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The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems.
The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability
analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we
further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy
systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions.
Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that
the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by
solving a set of linear matrix inequalities (LMIs) that are numerically feasible. Finally, simulations
are performed in order to verify the effectiveness of the proposed stability conditions in
this paper.

1. Introduction

In the recent years, a number of research activities have been conducted concerning stability
analysis and the stabilization problems of large-scale systems, including electric power
systems, nuclear reactors, aerospace systems, large electrical networks, economic systems,
process control systems, chemical and petroleum industrial systems, different societal
systems, ecological systems, and transportation systems. The interconnected models can
be used to represent practical large-scale systems. Moreover, the field of interconnected
systems is so broad as to cover the fundamental theory of modeling, optimization and
control aspects, and such applications. Therefore, the methodologies used when dealing
with interconnected models provide a viable technique whereby the manipulation of
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system structure can be used to overcome the increasing size and complexity of the
relevant mathematical models. Additionally, the fields of analysis, design, and control
theory relating to interconnected systems have attained a considerable level of maturity
and sophistication. They are currently receiving increasing attention from theorists and
practitioners because they are methodologically interesting and have important real-life
applications. Such systems comprise numerous interdependent subsystems which serve
particular functions, share resources, and are governed by a set of interrelated goals and
constraints. Recently, various approaches have been employed to elucidate the stability and
stabilization of interconnected systems, as proposed in the literature and the references
therein [1–3].

Since Zadeh [4] and Takagi and Sugeno [5] proposed a new concept for a fuzzy
inference system which combines the flexibility of fuzzy logic theory and rigorous
mathematical analysis tools into a unified framework, the application of fuzzy models has
attracted great interest from the engineering and management community (e.g., see [6–
20] and the references therein). This kind of fuzzy model suggests an efficient method to
represent complex nonlinear systems via fuzzy reasoning. This has enabled the stability
issues of fuzzy systems to be extensively applied in system analysis (see [21–26] and the
references therein). Similarly, the stability criteria and stabilization problems have been
discussed for fuzzy large-scale systems in Wang and Luoh [27], and Hsiao and Hwang [28],
where the fuzzy large-scale system consists of J subsystems.

In the aforementioned results for T-S fuzzy models, most of the stability criteria
and controller design have usually been derived based on the usage of a single Lyapunov
function. However, the main drawback associated with this method is that the single
Lyapunov function must work for all linear models of the fuzzy control systems, which
in general leads to a conservative controller design [29]. Recently, in order to relax this
conservatism, the fuzzy Lyapunov function approach has been proposed in [24, 29–33].
To the best of my knowledge, the stability analyses of interconnected systems based on
fuzzy Lyapunov functions have not been discussed yet. Therefore, some novel sufficient
conditions are derived from fuzzy Lyapunov functions for stability guarantees by fuzzy for
interconnected fuzzy systems in this work.

The organization of the paper is presented as follows. First, the T-S fuzzy modeling
is briefly reviewed and the interconnected scheme is used to construct a fuzzy dynamic
model. Then, the stability conditions for the fuzzy Lyapunov functions are proposed
which guarantee the stability of the interconnected fuzzy systems. In this section, the
stability problems can be reformulated into a problem for solving a linear matrix
inequality (LMI).

2. System Descriptions and Preliminaries

A fuzzy dynamic model was proposed in the pioneering work of Takagi and Sugeno [5]
where complex nonlinear systems could be represented using local linear input/output
relations. The main feature of this model is that each locally fuzzy implication (rule) is a
linear system and the overall system model is achieved through linear fuzzy blending. This
fuzzy dynamic model is described by fuzzy IF-THEN rules and are utilized in this study to
deal with the stability analysis issue of an interconnected fuzzy system S that is composed
of J subsystems Si (j = 1, . . . , J). The ith rule of the interconnected fuzzy model of the jth
subsystem is proposed as having the following form.
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Plant Rule i:

IF x1j(t) is Mi1j , . . . , xgj(t) is Migj ,

THEN ẋj(t) = Aijxj(t) +
J∑

n=1
n/= j

Âinjxn(t), i = 1, 2, . . . , rj ,
(2.1)

where rj is the IF-THEN rule number; Aij and Âinj are constant matrices with appropriate
dimensions; xj(t) is the state vector of the jth subsystem; xn(t) is the interconnection between
the nth and jth subsystems; Mipj(p = 1, 2, . . . , g) are the fuzzy sets; x1j(t) ∼ xg j(t) are the
premise variables. Through the use of “fuzzy blending,” the overall fuzzy model of the jth
fuzzy subsystem can be inferred as follows [13]:

ẋj(t) =

∑rj
i=1 wij(t)

[
Aijxj(t) +

∑J
n=1,n /= j Âinjxn(t)

]

∑rj
i=1 wij(t)

=
rj∑

i=1

hij(t)

⎡
⎢⎢⎣Aijxj(t) +

J∑

n=1
n/= j

Âinjxn(t)

⎤
⎥⎥⎦,

(2.2)

with

wij(t) ≡
g∏

p=1

Mipj

(
xpj(t)

)
, hij(t) ≡

wij(t)
∑rj

i=1 wij(t)
, (2.3)

in which Mipj(xpj(t)) is the grade of membership of xpj(t) in Mipj . In this study, it is assumed
that wij(t) ≥ 0, i = 1, 2, . . . , rj ; j = 1, 2, . . . , J . Therefore, the normalized membership function
hij(t) satisfies

hij(t) ≥ 0,
rj∑

i=1

hij(t) = 1, ∀t. (2.4)

In the following, we state the lemmas which are useful to prove the stability of the
interconnected fuzzy system S which consists of J closed-loop subsystems described in (2.1).

Lemma 2.1 (see [13]). For any A, B ∈ Rnand for any symmetric positive definite matrix G ∈ Rn×n,
one has

2ATB ≤ ATGA + BTG−1B. (2.5)

Lemma 2.2 (see [34]). (Schur complements) One has

The LMI

[
Q(x) S(x)

S(x) R(x)

]
> 0, (2.6)
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where Q(x) = QT (x), R(x) = RT (x), and S(x) depends on x that is equivalent to

R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0. (2.7)

In other words, the set of nonlinear inequalities (2.7) can be represented as the LMI (2.6).

3. Stability Analysis by a Fuzzy Lyapunov Function

Here we define a fuzzy Lyapunov function and consider the stability conditions for the jth
fuzzy subsystem (2.2).

Definition 3.1. Equation (3.1) is said to be a fuzzy Lyapunov function for the T-S fuzzy system
(2.2) if the time derivative of V (t) is always negative

V (t) =
J∑

j=1

vj(t) =
J∑

j=1

rj∑

l=1

hlj(t)xT
j (t)Pljxj(t), (3.1)

where Plj is a positive definite matrix.

Because the fuzzy Lyapunov function shares the same membership functions with the
T-S fuzzy model of a system, the time derivative of the fuzzy Lyapunov function contains
the time derivative of the premise membership functions. Therefore, how to deal with the
time derivative of the time derivative of the premise membership functions is an important
consideration.

By taking the time derivative of (3.1), the following stability condition of open-loop
system (2.7) will be obtained.

Theorem 3.2. The fuzzy system (2.7) is stable in the large if there exist common positive definite
matrices P1, P2, . . . , Pr such that the following inequality is satisfied:

rj∑

ρ=1

ḣρj(t)Pρj +
rj∑

l=1

rj∑

i=1

hlj(t)hij(t)

[
AT

ijPli + PliAij + α(J − 1)I +
J∑

n=1

α−1PjÂinjÂ
T
injPj

]
< 0.

(3.2)

Proof. Consider the Lyapunov function candidate for the fuzzy system (2.2)

V (t) =
J∑

j=1

vj(t) =
J∑

j=1

rj∑

l=1

hlj(t)xT
j (t)Pljxj(t). (A1)
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The time derivative of V is

V̇ (t) =
J∑

j=1

rj∑

ρ=1

ḣρj(t)xT
j (t)Pρjxj(t) +

J∑

j=1

rj∑

l=1

hlj(t)
{
ẋT
j (t)Pljxj(t) + xT

j (t)Plj ẋj(t)
}

(A2)

=
J∑

j=1

rj∑

ρ=1

ḣρj(t)xT
j (t)Pρjxj(t)

+
J∑

j=1

rj∑

l=1

hlj(t)

⎧
⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

rj∑

i=1

hij(t)

⎛
⎜⎜⎝Aijxj(t) +

J∑

n=1
n/= j

Âinjxn(t)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

T

Plixj(t)

+xT
j (t)Plj

⎡
⎢⎢⎣

rj∑

i=1

hij(t)

⎛
⎜⎜⎝Aijxj(t) +

J∑

n=1
n/= j

Âinjxn(t)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

(A3)

=
J∑

j=1

rj∑

ρ=1

ḣρj(t)xT
j (t)Pρjxj(t) +

J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xT
j (t)
[
AT

ijPli + PliAij

]
xj(t)

+
J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1
n/= j

hlj(t)hij(t)
[
xT
n(t)Â

T
injPjxj(t) + xT

j (t)PjÂinjxn(t)
]
.

(A4)

Based on Lemma 2.1, we have

J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1
n/= j

hlj(t)hij(t)
{
xT
n(t)Â

T
injPjxj(t) + xT

j (t)PjÂinjxn(t)
}

≤
J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1
n/= j

hlj(t)hij(t)
{
α
[
xT
n(t)xn(t)

]
+ α−1

[
xT
j (t)PjÂinjÂ

T
injPjxj(t)

]}
(A5)

=
J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1

hlj(t)hij(t)
{
α

[(
1 − 1

J

)
xT
j (t)xj(t)

]

+α−1
[
xT
j (t)PjÂinjÂ

T
injPjxj(t) − 1

J
xT
j (t)PjÂijj Â

T
ijjPjxj(t)

]}
.

(A6)
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(Based on the concept of interconnection, the matrix Âijj is equal to zero.) From (A4) and
(A6), we obtain

V̇ (t) ≤
J∑

j=1

rj∑

ρ=1

ḣρj(t)xT
j (t)Pρjxj(t) +

J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xT
j (t)

×
[
AT

ijPli + PliAij + α(J − 1)I +
J∑

n=1

α−1PjÂinjÂ
T
injPj

]
xj(t).

(A7)

Therefore, V̇ (t) < 0 if (3.2) holds.However, condition (3.2) cannot be easily solved
numerically because we need to consider the term of the time derivative ḣρj(t). Eq. (3.2)
is thus transformed into numerically feasible conditions described in Theorem 3.3 and upper
bounds of the time derivative are used in place of the hρ(t).

Theorem 3.3. The fuzzy system (2.7) is stable in the large if there exist common positive definite
matrices P1j , P2j , . . . , Prj such that inequality |ḣρj(t)| ≤ φρj is satisfied and

rj∑

ρ=1

φρjPρj +AT
ijPli + PliAij + α(J − 1)I +

J∑

n=1

α−1PjÂinjÂ
T
injPj . (3.3)

Proof.

V̇ (t) ≤
J∑

j=1

rj∑

ρ=1

ḣρj(t)xT
j (t)Pρjxj(t)

+
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xT
j (t)

[
AT

ijPli + PliAij + α(J − 1)I +
J∑

n=1

α−1PjÂinjÂ
T
injPj

]
xj(t)

≤
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)

⎧
⎨

⎩

rj∑

ρ=1

xT
j (t)
[
φρjPρj

]
xj(t)

⎫
⎬

⎭

+
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xT
j (t)

[
AT

ijPli + PliAij + α(J − 1)I +
J∑

n=1

α−1PjÂinjÂ
T
injPj

]
xj(t)

=
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xT
j (t)

⎡

⎣
rj∑

ρ=1

φρjPρj +AT
ijPli + PliAij + α(J − 1)I

+
J∑

n=1

α−1PjÂinjÂ
T
injPj

]
xj(t),

(A8)

V̇ (t) < 0 if (3.3) holds.
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Figure 1: The state response of subsystem 1.

Remark 3.4. A special case of sufficient conditions without φρj is proposed to guarantee
the asymptotically stability of fuzzy large-scale system S. If there exist symmetric positive
definite matrices Pj which satisfy that each isolated subsystem is asymptotically stable as
described in (3.4), the trajectories of the interconnected system are stable:

Aij
TPj + PjAij +

J∑

n=1

α−1PjÂinjÂ
T
injPj + α(J − 1)I < 0 (3.4)

for i = 1, 2, . . . , rj ; j = 1, 2, . . . , J.

Remark 3.5. Equation (3.4) can be recast as an LMI problem based on Lemma 2.2. Therefore,
new variables Wj = P−1

j and α = α−1 are introduced and (3.4) is rewritten as

⎡
⎢⎣
WjA

T
ij +AijWj +

∑J

n=1
αÂinjÂ

T
inj Wj

Wj −α
(

1
J − 1

)
I

⎤
⎥⎦ < 0 for i = 1, 2, . . . , rj . (3.5)

4. A Numerical Example

Consider a interconnected fuzzy system S which consists of two fuzzy subsystems described
by (2.2) with one rule.

Subsystem 1:

ẋ1 (t) = h11 (t)�A11 x1 (t) + Â121 x2 (t)	,

Subsystem 2:

ẋ2(t) = h12(t)�A12x2(t) + Â112x1(t)	,
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Figure 2: The state response of subsystem 2.

in which

xT
1 (t) = [x11(t)x21(t)], xT

2 (t) = [x12(t)x22(t)], A11 =

[−16.252 −6.222

−6.084 −24.674

]
,

Â121 =

[
0.3 0.2

0.1 0.4

]
, A12 =

[−21.800 −7.710

−7.150 −23.210

]
, Â112 =

[
0.3 0.3

0.3 0.3

]
.

(4.1)

At first, based on (3.5), we can get the common solutions Wj and α via the Matlab LMI
optimization toolbox

W1 =

[
0.811 −0.2411

−0.2411 0.342

]
, W2 =

[
2.9482 1.1952

1.1952 3.1873

]
, α = 1. (4.2)

Then, the following positive definite matrices Pj(= W−1
j ) and α can be obtained such

that (3.4) is satisfied

P1 =

[
1.5601 1.1002

1.1002 3.7001

]
, P2 =

[
0.4002 −0.1511

−0.1512 0.3703

]
, α = 1. (4.3)

Therefore, based on the theorem, the interconnected fuzzy system S described in (4.1)
is guaranteed to be asymptotically stable. From the simulation of Figures 1 and 2 and given
the initial conditions, x11(0) = 2, x21(0) = −2, x12(0) = 4, x22(0) = −4, we observe that
the interconnected fuzzy system S is asymptotically stable, because the trajectories of two
subsystems starting from non-zero initial states both approach close to the origin.
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5. Conclusions

For the class of continuous interconnected fuzzy system S, LMI-based stability conditions
have been derived based on the new fuzzy Lyapunov function. Sufficient stability conditions
were derived based on the asymptotically stability of the existence of a common positive
definite matrix Pi which is able to satisfy the Lyapunov equation or the LMI for each
subsystem Si. Finally, a numerical example was given to illustrate the effectiveness and ease
of implementation of this approach.
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