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The nonlinear dynamic response of functionally graded rectangular plates under combined
transverse and in-plane excitations is investigated under the conditions of 1 : 1, 1 : 2 and 1 : 3
internal resonance. The material properties are assumed to be temperature-dependent and vary
along the thickness direction. The thermal effect due to one-dimensional temperature gradient
is included in the analysis. The governing equations of motion for FGM rectangular plates are
derived by using Reddy’s third-order plate theory and Hamilton’s principle. Galerkin’s approach
is utilized to reduce the governing differential equations to a two-degree-of-freedom nonlinear
system including quadratic and cubic nonlinear terms, which are then solved numerically by using
4th-order Runge-Kutta algorithm. The effects of in-plane excitations on the internal resonance
relationship and nonlinear dynamic response of FGM plates are studied.

1. Introduction

Functionally graded materials (FGMs) are new engineering materials. Due to their
advantages of being able to withstand severe high-temperature gradient while maintaining
structural integrity, FGMs are considered to be advanced composite materials in high
temperature and vibration environments [1, 2].

With the increasing use of FGMs, it is important to understand the nonlinear vibration
behavior of FGM structures. Quite a few studies in this area have been conducted. Praveen
and Reddy [3] analyzed the nonlinear static and dynamic response of functionally graded
ceramic-metal plates in a steady temperature field based on the first-order shear deformation
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plate theory.Sundararajan et al. [4] carried out finite element analysis of nonlinear-free
vibration of both rectangular and skew FGM plates. Yang et al. [5] investigated the large
amplitude vibration of pre-stressed FGM plates composed of a functionally graded layer and
two surface-mounted piezoelectric actuator layers.

A semi analytical method and Galerkin technique were employed to predict the
nonlinear vibration behavior of FGM-laminated plates. The parametric resonance of
functionally graded rectangular plates under harmonic in-plane loading was investigated by
Ng et al. [6]. Using a higher-order shear and normal deformable plate theory (HOSNDPT)
and a meshless local Petrov-Galerkin (MLPG) method, Qian et al. [7] analyzed the static
deformation, and free and forced vibrations of a thick rectangular functionally graded
plate.Vel and Batra [8] gave a three-dimensional exact solution for the linear free and
forced vibration of simply supported FGM rectangular plates. Woo and Meguid [9] studied
the nonlinear deflection of FGM plates and shells under transverse mechanical loads and
a temperature field. Hao et al. [10] reported a nonlinear dynamic analysis of a simply
supported FGM rectangular plate subjected to transversal and in-plane excitations. The
resonant case considered in their work is 1 : 1 internal resonance and principal parametric
resonance. The asymptotic perturbation method is used to obtain four-dimensional nonlinear
averaged equation. It was found that periodic, and quasiperiodic solutions and chaotic
motions occur under some conditions. It is known that for a two-degree-of-freedom nonlinear
vibration system, different internal resonance between two modes, such as 1 : 1, 1 : 2, and
1 : 3 internal resonances, can exist in some cases. To the best of the authors’ knowledge, there
is still no literature concerning nonlinear dynamic behavior of FGM plates with different
cases of internal resonances.

The present work aims to investigate the nonlinear dynamic response of a simply
supported FGM rectangular plate subjected to transversal and in-plane excitations in a
thermal environment. The cases considered in this paper include 1 : 1, 1 : 2, and 1 : 3 internal
resonances and principal parametric resonance-1/2 subharmonic resonance. It is assumed
that the material properties of the plate are graded in the thickness direction according to a
power-law distribution. The analysis is based on the nonlinear dynamic governing equations
derived in our previous work [10]. The influences of the in-plane excitations on the internal
resonance relationship and nonlinear dynamic response of the FGM plate are studied in
numerical examples.

2. Theoretical Formulation

2.1. Material Properties

It is assumed that the bottom surface of the plate is metal rich, whereas the top surface is
ceramic rich. The material properties P , such as Young’s modulus E, the coefficient of thermal
expansion α, thermal conductivity κ, and mass density ρ, can be expressed as a function of
temperature as [11]

Pi = P0

(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3
)
, (2.1)

where P0, P−1, P1, P2, and P3 are temperature coefficients.
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The effective material properties P of the FGM plate can be expressed as

P = PtVc + PbVm, (2.2)

where subscripts “t” and “b” represent the top and bottom surfaces of the FGMs plate,
respectively, and Vc and Vm are the volume fraction of ceramic and metal which add to unity

Vc + Vm = 1. (2.3)

The metal volume fraction Vm is defined as

Vm(z) =
(

2z + h
2h

)N

, (2.4)

where exponent N is a real number that characterizes the material profile along plate
thickness.

From (2.2)–(2.4), the effective values of E, α, ρ, and κ at an arbitrary point of the plate
can be expressed as

E = (Eb − Et) Vm + Et,

α = (αb − αt) Vm + αt,

ρ =
(
ρb − ρt

)
Vm + ρt,

κ = (κb − κt) Vm + κt.

(2.5)

It is also assumed that the plate is initially stress free at T0 and is subjected to a uniform
temperature variation ΔT = T − T0 that is constant in the xy plane of the plate while varies in
the thickness direction only. In this case, the temperature distribution along plate thickness
can be obtained from a steady-state heat transfer equation:

− d
dz

[
κ(z)

dT

dz

]
= 0. (2.6)

This equation is solved by imposing boundary condition of T = Tb at z = h/2 and
T = Tt at z = −h/2. As a special case, the solution of (2.6) for isotropic homogeneous material,
may be expressed as

T(z) =
Tt + Tb

2
+
Tb − Tt
h

z. (2.7)

2.2. Equations of Motion

A simply supported four-edges FGMs rectangular plate of length a, width b and thickness
h, which is subjected to the in-plane and transversal excitations is considered, as shown in
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F(x, y) cosΩ1t −(P0 − P1 cosΩ2t)

zy
b

xao

Figure 1: The model of a FGMs rectangular plate and the coordinate system.

Figure 1. The in-plane excitation of the FGMs plate is distributed along the y direction at
x = 0 and x = a and is of the form p0 − p1 cosΩ2t. The transversal excitation subject to the
FGMs plate is represented by F(x, y) cosΩ1t. Here the Ω1 and Ω2 are the frequencies of the
transversal excitation and the in-plane excitation, respectively.

As usual, the coordinate Oxyz has its origin at the corner of the plate on the middle
plane. Assume that (u, v,w) and (u0, v0, w0) represent the displacements of an arbitrary
point and a point in the middle surface of the FGMs rectangular plate in the x, y and z
directions, respectively. It is also assumed that φx and φy, respectively, represent the mid-
plane rotations of two transverse normals about the x and y axes. With Reddy’s third-order
shear deformation plate theory [12], the displacements of the FGM plate can be expressed as
follows:

u
(
x, y, t

)
= u0

(
x, y, t

)
+ zφx

(
x, y, t

)
− z3 4

3h2

(
φx +

∂w0

∂x

)
,

v
(
x, y, t

)
= v0

(
x, y, t

)
+ zφy

(
x, y, t

)
− z3 4

3h2

(
φy +

∂w0

∂y

)
,

w
(
x, y, t

)
= w0

(
x, y, t

)

(2.8)

Based on the nonlinear strains-displacement relation and the above displacement field,
we obtain

εxx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

, εyy =
∂v

∂y
+

1
2

(
∂w

∂y

)2

,

γxy =
1
2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂x

∂w

∂y

)
,

γyz =
1
2

(
∂v

∂z
+
∂w

∂y

)
, γzx =

1
2

(
∂u

∂z
+
∂w

∂x

)
,

(2.9)

⎧
⎪⎪⎨
⎪⎪⎩

εxx

εyy

γxy

⎫
⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

+ z

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

+ z3

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
,

{
γyz

γzx

}
=

⎧
⎨
⎩
γ
(0)
yz

γ
(0)
zx

⎫
⎬
⎭ + z2

⎧
⎨
⎩
γ
(2)
yz

γ
(2)
zx

⎫
⎬
⎭,

(2.10)
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where

⎧
⎨
⎩
γ
(0)
yz

γ
(0)
zx

⎫
⎬
⎭ =

⎧
⎪⎪⎨
⎪⎪⎩

φy +
∂w0

∂y

φx +
∂w0

∂x

⎫
⎪⎪⎬
⎪⎪⎭
,

⎧
⎨
⎩
γ
(2)
yz

γ
(2)
zx

⎫
⎬
⎭ = −c2

⎧
⎪⎪⎨
⎪⎪⎩

φy +
∂w0

∂y

φx +
∂w0

∂x

⎫
⎪⎪⎬
⎪⎪⎭
,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

∂v0

∂y
+

1
2

(
∂w0

∂y

)2

∂u0

∂y
+
∂v0

∂x
+
∂w0

∂x

∂w0

∂y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= −c1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φx
∂x

∂φy

∂y

∂φx
∂y

+
∂φy

∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= −c1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φx
∂x

+
∂2w0

∂x2

∂φy

∂y
+
∂2w0

∂y2

∂φx
∂y

+
∂φy

∂x
+ 2

∂2w0

∂x∂y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

c2 = 3c1, c1 =
4
3
h2.

(2.11)

Taking into account the thermal effects, the linear stress-strain constitutive relationship
is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σyz

σzx

σxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γyz

γzx

γxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αxx

αyy

0

0

2αxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

ΔT

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.12)

where Q are elastic stiffness elements [12].
According to Reddy’s third-order shear deformation theory and Hamilton’s principle,

the nonlinear governing equations of motion for the FGM rectangular plate are given as [10]

Nxx, x +Nxy, y = I0ü0 + (I1 − c1I3)φ̈x − c1I3
∂ẅ0

∂x
,

Nyy, y +Nxy,x = I0v̈0 + (I1 − c1I3)φ̈y − c1I3
∂ẅ0

∂y
,



6 Mathematical Problems in Engineering

Nyy, y
∂w0

∂y
+Nyy

∂2w0

∂y2
+Nxy, x

∂w0

∂y
+Nxy, y

∂w0

∂x
+ 2Nxy

∂2w0

∂y∂x

+Nxx, x
∂w0

∂x
+Nxx

∂2w0

∂x2
+ c1

(
Pxx, xx + 2Pxy,xy + Pyy, yy

)

+ (Qx, x − c2Rx, x) +
(
Qy, y − c2Ry, y

)
+ F − γẇ0

= I0ẅ0 + c1I3

(
∂ü0

∂x
+
∂v̈0

∂x

)
+ c1(I4 − c1I6)

(
∂φ̈x
∂x

+
∂φ̈y

∂y

)
,

Mxx, x +Mxy, y − c1Pxx, x − c1Pxy, y − (Qx − c2Rx)

= (I1 − c1I3)ü0 +
(
I2 − 2c1I4 + c2

1I6

)
φ̈x − c1(I4 − c1I6)

∂ẅ0

∂x
,

Myy, y +Mxy, x − c1Pyy, y − c1Pxy, x −
(
Qy − c2Ry

)

= (I1 − c1I3)v̈0 +
(
I2 − 2c1I4 + c2

1I6

)
φ̈y − c1(I4 − c1I6)

∂ẅ0

∂y
,

(2.13)

where γ is the damping coefficient, a comma denotes the partial differentiation with respect
to a specified coordinate, and a super dot implies the partial differentiation with respect to
time.

All kinds of inertias in (2.13) are calculated by

Ii =
∫h/2

−h/2
zip(z)dz, (i = 0, 1, 2, 3, 4, 6). (2.14)

the stress resultants are represented as follows

⎧
⎪⎪⎨
⎪⎪⎩

N

M

P

⎫
⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

A B E

B D F

E F H

⎫
⎪⎪⎬
⎪⎪⎭

⎧
⎪⎪⎨
⎪⎪⎩

ε(0)

ε(1)

ε(3)

⎫
⎪⎪⎬
⎪⎪⎭

+

⎧
⎪⎪⎨
⎪⎪⎩

NT

MT

PT

⎫
⎪⎪⎬
⎪⎪⎭
,

{
Q

R

}
=

{
A D

D F

}{
γ (0)

γ (2)

}
,

(2.15)

where the membrane stress resultants, moments, higher-order moments, transverse shear
stress resultants, and their higher-order counterparts are represented as follows:

N =
[
Nxx,Nyy,Nxy

]T
, M =

[
Mxx,Myy,Mxy

]T
,

P =
[
Pxx, Pyy, Pxy

]T
, Q =

[
Qyy,Qxx

]T
, R =

[
Ryy, Rxx

]T
.

(2.16)
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The stiffness elements of the FGMs plate are denoted by

(
Aij , Bij , Dij , Eij , Fij ,Hij

)
=
∫h/2

−h/2
Qij

(
1, z, z2, z3, z4, z6

)
dz,

(
i, j = 1, 2, 6

)
,

(
Aij ,Dij , Fij

)
=
∫h/2

−h/2
Qij

(
1, z2, z4

)
dz,

(
i, j = 4, 5

)
.

(2.17)

And the thermal stress resultants in (2.16) can be represented as

{
NT ,MT ,PT

}
=

⎧
⎪⎪⎨
⎪⎪⎩

NT
xx MT

xx PTxx

NT
yy MT

yy PTyy

NT
xy MT

xy PTxy

⎫
⎪⎪⎬
⎪⎪⎭

=
∫h/2

−h/2

[
Axx,Ayy,Axy

]T(
1, z2, z3

)
ΔT dz, (2.18)

where

⎧
⎪⎪⎨
⎪⎪⎩

Axx

Ayy

Axy

⎫
⎪⎪⎬
⎪⎪⎭

= −

⎡
⎢⎢⎣
Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0

0 1

0 0

⎤
⎥⎥⎦
[
α

α

]
. (2.19)

The nonlinear governing equations of motion for the FGM rectangular plate can be expressed
in ters of displacements (u0, v0, w0, φx, φy) by substituting for the force and moments
resultants. The equations of motion are very complicate nonlinear partial differential
equations that can be seen in the conference [10].

The boundary conditions for the simply supported FGM plate requires that
at x = 0 and x = a,

w = φy =Mxx = Pxx =Nxy = 0, (2.20)

at y = 0 and y = b,

w = φx =Myy = Pyy =Nxy = 0, Nyy

∣∣
y=0,b = 0,

∫b
0
Nxx|x=0,a dy = −

∫b
0

(
p0 − p1 cosΩ2t

)
dy.

(2.21)

The present study focuses on the nonlinear transverse oscillations of FGM plates in the first
two modes. It is then reasonable to construct deflection functions as a combination of the first
two vibration mode shapes as follows:

w
(
x, y, t

)
= w1(t) sin

πx

a
sin

3πy
b

+w2(t) sin
3πx
a

sin
πy

b
, (2.22)

where w1 and w2 are the amplitudes of two modes, respectively.
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The transverse excitation can be represented as

F
(
x, y, t

)
= F1(t) sin

πx

a
sin

3πy
b

+ F2(t) sin
3πx
a

sin
πy

b
, (2.23)

where F1 and F2 represent the amplitudes of the transverse forcing excitation corresponding
to the two nonlinear modes.

Based on research given in [13, 14], neglecting all inertia terms on u, v, φx, and φy
in (2.13), we can obtain the displacements u, v, φx, and φy with respect to w. Then by the
Galerkin procedure, the governing differential equations of transverse motion of the FGMs
rectangular plate are obtained

ẅ1 +ω2
1w1 + a1ẇ1 + a2w1 cosΩ2t + a3w

2
1 + a4w

2
2 + a5w1w

2
2

+ a6w
3
1 + a7w1w2 = f1 cosΩ1t,

ẅ2 +ω2
2w2 + b1ẇ2 + b2w2 cosΩ2t + b3w1w2 + b4w

2
1 + b5w

2
2

+ b6w2w
2
1 + b7w

3
2 = f2 cosΩ1t,

(2.24)

where w1 and w2 are the vibration amplitudes of the first two modes, respectively. f1 and
f2 are the amplitudes of the transverse excitation force corresponding to the two nonlinear
modes. The lengthy expressions of constants a1−a7, b1−b7 and the transverse excitation force
f1 and f2 are not given here for brevity.

The present study focuses on the transverse nonlinear oscillations of a simply
supported FGM rectangular plate in the first two modes.

The first two linear frequencies of this nonlinear dynamic system can be rewritten as

ω2
1 = −

m007 + p0m008

m001
,

ω2
2 = −n007 + P0n008

n002
,

(2.25)

where p0 is the static component in the in-plane excitation. The other coefficients in (2.13) are
functions of geometric and physical parameters, in-plane excitations, and temperature field.
That means that under different conditions, the system can have different internal resonance
and exhibit different dynamic response.

It is seen that the in-plane stationary excitation p0 can change the type of internal
resonance.

When ω1 is close to ω2, the one-to-one internal resonance occurs and p0 is as follows:

p01 =
m007n002 −m001n007

m001n008 −m008n002
. (2.26)

When ω2 ≈ 2ω1 or ω2 ≈ 3ω1, the one-to-two or one-to-three internal resonance occurs.
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Figure 2: Effect of in-plane excitation on the dynamic response of the FGM plate with 1 : 1 internal
resonance.

The in-plane forces in these cases are given by (2.27)

p02 =
m007n002 − 4m001n007

4m001n008 −m008n002
,

p03 =
m007n002 − 9m001n007

9m001n008 −m008n002
.

(2.27)

3. Numerical Results

The influence of in-plane stationary excitation on internal resonance is studied. The fourth-
order Runge-Kutta algorithm is employed to numerically solve (2.11) and (2.12) to obtain
the nonlinear dynamic response of the FGM rectangular plate subjected to thermal and
mechanical loads with various internal resonance and primary parametric resonance.

Aluminum oxide and Ti-6Al-4V are chosen to be the constituent materials of the
plate (a = b = 1 m, h = a/20). The volume fraction exponent is n = 0.2. The transverse load
amplitude is −106 N/m2. In addition, the plate is subjected to a temperature field where the
aluminum oxide rich top surface is held at 900 K and the Ti-6Al-4V rich bottom surface is
held at 300 K. Their temperature-dependent material properties evaluated at T0 = 300 K are
as follows.

Ti-6Al-4V:

E = 105.7 GPa, ν = 0.2981, ρ = 4429
kg
m3

. (3.1)

Aluminum oxide:

E = 320.24 GPa, ν = 0.2600, ρ = 3750
kg
m3

. (3.2)

Figures 2–4 depict, respectively, nonlinear dynamic response of FGM plates. The plots
of phase portrait for the cases of 1 : 1, 1 : 2 and 1 : 3 internal resonance with different in-plane
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Figure 3: Effect of in-plane excitation on the dynamic response of the FGM plate with 1 : 2 internal
resonance.
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Figure 4: Effect of in-plane excitation on the dynamic response of the FGM plate with 1 : 3 internal
resonance.

stationary loading are shown in Figures 2(a), 3(a), and 4(a) and the central deflection versus
time curve is displayed in Figures 2(b), 3(b), and 4(b). The combinational resonance of the
additive type is

ω1 =
Ω1

2
, Ω2 = Ω1. (3.3)

It is observed that the central deflections are reduced by increasing the ratio of the
two frequencies. In the case of 1 : 2 internal resonance the amplitude of the central deflection
is larger than the one at other two frequency ratios. The case of internal resonance can be
controlled by changing the in-plane excitation force, indicating that in the different case of
internal resonance there is a different fundamental frequency.
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Obviously, Figure 2 illustrates that the periodic response of the FGM rectangular plate
occurs at 1 : 1 internal resonance when the p0 is as 7.33 × 109 N/m. Figures 3 and 4 show that
the beat vibration and quasiperiod dynamic response take place at 1 : 2 internal resonance
when p0 is as 6.24 × 1010 N/m and 1 : 3 internal resonance when p0 is as 1.11 × 1011 N/m,
respectively.

4. Conclusions

The nonlinear dynamics response of FGM rectangular plates under combined transverse and
in-plane excitations is investigated in the cases of 1 : 1, 1 : 2 and 1 : 3 internal resonance. The
material properties are assumed to be temperature-dependent. Based on Reddy’s third-order
shear deformation plate theory, the governing equations of motion for the FGMs rectangular
plate are derived using Hamilton’s principle. Galerkin’s approach is used to reduce the
governing equations of motion to a two-degree-of-freedom nonlinear system including the
quadratic and cubic nonlinear terms. 1 : 1, 1 : 2 and 1 : 3 internal resonance and principal
parametric resonance-1/2 subharmonic resonance are considered and solutions are obtained
by using fourth-order Runge-Kutta method.

Numerical results show that plate geometry parameter, in-plane excitation and
temperature field play important role in the internal resonance relationship and the nonlinear
dynamic behavior of the FGM plate. In the case of 1 : 2 internal resonance and principal
parametric resonance-1/2 subharmonic resonance, the vibration amplitude at the plate center
is much greater than the one at other two cases of internal resonance. So in the actual
condition, it is necessary to analyze what kinds of internal resonance may occur and how
to control them.
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