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Having the property to modify only the geometry of a polygonal structure, preserving its physical
magnitudes, the Conformal Mapping is an exceptional tool to solve electromagnetism problems
with known boundary conditions. This work aims to introduce a new developed mathematical
operator, based on polynomial extrapolation. This operator has the capacity to accelerate an
optimization method applied in conformal mappings, to determinate the equipotential lines, the
field lines, the capacitance, and the permeance of some polygonal geometry electrical devices with
an inner dielectric of permittivity ε. The results obtained in this work are compared with other
simulations performed by the software of finite elements method, Flux 2D.

1. Introduction

The conformal mapping simplifies some solving processes of problems, mapping complex
polygonal geometries and transforming them into simple geometries, easily to be studied.
This transformations became possible, due to the conformal mapping property to modify
only the polygon geometry, preserving the physical magnitudes in each point of it [1].
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In this work, the selected problems have only continuous second-order derivatives, u
and v with respect to x and y in a region of the complex plane �.

Under these conditions, the real and the imaginary parts of an analytical function
satisfies the Laplace equations, that is, functions such as u(x, y) and v(x, y). These are known
as harmonic functions [2].

All the electrical devices, work based on the action of electrical fields produced by
electrical charges, and magnetic fields produced by electrical currents. To understand the
working principle of these electrical devices, its fields lines must be evaluated inside and
around then, allowing a spatial visualization of the phenomena [3].

In another words, field mapping must be produced, describing the behavior of the
electric and magnetic phenomena. These maps typically represents flux and fields lines,
equipotential surfaces and densities distributions, having information about field intensity,
potential difference, energy storage, charges, current densities, and so forth. Getting the field
mapping is possible by solving the Laplace equation. However, these differential equations
are rather complex solution, and in most practical cases, only have a numerical solution.

Some works have been produced, using optimized processes applied in conformal
mappings, intending to simplify certain electromagnetic problems [4]. This paper aims
to show that some difficult electromagnetic problems can be easily solved, using simple
computational and mathematical tools.

For a better comprehension of the process, the analytical calculation of the
direct Schwarz-Christoffel Transformation is defined in Section 2. Section 3 presented the
calculation of the inverse Schwarz-Christoffel Transformation, within the employment of an
elliptic integral of first kind, whose inverse is known as the Jacobi function. In Section 4 the
Genetic Algorithm employed in this work is described and a new mathematical operator is
developed, introducing a newmethod to be used in optimization techniques. In Section 5 the
proposed methodology to solve electromagnetic problems is described and in Section 6 the
results are exposed.

2. Direct Schwarz-Christoffel Transformation

The Schwarz-Christoffel Transformation is a conformal mapping of the complex plane � in
� that maps the real axis onto the boundary of a polygon and the upper half plane of the
complex plane into the interior of this polygon [1].

Consider a polygon in �, ofN sides, with its vertices inw1, w2, . . . , wN , ordered in the
counterclockwise, with corresponding internal angles denoted by β1, β2, . . . , βN and external
angles denoted by π · αn, n = 1, 2, . . . ,N. The Schwarz-Christoffel Transformation in the
integral form is defined by [2, 5]

w = f(z) = A + C
∫ N∏

n=1

1
(z − xn)αn

dz, (2.1)

where A and C are complex constants. The points x1, x2, . . . , xN over the real axis, called
prevertices, are mapped into the verticesw1, w2, . . . , wN. It is convenient to assume that z0 =
f−1(w0) = ∞, because if infinity is not a prevertex, its image will be a new vertex with the
corresponding internal angle equal to π [6].

The complex constants A and C and the prevertices x1, x2, . . . , xN , are referred as
parameters of the Schwarz-Christoffel Transformation.
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Figure 1 illustrates an example of the Schwarz-Christoffel Transformation for an eight-
side polygon. The segments xixi+1, i = 1, 2, . . . , 7, on the real axis of the complex plane, are
mapped, respectively, into the sides wiwi+1 of the polygon. The semi-interval (−∞, x1] is
mapped into the segment w0w1, and the semi-interval [x8,+∞) is mapped into the segment
w8w0.

The Schwarz-Christoffel Transformation is a conformal mapping of the half-plane y ≥
0, except in critical points xn. Notice that f is not continuous at points xn. Once, when zmove
on the real axis, from left to right of xn, the argument of the number z − xn changes from π to
zero, the other arguments of z − xi, i /=n, do not change, while the argument of f(z) − f(xn)
changes from π · αn−1 to π · αn [7, 8], see Figure 1.

Given a polygon withN sides, as Figure 1, where the verticesw1, w2, . . . , wN , and the
parameters αn that define the external angles are known. Therefore, utilizing (2.1)withA = 0
and C = 1, the prevertices x1, x2, . . . , xN can be determined by the following integrals (2.2)

w1 =
∫x1

−∞

N∏
n=1

(z − xn)−αndz,

w2 = w1 +
∫x2

x1

N∏
n=1

(z − xn)−αndz,

...

wN = wN−1 +
∫xN

N−1

N∏
n=1

(z − xn)−αndz.

(2.2)

Now, considering a polygon with N sides and vertices w1, w2, . . . , wN. One of the
goals of this work is to find the corresponding prevertices, x1, x2, . . . , xN , utilizing a Genetic
Algorithm.

3. Calculation of the Inverse Schwarz-Christoffel Transformation

The calculation of the inverse Schwarz-Christoffel Transformation is mathematically known
as an inverse problem. The major part of the inverse problems are solved by nonlinear
optimization techniques.

There are several numerical methods to estimate the parameters of the Inverse
Schwarz-Christoffel Transformation. In [9], Trefethen uses a method based on equations
obtained from relations between the polygon vertices. He proposes a reverse way utilising
the Newton Method, having a practical difficulty to establish the first point or parameter
x1, which initiates the algorithm. After, differential equations are utilized, which must
be integrated between consecutive prevertices points x1, x2, . . . , xN , producing numerical
inconsistency in some cases.

Driscoll and Vavasis in [10], proposes a method based in Cross-Ratios and
Delaunay triangulation. Costamagna in [11], introduces an algorithm based on optimization
techniques. For few vertices polygons, this last method, estimates the parameters with a
satisfactory accuracy. Driscoll and Trefethen in [12] presents a method for the inversion of
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Figure 1:Mapping of a polygon through the direct Schwarz-Christoffel transformation.

the Schwarz-Christoffel Transformation, based on algebraic computation, which maps the
polygon onto a disc, an infinite strip or a rectangle.

This section describes the analytical solution of the inverse Schwarz-Christoffel Trans-
formation for the rectangle Figure 2. In this case, the Schwarz-Christoffel Transformation is
given by

w(z) =
∫z

z0

dz

(z − x1)1/2(z − x2)1/2(z − x3)1/2(z − x4)1/2
. (3.1)

Choosing the imaginary axis as the symmetry axis of the rectangle and as prevertices
of the vertices, the points x1 = −a, x2 = −1, x3 = 1, and x4 = a, with a > 1, the integral (3.1)
can be written in the following form [13]:

w(z) =
∫z

z0

dz√
(z2 − a2)(z2 − 1)

. (3.2)
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Figure 2: Schwarz-Christoffel transformation for the rectangle.

Making z0 = 0 and k = 1/a, the integral (3.2) is transformed in:

w(z) =
∫z

0

dz√
(1 − z2)(1 − k2z2) (3.3)

which is called an elliptic integral of first kind [14], and k is themodulus of the elliptic integral
with 0 < k < 1. The k′ =

√
1 − k2 value is called elliptic integral building block.

The inverse mapping of (3.3) is known as the Jacobi elliptic function, denoted by:

z(w) = sn(w, k), (3.4)

where sn denotes the elliptic sine of w for each fixed k.
Two important numbers in the elliptic integrals theory are known as the quarters of

real and imaginary periods [14], respectively, defined by,

K = K(k) =
∫1

0

dz√
(1 − z2)(1 − k2z2)

, (3.5)

iK′ = iK
(
k′
)
= i

∫1

0

dz√
(1 − z2)

(
1 − k′2z2

) , (3.6)

One can observe that K = w3 and K + iK′ = w4, where w3 and w4 are the rectangle
vertices of Figure 2.

In this case, the upper half-plane y ≥ 0 is transformed by (3.3) onto the rectangle with
vertices −K + iK′, −K, K, and K + iK′, which corresponding prevertices are −a, −1, 1, and a,
as shown in Figure 2. The values of k, k′, K, and K′ can be calculated in function of a, since
point a is fixed on the real axis. Therefore, the calculation of the prevertices for the rectangle
axis is made directly, simply fixing on a single point on the real axis.

Until today, there is no analytical formulation to calculate the parameters of the Inverse
Schwarz-Christoffel Transformation, for polygons with more than four vertices. In the case
of polygons with more than four vertices, numerical methods are used. In Section 1 some of
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these methods are cited. In this work, a Genetic Algorithm is utilized [15], to perform the
parameters calculation.

4. Genetic Algorithm

Amongst the four paragons of the Evolutionary Computing, the Genetic Algorithm owns
main position, once they constitute the most complete paradigm, gathering naturally all
the fundamental ideas of evolutionary computing [15]. Genetic algorithms are stochastic
methods with random search of optimal solutions. In the method, a population of individuals
is maintained (chromosomes) representing possible solutions, being this population
subjected to certain transformations (mutations and crossover), generating new and better
candidates, which tend to improve the performance of the algorithm towards an optimal
point or some optimized points [16].

In the genetic algorithm structure, the following operators are employed: Directed
Crossover operator [15], Tournament Selection operator [17], Elitism [18], Crossover
Operator with Multiple Descendants [19], Variable Mutation operator [17] and Guided
Evolution operator.

All the operators mentioned in this work were the subject of several studies already
published. However, the Guided Evolution operator was developed to be applied with the
conformal mapping used in this work. The Guided Evolution operator saves only the best
individual of each generation g. After a certain amount of generations g +1, there is a pattern
to the aggregate value of each gene, as illustrated in Figure 3.

Using the values of the gene from the best individuals of each generation g + 1, that
is, column of 3rd at 6th of Figure 3, is made an polynomial extrapolation of these values with
the value of the evaluation function (fitness), 2nd column Figure 3. Thus, the value found
for each gene, forms a new individual with high fitness to the next generation. To produce
the extrapolation, it is necessary to randomly choose a value for the evaluation function,
lower than the current value and greater than the value determined in the genetic algorithm
stopping criteria, in Figure 3, this value is illustrated in the last line, second column (1.72).
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The current value is 6.65 and the stopping criteria is f(W) − 1 = 0, where f(W) is defined as
the evaluation function of the genetic algorithm, given by the following:

f(W) =
1
N

N∑
n=1

√√√√ (un+1 − un)2 + (vn+1 − vn)2(
u′n+1 − u′n

)2 + (
v′n+1 − v′n

)2 , (4.1)

where W = (w′
1, w

′
2, . . . , w

′
N). Function f(W) defines a metric that allows comparison

between the vertices of the polygon produced by the genetic algorithm, and the vertices of
the expected polygon. The expected optimal value is f(W) = 1.

In the production of the extrapolation, the Guided Evolution operator, considers the
column of the evaluation function as the x-axis, and the column of genes, as the ordinate axis.
This operator has the ability to extract the intrinsic characteristic of each column of genes and
effectively insert all these features into a new individual. It is important to check the random
value found (new value of the evaluation function) to be extrapolated, because if this value
is far from the value of the current evaluation function and far near to the optimal value, will
produce a superindividual.

There are several methods of extrapolation in the literature. The developed Guided
Evolution operator can work with any of these methods, however, the operator will have
best performance, according to the extrapolation method used, which should vary with
the problem to be solved. In this work the cubic spline extrapolation was employed. This
extrapolation is illustrated in Figure 4, where the plotted values of the evaluation function
and the genes values were extracted from Figure 3.

5. Proposed Methodology

It is proposed to perform the calculation of some electromagnetical characteristics of
polygonal geometry, in order to simplifying the study region. For this, the geometry of the
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studied device is transformed into a rectangle, using the Schwarz-Christoffel Transformation
(2.1). Therefore, to study, for instance, a geometry as presented in Figure 5(a), it is firstly
necessary to map the vertices of the complex w plane into the prevertices of the complex z
plane, using the genetic algorithm for this, Figure 5(b).

Figure 5(a), regards two plates with distinct potentials: plate w3w4, has a zero
potential, and plate w5w6, has a positive potential V . These plates are mapped, respectively,
into the plates x3x4 and x5x6 of the complex z plane [15], as illustrated in Figure 5(b).
Utilizing the direct Schwarz-Christoffel transformation, the two plates of the complex z plane,
aremapped into a rectangle on the complex t plane, denoted auxiliary complex t plane. In this
rectangle, one can perform the necessary calculations to solve electromagnetic problems and
easily map the field and equipotential lines, as illustrated in Figure 6.

Using the Jacobi Elliptic Function (3.4), it is possible to map the rectangle traced lines
at the complex t plane, into the upper half-plane of the complex z plane, Figure 7 and, using
the parameters obtained by the genetic algorithm, one can map them into the complex w
plane, forming the original geometry of the study, as presented in Section 6.
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Plate 1 Plate 2

Figure 7: Equipotential and field lines in the complex z plane.

6. Results

In this section the described method is applied in the calculation of the prevertices from the
given vertices of some polygons with different geometries. As an application example, the
Schwarz-Christoffel Transformation is used to calculate the equipotential lines and field lines
in the air gap of an electrical machine. Also as an example, the capacitance of four devices
are obtained and finally, the method is applied to calculate the permeance value of a device
with cross-section and polygonal geometry. The results obtained of the capacitance and the
permeance are compared with the results obtained from the finite element method (FEM),
using the Flux 2D software [20].

6.1. Field and Magnetic Equipotential Lines

Using the methodology proposed in Section 5, Figure 8 illustrates two examples of field or
flux lines and equipotential or induction lines in the air gap of an electric machine with
a doubly slotted surface air gap. The mapping obtained by the proposed methodology
(described at Section 6.1), illustrates flux lines penetrating the bottom of the slot, see Figure 8.
Considering the rotor’s surface at a null potential, and the stator’s surface at a positive
potential V , it is observed that the magnetic equipotential lines near the rotor surface (top)
do not suffer influence from the opposite surface (stator’s surface), thus as the magnetic
equipotential lines near the stator surface (top) do not suffer influence from the rotor surface.
The same is not true with the air gap induction middle line, which is influenced by both
surfaces.This observation has great relevance in electrical machine designs, for the calculation
of the correction coefficient of the slot opening [4].

6.2. Capacitance of a Semicylindrical Plates Capacitor

Capacitance is the property that a capacitive element presents of energy storage, in potential
energy form, by means of electric fields. The capacitors have several applications in addition
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Figure 8: Flux and induction lines in the complexw plane.

to serving as energy storage. They are important components in electrical circuits and are
presented in a variety of sizes and shapes. However, the basic components of any capacitor
is two insulated conductors of arbitrary shapes, with a dielectric material between them.
The conductors are called as plates, regardless the geometry that they have. Parallel plates
capacitors are very commonplace, hence, the need to find a rectangular geometry to facilitate
the calculations.

For instance, a problem to determine the capacitance of a semicylindrical plates
capacitor is illustrated at Figure 9, [21].

It is considered that Plate 1 has a positive potential V and that Plate 2 has null
potential. Inside the plates, there is a dielectric material of permittivity ε (Fm-1). It is
also considered that the capacitor has depth d (m) and is immersed in a place of infinite
permittivity. Assuming that the cross-section of the capacitor constitutes a polygon in the
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complex w plane, the bilinear transformationw(z), which maps the points of the complex w
plane into the points of the complex z plane, is defined by

w(z) = ϑ · w − R0

w + R0
, (6.1)

where R0 (m) is the radius of the capacitor and ϑ is a complex constant defined by

ϑ =
ei·ξ + 1
ei·ξ − 1

(6.2)

in which ξ (rad) is associated to the angular spacing between the plates. Figure 10 illustrates
the values R0, ξ and some relevant points to the transformation.

Relation (6.1) maps the points inside the circle defined by the capacitor, into points in
the upper half-plane of the complex z plane. Particularly, the points w1 to w6 on the circle
of radius R0 in the complex w plane, are mapped into points z1 to z6 on the x-axis of the
complex z plane. Table 1 shows the correspondence between the points of w and z planes in
general terms.

Adopting R0 = 5 (mm) and ξ = π/12, the correspondence of the relevant points in w,
z, and t planes can be obtained, according to Table 2.

To find the capacitance, an analogy with the method of mapping curvilinear squares
of graph [3] is made. The division in the field t, must be performed, so that the subdivisions
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Table 1: Relationship between the w and z planes for the capacitor of semicylindrical plates.

w plane z plane
w1 = R0 z1 = 0
w2 = R0ei·α z2 = 1
w3 = −R0e−i·α z3 = −β2
w4 = −R0 z4 = ∞
w5 = −R0ei·α z5 = β2

w6 = R0e−i·α z6 = −1

Table 2: Relationship between the w, z, and t planes for the semicylindrical plates capacitor.

w plane z plane t plane
w2 = 4.82 + 1.29i z2 = 1.000 t2 = 1.57 + 0.00i
w3 = −4.82 + 1.29i z3 = 57.69 t3 = 1.57 + 5.44i
w5 = −4.82 − 1.29i z5 = −57.69 t5 = −1.57 + 5.44i
w6 = 4.82 − 1.29i z6 = −1.000 t6 = −1.57 + 0.00i

of the geometry becomes as close as possible of squares. The squares formed in the auxiliary
complex t plane, represent field cells. The mapping of squares or field cells of the t plane in
the complex z plane produces the so-called curvilinear squares, see Figure 11 an illustration
of curvilinear squares.

The theory associated with the curvilinear squares establishes that the device
capacitance is equivalent to the capacitance of each cell, multiplied by the number of cells
in parallel, divided by the number of cells in series. The accuracy of the method improves,
according to the increasing of the domain subdivision t or z, that is, with the increasing in the
number of curvilinear squares. In the limit, the ratio between the number of cells in parallel
and the number of cells in series is the ratio between the height of the plates and the distance
between them in the complex t plane. Thus, the capacitance of the device is given by

C = ε · K
′ · d

2 ·K , (6.3)

whereK′ = t6− t5 (m) and (2 ·K) = t5− t3 (m). As alreadymentioned, ε (Fm−1) is the dielectric
permittivity, d (m) is the depth of the capacitor and K′ and K are the real and imaginary
quarters of periods of the Jacobi elliptic function (3.5) and (3.6). Assuming d = 5 (mm) and
ε = ε0, one can verify in Table 3 the capacitance values obtained by (6.3) and the software
Flux 2D.

6.3. Calculation of the Capacitance of a Capacitor with Any Geometry

Another application example of the proposed method is presented to determinate the
capacitance of a capacitor with any polygonal geometry. To find the prevertices of a device
with curved geometry, is necessary to transform the curved portions into approximated
segments of straight lines. The smaller these approximated segments, the more accurate will
be the result. Data from the simulation of this device is presented in Table 4 and illustrated in
Figure 12.
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Table 3: Calculation of the capacitance.

Curvilinear Squares Method
(Conformal Mapping)

Finite Elements Method
(Software Flux 2D)

0.07663pF 0.07696pF

In Figure 12, we define two lines of constant flux, given by w10w11 Plate 1 and
w12w13 Plate 2, respectively. The two lines of constant flux are mapped into the complex
planes z and t, by means of the conformal mapping. The relations between the vertices and
the prevertices are presented in Table 5.

With the rectangle in the complex t plane, we calculate the device’s capacitance using
expression (6.3), whereK′ = t11 − t10 (m) and (2 ·K) = t11 − t12 (m). Considering that ε (Fm−1),
d (m), K′ and K are the same as previously mentioned at Section 6.2.

Assuming d = 9 (mm) and ε = ε0, in Table 6 are listed the capacitance values obtained
by (6.3) and by the software Flux 2D [20].

6.4. Capacitance Calculation of an Eccentric Cylindrical Capacitor

Figure 13 shows the cross-section of a cylindrical capacitor of length d, formed by two coaxial
cylinders of radius R1 and R2. If d � R1, so that we can neglect the distortion of the electric
field that occurs at the ends of the cylinders. The external plate has a positive potential V ,
while the internal plate has a null potential.

Assuming that the plates are homogeneous along the length of the capacitor, and that
ψ = 0 is the eccentricity of the plates, the capacitance is defined for the concentric cylindrical
capacitor as:

Cc = 2πε
d

ln(R1/R2)
. (6.4)

Now, assuming a cylindrical capacitor of cross-section as shown in Figure 13, where
the plates has the same radius, that is, R1 = r1 and R2 = r2, but with an eccentricity ψ /= 0, as
illustrated in Figure 14.

There is a certain difficulty to calculate the capacitance of a device with this geometry.
However, a geometry can be find, where the capacitance will be easily calculated. Utilizing
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Table 4: Relationship between vertices, slopes, and prevertices.

Polygon vertices (Figure 12) Slopes αn Prevertices (Genetic Algorithm)
w1 = −0.44 + 7.96i α1 = −0.0939 x1 = 5.908024
w2 = −1.28 + 7.71i α2 = −0.0939 x2 = 5.911571
w3 = −2.00 + 7.22i α3 = −0.0939 x3 = 5.915387
w4 = −2.57 + 6.54i α4 = −0.0939 x4 = 5.919682
w5 = −2.91 + 5.72i α5 = −0.0939 x5 = 5.924861
w6 = −2.99 + 4.85i α6 = −0.0939 x6 = 5.931535
w7 = −2.82 + 3.99i α7 = −0.0939 x7 = 5.941163
w8 = −2.40 + 3.21i α8 = −0.0233 x8 = 5.958801
w9 = −1.07 + 1.11i α9 = 0.6805 x9 = 6.519177
w10 = −5.97 + 1.11i α10 = −0.5000 x10 = 6.866081
w11 = −5.97 + 0.00i α11 = −0.5000 x11 = 6.866082
w12 = 6.00 + 0.00i α12 = −0.5000 x12 = 4.856315
w13 = 6.00 + 4.00i α13 = −0.6720 x13 = 4.856693
w14 = 0.99 + 0.99i α14 = 0.8525 x14 = 5.166399
w15 = 2.40 + 3.20i α15 = −0.0233 x15 = 5.853812
w16 = 2.81 + 3.98i α16 = −0.0939 x16 = 5.871332
w17 = 2.99 + 4.84i α17 = −0.0939 x17 = 5.881014
w18 = 2.90 + 5.72i α18 = −0.0939 x18 = 5.887704
w19 = 2.57 + 6.54i α19 = −0.0939 x19 = 5.892895
w20 = 2.01 + 7.22i α20 = −0.0939 x20 = 5.897198
w21 = 1.28 + 7.71i α21 = −0.0939 x21 = 5.901012
w22 = 0.43 + 7.96i α22 = −0.0939 x22 = 5.904559
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w16

w17

w18

w19

w20

w21
w22

w14

w13

w12

w1w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

u

ν

Plate 1

Plate 2

Figure 12: Device with any polygonal geometry.

Table 5: Relationship between the w, z, and t planes for the device of any geometry.

w plane z plane t plane
w10 = −5.97 + 1.11i z10 = 6.86608103 t10 = 7.90 + 0.000i
w11 = −5.97 + 0.00i z11 = 6.86608204 t11 = 7.90 + 1.568i
w12 = 6.00 + 0.00i z12 = 4.85631578 t12 = −7.90 + 1.568i
w13 = 6.00 + 4.00i z13 = 4.85669351 t13 = −7.90 + 0.000i
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Table 6: Calculation of the capacitance of a device with any polygonal geometry.

Curvilinear Squares Method
Conformal Mapping

Finite Elements Method
Software Flux 2D

7.9082fF 7.9125fF

R1

R2

u

ν

Figure 13: Concentric cylindrical capacitor.

algebraic manipulation, a conformal mapping can be developed transforming two eccentric
circles into two concentric circles

w(z) = t · R1

r1
· eiθ · d(z − za) − s(zb − za)

d(z − za) − t(zb − za) , (6.5)

where θ, s, and t are real, za are the points on the external plate, zb are the points on the
internal plate, and s and t are the roots of the equation:

s · t = r21 ,

(d − s) · (d − t) = r22 ,
(6.6)

in (6.6), d = |za − zb| = ψ > 0 and za, zb, r1, r2, R1, R2 > 0 and za /= zb, from this equation, it is
possible to write

r2
r1

·
∣∣∣∣ t

(d − t)
∣∣∣∣ = R2

R1

−
−d2 − r21 + r22 +

√
−4d4r21 +

(
d2 + r21 − r22

)2
2d

= t

−
−d2 − r21 + r22 −

√
−4d4r21 +

(
d2 + r21 − r22

)2
2d

= s.

(6.7)

Therefore, assuming as data R1 = r1 = 10, R2 = r2 = 5, and ψ = 3 for Figure 14,
and using the conformal mapping (6.6), a new circular geometry at the complex z plane is
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r1

r2

ψ

Figure 14: Eccentric cylindrical capacitor.

Table 7: Relation between the w and z planes for the eccentric cylindrical capacitor.

w plane z plane
r1 = 10.0000 r ′1 = 17.4788
r2 = 5.0000 r ′2 = 10.0000
ψ = 3 ψ ′ = 0

obtained. In this new geometry, the circles are concentric and the relationship between w
plane and z plane are listed in Table 7.

Thus, with the data of Table 7 in hands, and assuming d = 50, the capacitance of
an eccentric cylindrical capacitor is calculated, using (6.6) jointly with (6.4). In Table 8 are
presented the capacitance values of an concentric device, and an eccentric device, whose
values where given in the previous paragraph.

It is interesting to observe in Table 8 that the eccentricity value ψ modifies the
capacitance value, increasing it.

6.5. Permeance of a Geometry Polygon Device of Straight Section

The following presents an example that applies the method proposed here to estimate the
permeance value of a polygonal geometry device of straight section. The simulation data of
this device is presented in Table 9 and illustrates in Figure 15.

Figure 15, represents the complex w plane, defining in this plane, two constant flux
lines, given by w5w6 (Plate 1) and w11w12 (Plate 2), respectively. The two lines of constant
flux are mapped into the complex z and t planes, by means of the conformal mapping. The
relations between the vertices and the prevertices are presented at Table 10.

With the rectangle in the complex t plane in hands, one can calculate the permeance of
the device, using expression (6.8) depending on the real and imaginary quarters of periods
of the Jacobi elliptic function (3.5) and (3.6)

P = μ0 ·
pb · (2 ·K)

K′ . (6.8)
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Table 8: Capacitances of the concentric and eccentric cylindrical capacitors.

Concentric Capacitor
Figure 13

Eccentric Capacitor
Figure 14

37.645nF 48.440nF

Table 9: Relation between vertices, slopes, and prevertices.

Polygon vertices (Figure 15) Slopes αn Prevertices (Genetic Algorithm)
w1 = −1.99 + 3.00i α1 = 0.5000 x1 = 1.000000
w2 = −1.99 + 6.00i α2 = −0.5000 x2 = 1.768640
w3 = −4.00 + 6.00i α3 = −0.5000 x3 = 1.853695
w4 = −4.00 + 3.00i α4 = 0.5000 x4 = 1.853696
w5 = −6.00 + 3.00i α5 = −0.5000 x5 = 1.853777
w6 = −6.00 + 1.90i α6 = −0.5000 x6 = 1.854082
w7 = −1.00 + 1.90i α7 = 0.6476 x7 = 1.854101
w8 = −2.00 + 0.00i α8 = −0.6476 x8 = 1.855555
w9 = 2.00 + 0.00i α9 = −0.6476 x9 = 2.141762
w10 = 1.00 + 1.90i α10 = 0.6476 x10 = 2.143211
w11 = 6.00 + 1.90i α11 = −0.5000 x11 = 2.143230
w12 = 6.00 + 3.00i α12 = −0.5000 x12 = 2.143535
w13 = 4.00 + 3.00i α13 = 0.5000 x13 = 2.143616
w14 = 4.00 + 6.00i α14 = −0.5000 x14 = 2.143617
w15 = 1.99 + 6.00i α15 = −0.5000 x15 = 2.228698
w16 = 1.99 + 3.00i α16 = 0.5000 x16 = 2.997312

w15

w16

w14

w13

w12

w1

w2w3

w4

w5

w6 w7

w8 w9

w10 w11

ν

Plate 1 Plate 2

u

Figure 15: Geometry polygon device of straight section.

Table 10: Relation between thew, z, and t planes for a given device with polygonal geometry.

w plane z plane t plane
w5 = −6.00 + 3.00i z5 = 1.853695 t5 = −6.981 + 1.57i
w6 = −6.00 + 1.90i z6 = 1.853696 t6 = −6.981 + 0.00i
w11 = 6.00 + 1.90i z11 = 2.143616 t11 = 6.981 + 0.00i
w12 = 6.00 + 3.00i z12 = 2.143617 t12 = 6.981 + 1.57i
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In which (2 ·K) = t11 − t6 (m), K′ = t12 − t11 (m) and pb (m) is the depth of the device,
in this case, pb = 1. The permeance value found for the device shown at Figure 15, using the
proposed methodology in (6.8), is 11.17nH.

7. Conclusion

The results presented in Sections 6.1, 6.2, 6.3, 6.4, and 6.5 showed that the solution of
electromagnetic problems related to geometry, can be simplified, using the conformal
mapping. Also, the Schwarz-Christoffel Transformation appears to be a suitable and effective
tool to solve problems involving complicated geometries forms, considering the conformal
mapping property of modifying only the geometry of a polygonal structure, preserving the
physical magnitude corresponding to each point at the plane. Regarding the mathematical
operator developed to help the optimization method, there was a reduction of approximately
38% on average in the number of generations g to be achieved, when compared with the
genetic algorithm without the operator. Therefore, the guided evolution operator, promoted
a stimulus in the used optimization method, reducing the time spent in the search of
optimized parameters. In Sections 6.2 and 6.4, the capacitance calculation performed by the
proposed method was compared with results obtained by Flux 2D software, validating the
proposed method. The computational processes were reduced comparing with sophisticated
softwares used to produce electromagnetic fields, leading an improvement in the calculation
performance of some devices with odd geometry. As a suggestion for future studies, the
methodology using conformal mapping allied to the developed mathematical operator,
could be applied in the design of optimized electric devices, of any desired geometry. The
calculations presented here are useful as a theoretical framework to guide experiments on
capacitors from different geometry and introduce a new concept in the permeance estimation
of electrical devices.
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