0063 0.0071

]
, (5.14)
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and the searched gain matrices which stabilizes the nominal closed-loop system:

K10 =
[
−9.8872 −5.5518

]
, K20 =

[
2.1050 0.8966 0 0

]
,

K30 =
[
−0.8541 −4.2706 −1.3702 −8.8084 0.9371 −1.8216 4.3152 1.3277

]
.

(5.15)

In the second step, solving the optimization problem [27] formulated by Theorem 5.1, we
obtain:

μ1 = 0.005

μ2 = 0.005

μ3 = 0.0707

P =

[
0.0054 0.005

0.005 0.0051

]
. (5.16)

The optimal control gain matrices are

K1 =
[
1.7811 −2.5004

]
, K2 =

[
−1.2187 0.0500 −0.7886 0.0227

]
,

K3 =
[
−1.2343 −6.9917 −4.1103 2.4763 12.0761 −4.5891 1.5424 0.3126

]
.

(5.17)

The stability of the uncertain system is guaranteed for all uncertainty parameters εkj such
that max(εkj) = ηc ≤ η�c = 2.3542.

The system controlled with the obtained polynomial control law was simulated for
a perturbation of 100% on the state variable x1 and parametric perturbation corresponding
to values of εkj = 2.3542. Figure 1 presents the state trajectories of the both nominal and
perturbed polynomial system with the proposed nonlinear polynomial controllers. The
simulation depicted in Figure 2 presents the evolution of the performed feedback stabilizing
polynomial controller.

5.3.2. Example 2: Single-Link Manipulator Application

To study the validity of the proposed approach in control of robot manipulator application,
we consider a single-link manipulator with flexible joints and negligible damping repre-
sented by Figure 3 [28].

We model the dynamics of this system ignoring damping terms as

(I + J)q̈ + Bq̇ +Mgl sin
(
q
)
= u (5.18)

which can be expressed as

Iq̈1 +Mgl sin
(
q1
)
+ k
(
q1 − q2

)
= 0,

Jq̈2 − k
(
q1 − q2

)
− u = 0.

(5.19)

The parameters used in these equations are defined as follows: I is the link inertia, J
represents the rotor inertia, q is the vector of link positions,Mgl nominal load,B rotor friction,
k denotes the joint stiffness and u represents the input torque.



Mathematical Problems in Engineering 17

−0.4

−0.2

0

0.2

0.4

x
2

0 2 4 6 8 10

t (s)

x2 = f(t)

x1 = f(t)
1

0.5

0

−0.5

x
1

0 2 4 6 8 10

t (s)

Nominal system
Perturbed system

Figure 1: Behavior of the state variables of both nominal and perturbed system.
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Figure 2: Simulation curve of the proposed feedback controller.

The considered system can be described by a fourth-order model of the form:

Ẋ = f(X) + Bu, (5.20)
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Figure 3: Model of single-link manipulator with flexible joint.

where X is the state vector defined by

X =
[
q1 q̇1 q2 q̇2

]T
=
[
x1 x2 x3 x4

]T
,

f(X) =

⎡
⎢⎢⎢⎢⎢⎣

q̇1

−a sin
(
q1
)
− b
(
q1 − q2

)

q̇2

c
(
q1 − q2

)

⎤
⎥⎥⎥⎥⎥⎦
,

(5.21)

and B = [0 0 0 d]T with

a = I−1Mgl, b = I−1k, c = J−1k, d = J−1. (5.22)

The nonlinear system (5.20) can be developed into polynomial form by a Taylor series
expansions, then we have

Ẋ = (F1 + ΔF1)X + (F2 + ΔF2)X[2] + (F3 + ΔF3)X[3] + BU, (5.23)

where

F1 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

−(a + b) 0 b 0

0 0 0 1

c 0 −c 0

⎤
⎥⎥⎥⎥⎦
, F2 = 04×16, (5.24)

F3(1, 1) = a/6; F3(i, j) = 0 for all i, j (i = 1, . . . , 4; j = 1, . . . , 64), and

ΔF1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

ΔF11 0 ΔF12 0

0 0 0 0

ΔF13 0 ΔF14 0

⎤
⎥⎥⎥⎥⎦
, ΔF2 = 04×16, (5.25)

ΔF3(1, 1) = ΔF31; ΔF3(i, j) = 0 for all i, j (i = 1, . . . , 4; j = 1, . . . , 64).
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Figure 4: Evolution of state variables without controller for both real model (−) and polynomial model
(••).

Table 1: Nominal values of the system parameters.

Link inertia, I 0.031 Kg.m2

Rotor inertia, J 0.004 Kg.m2

Rotor friction, B 0.007 N.m.sec/rad
Nominal load, Mgl 0.8 N.m
Joint stiffness, k 31.0 N.m/rad

For simulation, the single-link manipulator parameters are considered in Table 1 [29].
Thus, according to the values of the considered system parameters indicated in Table 1

and an initial condition is assumed to be

[
q1(0) q̇1(0) q2(0) q̇2(0)

]T =
[
0 0

π

3
0
]T
. (5.26)

The evolution of the state variables of the single-link manipulator without controller is shown
in Figure 4. It appears in the simulations that the polynomial approach is a more objective of
the real system, since, we can’t distinguish the real system behavior and the polynomial one.
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Figure 5: Closed-loop system response using the polynomial controller.
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In order to investigate the performance of the proposed synthesis method, applying
the optimization algorithm presented in the section above, we obtain the following optimal
solution:

P =

⎡
⎢⎢⎢⎢⎢⎣

0.0005 0.0172 0.0002 0.0007

0.0172 0.5958 0.0083 0.9066

0.0002 0.0083 0.0005 0.0189

0.0007 0.3066 0.0189 0.1582

⎤
⎥⎥⎥⎥⎥⎦
. (5.27)

The obtained state feedback control law

U = K1X +K2X
[2] +K3X

[3] (5.28)

is builded with the following optimal gains matrices:

K1 =
[
71.345 −0.3219 −69.4698 −2.9487

]
,

K2 =
[−0.0033 −0.0034 −0.0678 −0.00819 −0.0123 −0.4854 −0.0086 −0.0065

−0.0345 −0.0059 −0.0295 −0.0003 −0.0045 −0.0023 −0.089 −0.0196],

K3 =

[73.1389 −0.0039 −0.0079 −0.0057 −0.9574 −0.0049 −0.0052 −0.0084

−68.1638 −0.0052 −0.0027 −0.0026 −2.3459 −0.0023 −0.0025 −0.0035

−0.005278 71.4631 −0.0023 −0.0034 −0.0010 −0.1539 −0.0015 −0.0034

−0.0026 −69.9302 −0.0012 −0.0015 −0.0014 −2.2098 −0.0034 −0.0034

−0.0024 −0.0045 69.4388 −0.0036 −0.0035 −0.0201 −0.1123 −0.0045

−0.0088 −0.0049 −73.3322 −0.0069 −0.0062 −0.0063 −2.2398 −0.0057

−0.0057 −0.0015 −0.0045 65.5724 −0.0035 −0.0057 −0.0047 −0.5739

−0.0046 −0.0013 −0.0013 −64.5544 −0.0024 −0.0086 −0.0024 −2.3040].
(5.29)

The closed-loop system responses using the obtained polynomial controller are depicted in
Figure 5.

As it can be seen, the nonlinear state feedback controller (5.28) stabilizes the
considered system. Moreover, the proposed robust controller, shown in Figure 6, can rapidly
damp the oscillations of the manipulator and greatly enhance transient stability for all
uncertainty parameters εkj = ΔFkj ≤ 1.0581.

6. Conclusion

In this paper, we have investigated the problems of robust stability analysis and robust
stabilization for a class of uncertain nonlinear systems with structured uncertainties. New
developments on the analysis and control of nonlinear polynomial systems have been
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presented. The combination of a polynomial system stability criterion with an improved
robustness measure of uncertain linear systems has allowed the formulation of a new
criterion for robustness bound estimation of the studied uncertain polynomial systems. When
compared with the previous results, this developed criterion led to a wider robustness
measure. It has been shown from the simulation results that the proposed robust control
scheme is efficient and permits the rapid stabilization of the nominal system and the
maximization of the uncertainties bound. A future work will be to establish the robust
stability and stabilization of uncertain polynomial systems with both structured and
unstructured uncertainties. Moreover, the problem of feedback H∞ control for the studied
class of nonlinear uncertain systems presents another interesting topic for future research.

Appendix

Proof Elements of Theorem 4.3 and Relative Notations

For the complete proof of Theorem 4.3, we can refer to [15, 16, 19]. We limit here to remind
the fundamental principles, we consider the following quadratic lyapunov function V(X) =
XTPX, then we can show that:

dV(X)
dt

= −X̃TQX̃, (A.1)

where X̃ is the ϑ-vector defined by

X̃ =
[
X̃T X̃[2]T · · · X̃[s]T

]T
, (A.2)

and Q is the symmetric matrix defined in (4.7), where

P = diag(P, P ⊗ In, . . . , P ⊗ Ins−1),

X = τX̃,
(A.3)

and τ is defined by:

τ = diag(T1, T2, . . . , Ts), (A.4)

withM(f) is the matrix of the system parameters, expressed by (2.8).
The matrix Π(μi,i=1,...,β) is defined as

Π
(
μi,i=1,...,β

)
=

β∑
i=1

μimat(η,η)(Ci), (A.5)

where the columns Ci,i=1,...,β and the coefficients μi and β are detailed in [15].
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