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We study the sampling theorem for frames inmultiwavelet subspaces. Firstly, a sufficient condition
under which the regular sampling theorem holds is established. Then, notice that irregular
sampling is also useful in practice; we consider the general cases of the irregular sampling and
establish a general irregular sampling theorem for multiwavelet subspaces. Finally, using this
generalized irregular sampling theorem, we obtain an estimate for the perturbations of regular
sampling in shift-invariant spaces.

1. Introduction

At the present time the sampling theorem plays a crucial role in signal processing and
communication, as it establishes an equivalence between discrete signals and analogue
(continuous) signals. For a band-limited signal, the classical Shannon sampling theorem
provides an exact representation by its uniform samples with a sampling rate higher than
its Nyquist rate. But there exist several problems. Firstly, real-world signals or images are
never exactly band-limited. Secondly, there is no such device as an ideal (antialiasing or
reconstruction) low-pass filter. Thirdly, Shannon reconstruction formula is rarely used in
practice (especially with images) because of the slow decay of the sinc function. Therefore,
this classical Shannon sampling theorem has been generalized to many other forms.

Extensions of Shannon sampling theorem to scalar wavelets can be found in [1–
5], but a scalar wavelet cannot have the orthogonality, compact support, and symmetry
at the same time (except the Haar wavelet). It is a disadvantage for signal processing.



2 Mathematical Problems in Engineering

Meanwhile, multiwavelets have attracted much attention in the research community, since
multiwavelet has more desired properties than any scalar wavelet function, such as
orthogonality, short compact support, symmetry, high approximation order, and so on. The
first orthogonal multiwavelet with symmetry, approximation order, and compact support
was presented by Geronimo et al. [6]. In addition, the sampling theorems for multiwavelet
subspaces were studied in [7–10]. The authors of [7, 9] presented the construction of
compactly supported orthogonal multiscaling functions that are continuously differentiable
and cardinal. The scaling functions thereby support a Shannon-like sampling theorem.
However, the multiwavelets of [7, 9] do not have symmetry. It is not good for digital signal
processing and image compression. They also did not study the sampling theorem for frame
in multiwavelet subspaces, which is very important in application.

A reconstruction from more general sets of points is necessary if the measurements
cannot be made at uniform points. Hence, irregular sampling is also useful in practice.
In [11], the authors obtained a Feichtinger-Grochenig iterative algorithm based on the
quasiinterpolation projection procedure to recover signals from irregular samples for
multiwavelet subspaces. However, the maximal allowable gap between two sampling points
needed for reconstructing a function from its samples was not obtained, which was supposed
to exist in theory. The authors of [10] generalized the multiwavelet sampling theorem by
reproducing a kernel and derived an estimate for the perturbations of uniform noninteger
sampling in shift-invariant spaces, but their results just based on the Riesz basis.

In our paper, we will show a sufficient condition for regular sampling theorem to hold
in multiwavelet subspaces for frames. Notice that a reconstruction from more general sets of
points is necessary if themeasurements cannot bemade an uniform;we establish the irregular
sampling theorems in multiwavelet subspaces. Finally, an estimate for the perturbations of
regular sampling in shift-invariant spaces is derived.

This paper is organized as follows. Section 2 contains some definitions in this
correspondence. Also, we review some relative notations. In Section 3, we discuss general
uniform noninteger sampling and obtain a sufficient condition for uniform noninteger
sampling theorem to hold. In Section 4, an irregular sampling theorem in general
multiwavelet subspaces is established. Finally, by applying the result in Section 4, we estimate
the perturbations of uniform noninteger sampling in shift-invariant spaces.

2. Preliminary

We now introduce some notations used in this correspondence.
C(R) is the space of continuous function.
The shift-invariant closed subspace V0 generated by {φ1, φ2, . . . , φr}

V0 = span
{
φi(· − k) : 1 ≤ i ≤ r, k ∈ Z

} ⊂ L2(R). (2.1)

For a function f ∈ L2(R), we denote by 〈f〉 theminimal closed shift invariant subspace
that contains f .

Let

f =
[
f1, f2, . . . , fr

]T (2.2)
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denote vector (we denote vectors and matrices in this paper in boldface). The integration∫
R f(x)dx is defined as

∫

R

f(x)dx =
[∫

R

f1(x)dx,
∫

R

f2(x)dx, . . . ,
∫

R

fr(x)dx
]T

. (2.3)

The Fourier transform of vector f is defined by

f̂(ω) =
∫

R

f(x)e−ixωdx. (2.4)

The inverse Fourier transform of vector f is written by

f̌(x) =
1
2π

∫

R

f(ω)eixωdω. (2.5)

Zf(x,ω) =
∑

n∈Z f(x + n)e−inω is the Zak transform of function f . The Zak transform
of vector f is defined by

Zf(x,ω) =
[
Zf1(x,ω), Zf2(x,ω), . . . , Zfr (x,ω)

]T
. (2.6)

A collection of elements {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} in a Hilbert space H is called a
frame if there exist constants A and B, 0 < A ≤ B < ∞, such that

A
∥∥f

∥∥ 2 ≤
∑

k∈Z

r∑

i=1

∣∣〈f, φi(· − k)
〉∣∣2 ≤ B

∥∥f
∥∥ 2

, ∀f ∈ H. (2.7)

If {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} is a frame for H, then there exists a dual frame {φ̃k}k∈Z
for {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} [12, Theorem 5.6.5].

For f ∈ H,we can write

Ef =
{
ω ∈ R | Gf(ω) > 0

}
,

Gf(ω) =
∑

k∈Z

∣∣∣f̂(ω + 2πk)
∣∣∣
2
,

χEf =

⎧
⎨

⎩

1, t ∈ Ef ,

0, t /∈Ef .

(2.8)

Let

Φ =
[
φ1, φ2, . . . , φr

]T
,

Φ̃ =
[
φ̃1, φ̃2, . . . , φ̃r

]T
.

(2.9)
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The reproducing kernel is defined as

q(t, ·) =
r∑

l=1

∑

k∈Z
φl(t − k)φ̃l(· − k)

=
∑

k∈Z
Φ∗(t − k)Φ̃(· − k),

(2.10)

where ∗ denotes the Hermitian conjugate. Put t = n + am. Then

q(n + am, ·) =
r∑

l=1

∑

k∈Z
φl(n + am − k)φ̃l(· − k)

=
∑

k∈Z
Φ∗(n + am − k)Φ̃(· − k),

(2.11)

where 1 ≤ m ≤ r, n ∈ Z, am ∈ [0, 1) is constant, and ai /=aj for i /= j, i, j = 1, 2, . . . , r.
Let A ⊂ R, Max{A} means the largest number in subset A, and Min{A} means the

smallest number in subset A.
For f, g ∈ L2(R), let bracket function [f, g] be the function defined a.e. by [f, g](ξ) =

∑
k∈Z f(ξ + k)g(ξ + k).

3. General Uniform Sampling Theorem

The main purpose of this section is to study the regular sampling theorem for frame in
multiwavelet subspace.

Firstly, we start with some useful lemmas.

Lemma 3.1. Let f, g ∈ L2(R). If 〈f〉 ⊥ 〈g〉 and |h|, |s| ∈ 〈f〉⊕〈g〉 for all s ∈ 〈f〉, h ∈ 〈g〉, then
[s, h] = 0 a.e.

Proof. Suppose that {f(· − k)} is a frame sequence in L2(R). Let s ∈ 〈f〉, then there exists a
sequence {ci}i∈Z ∈ l2 such that s =

∑
i∈Z cif(· − i).

Define

χ(s) =

⎧
⎨

⎩

1, s ≥ 0,

−1, s < 0.
(3.1)

We have

|s| = χ(s)s

= χ(s)
∑

i∈Z
cif(· − i)

=
∑

i∈Z
χ(s)cif(· − i).

(3.2)
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It is easy to check that {χ(s)ci}i∈Z ∈ l2 and |s| ⊥ 〈g〉; thus |s| ∈ 〈f〉. Similar to the above
argument, for all h ∈ 〈g〉, we get |h| ∈ 〈g〉.

Suppose that 〈f〉 ⊥ 〈g〉 holds; by |s| ∈ 〈f〉 and |h| ∈ 〈g〉, we can obtain

0 ≤
∫

T

∣
∣
∣
∣
∣

∑

k∈Z
s(x + k) · h(x + k)

∣
∣
∣
∣
∣
dx

≤
∫

T

∑

k∈Z

∣
∣
∣s(x + k) · h(x + k)

∣
∣
∣dx

=
∫

R

∣
∣
∣s(x) · h(x)

∣
∣
∣dx

≤ 〈|s|, |h|〉
= 0.

(3.3)

It implies that [s, h] = 0 a.e. The proof is completed.

Lemma 3.2. Let {fi}i∈{1,2,...,r} ⊂ L2(R), then the following two assertions are equivalent:

(a) for any {cik}k∈Z ∈ l2, i ∈ {1, 2, . . . , r}, ∑r
i=1

∑
k∈Z cikfi(x − k) converges pointwise to a

continuous function;

(b) {fi}i∈{1,2,...,r} ⊂ C(R) and supx

∑r
i=1

∑
k∈Z |fi(x − k)|2 < +∞.

Proof. (a)⇒(b). It is easy to see that for all i ∈ {1, 2, . . . , r}, fi ∈ C(R). For each x ∈ R, since∑r
i=1

∑
k∈Z ci

k
fi(x − k) is convergent for each {ci

k
} ∈ l2, clearly,

∑
k∈Z |fi(x − k)|2 < ∞. For each

x ∈ [0, 1], define

Txc =
r∑

i=1

∑

k∈Z
cikfi(x − k), ∀c =

{
cik

}
∈ l2. (3.4)

Then Tx is a bounded linear functional on l2 with the norm ‖Tx‖ = (
∑r

i=1
∑

k∈Z |fi(x − k)|2)1/2.
For any {ci

k
} ∈ l2, define g(t) =

∑r
i=1

∑
k∈Z ci

k
fi(t − k). Since g(t) is continuous on R, we have

sup
x∈[0,1]

|Txc| = sup
x∈[0,1]

∣∣g(x)
∣∣ < +∞. (3.5)

By the Banach-Steinhaus theorem [13], supx∈[0,1]‖Tx‖ < +∞, that is,
∑r

i=1
∑

k∈Z |fi(x − k)|2 is
bounded on R.

(a)⇒(b). By the Cauchy inequality,
∑r

i=1
∑

k∈Z ci
k
fi(x − k) in convergent uniformly on

R, so the limit function is continuous.

Lemma 3.3. Let {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} be a frame for V0 with bounds A and B. If 〈φi〉 ⊥ 〈φj〉
for all i, j ∈ {1, 2, . . . , r}, i /= j, then {φi(· − k)}k∈Z is a frame for the subspace 〈φi〉.
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Proof. Suppose that {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} is a frame for the subspace V0, then there
exist constants 0 < A ≤ B < ∞ such that

A
∥
∥f

∥
∥2 ≤

r∑

i=1 k∈Z

∑∣
∣〈f, φi(x − k)

〉∣∣2 ≤ B
∥
∥f

∥
∥2

. (3.6)

Notice that 〈φi〉 ⊥ 〈φj〉 for all i, j ∈ {1, 2, . . . , r}, i /= j; if f ∈ 〈φi〉, then 〈f, φj(x − k)〉 = 0.
Hence,

A
∥
∥f

∥
∥2 ≤

∑

k∈Z

∣
∣〈f, φi(x − k)

〉∣∣2 ≤ B
∥
∥f

∥
∥2

. (3.7)

By the definition of Frame, {φi(· − k)}k∈Z is a frame for the closed subspace 〈φi〉. Then we get
the desired result.

Lemma 3.4. Let f ∈ L2(R) and f ∈ C(R), then there exists a set E ∈ R, |R \ E| = 0 such that for
any x ∈ E and for all {ck}k∈Z ∈ l2,

∑
k∈Z ckf(x − k) converges pointwise to a continuous function.

Proof. By f ∈ L2(R), then
∫
T

∑
k∈Z |f(x−k)|2dx < ∞. Hence there exists a set E ∈ R, |R\E| = 0

such that supx∈E
∑

k∈Z |f(x−k)|2 < ∞. Notice that f ∈ C(R); using Lemma 3.2, clearly, for any
{ck}k∈Z ∈ l2,

∑
k ckf(x − k) converges pointwise to a continuous function in set E.

From the above lemmas, we have the following result.

Theorem 3.5. Let {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} be a frame for V0. Suppose that φi, 1 ≤ i ≤ r are
continuous functions, 〈φi〉 ⊥ 〈φj〉 for all i /= j, i, j ∈ {1, 2, . . . , r}, and

sup
x∈R

r∑

i=1

∑

k∈Z

∣∣φi(x − k)
∣∣2 < +∞. (3.8)

Then

f(t) =
∫

R

f(s)q(t, s)ds (3.9)

holds for each f ∈ V0 and t ∈ R.

Proof. Suppose that {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} is a frame for V0 and 〈φi〉 ⊥ 〈φj〉, i /= j, then,
by [14, Proposition 3.1] and Lemma 3.3, there exist constants 0 < Ai ≤ Bi < ∞ such that

AiχEφi
(ω) ≤

∑

n∈Z

∣∣∣φ̂i(ω + 2nπ)
∣∣∣
2 ≤ BiχEφi

(ω), a.e. (3.10)
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From Lemma 4 in [15], we have the dual frame φ̃i for {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z}, where φ̃i is
defined by

φ̃i(ω) =

⎧
⎪⎨

⎪⎩

φ̂i(ω)
Gφi(ω)

, ω ∈ Eφi ,

0, ω /∈Eφi .

(3.11)

Hence, for all 1 ≤ i ≤ r,

φ̂i(ω)
Bi

≤ ̂̃
φi(ω) ≤ φ̂i(ω)

Ai
(3.12)

holds.
So, it follows that

φ̃i(x) =
∫

ω∈R
̂̃
φi(ω)eiωxdω ≤ 1

Ai

∫

ω∈R
φ̂i(ω)eiωxdω =

1
Ai

φ̂i(x),

φ̃i(x) =
∫

ω∈R
̂̃
φi(ω)eiωxdω ≥ 1

Bi

∫

ω∈R
φ̂i(ω)eiωxdω =

1
Bi

φ̂i(x).

(3.13)

From above results, obviously, if

sup
x∈R

r∑

i=1

∑

k∈Z

∣∣φi(x − k)
∣∣2 < +∞, (3.14)

then

sup
x∈R

r∑

i=1

∑

k∈Z

∣∣∣φ̃i(x − k)
∣∣∣
2
< +∞. (3.15)

Hence,

q(t, s) =
r∑

l=1

∑

k∈Z
φl(t − k), φ̃l(s − k)

=
∑

k∈Z
Φ∗(t − k)Φ̃(s − k)

(3.16)

converges to q(t, ·) in L2(R) for any f ∈ V0 and t ∈ R.
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By 〈φi〉 ⊥ 〈φj〉 for all i, j ∈ {1, 2, . . . , r}, i /= j, it is easy to check that {φ̃i(· − k) : 1 ≤ i ≤
r, k ∈ Z} is a dual frame for {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z}; then we have

f(t) =
r∑

l=1

∑

k∈Z

〈
f(s), φ̃l(s − k)

〉
φl(t − k)

=

〈

f(s),
r∑

l=1

∑

k∈Z
φl(t − k), φ̃l(s − k)

〉

=

〈

f(s),
∑

k∈Z
Φ∗(t − k)Φ̃(s − k)

〉

=
∫

R

f(s)q(t, s)ds

(3.17)

for any f ∈ V0 and t ∈ R. So we get the desired result.

Based on these facts, the following sampling theorem is established.

Theorem 3.6. Let {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} be a frame for V0. Suppose that 〈φi〉 ⊥ 〈φj〉 for all
i, j ∈ {1, 2, . . . , r}, i /= j, and φi, 1 ≤ i ≤ r are continuous such that

sup
t∈R

r∑

i=1

∑

k∈Z

∣∣φi(t − k)
∣∣2 < +∞. (3.18)

If there exist constants Ai and Bi, 0 < Ai ≤ Bi < +∞ such that

AiχEφi
(ω) ≤

∣∣∣φ̂∗
i (ω)

∣∣∣ ≤ BiχEφi
(ω), a.e. ω ∈ R, (3.19)

where φ̂∗
i (ω) =

∑
n∈Z φi(n)e−inω, then there exists a frame {si(· − k) : 1 ≤ i ≤ r, k ∈ Z} of V0, for

i, j ∈ {1, 2, . . . , r}, i /= j

f(t) =
∑

n∈Z

r∑

m=1

f(n + am)sm(t − n), f ∈ V0, (3.20)

holds, where the convergence is in L2(R).

Proof. Define the function qi(t, s) by qi(t, s) =
∑

k∈Z φi(t − k)φ̃i(s − k), where φ̃i is defined by
(3.11). From Lemma 3.3, it is easy to see that {φi(· − k)}k∈Z and {φ̃i(· − k)}k∈Z are the frames
for the subspace 〈φi〉.

Notice that

q̂i(n,ω) = φ̂∗
i (ω) ̂̃φi(ω),

AiχEφi
(ω) ≤

∣∣∣φ̂∗
i (ω)

∣∣∣ ≤ BiχEφi
(ω), a.e. ω ∈ R.

(3.21)
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From the proof process of Proposition 3.1 in [14], {qi(n, ·)}n∈Z = {qi(0, · − n)}n∈Z is a frame for
the subspace 〈φi〉. Similar to the above argument, obviously, for 1 ≤ m ≤ r, {qi(n + am, ·)}n∈Z =
{qi(0, · − n − am)}n∈Z is the frame for the subspace 〈φi〉. Hence, for all fi ∈ Vi, for all m ∈
{1, 2, . . . , r}, there exist constants 0 < Cm

i ≤ Dm
i < ∞ such that

Cm
i

∥
∥fi

∥
∥2 ≤

∑

n∈Z

∣
∣〈fi, qi(n + am, ·)

〉∣∣2 ≤ Dm
i

∥
∥fi

∥
∥2

. (3.22)

Thus, we have

fi(s) =
∑

n∈Z

〈
fi(s), qi(n + am, s)

〉
q̃i(n + am, s), (3.23)

where q̃i(n + am, s) is the dual frame for qi(n + am, s).
From above results, we get

r∑

i=1

Cm
i

∥∥fi
∥∥2 ≤

r∑

i=1

∑

n∈Z

∣∣〈fi, qi(n + am, s)
〉∣∣2 ≤

r∑

i=1

Dm
i

∥∥fi
∥∥2
, (3.24)

where m ∈ {1, 2, . . . , r}.
Notice that {φi(· − k)}k∈Z, {qi(0, · − n − am)}n∈Z,m∈{1,2,...,r} and {qi(0, · − n)}n∈Z are the

frame for subspace 〈φi〉; by [16, Lemma 3], we have Eφi = Eqi(0,·−n−am) = Eqi(0,·−n) (except a null
measurable set).

By Lemma 3.3, it follows that for all f ∈ V0, f =
∑r

i=1 fi holds, where fi ∈ Vi. Again by
Lemma 3.3, we have Vi ⊥ Vl, 1 ≤ i /= l ≤ r, then,

∥∥f
∥∥2 =

〈
r∑

i=1

fi,
r∑

l=1

fl

〉

=
r∑

i=1

r∑

l=1

〈
fi, fl

〉
=

r∑

i=1

〈
fi, fi

〉
=

r∑

i=1

∥∥fi
∥∥2

. (3.25)

From (3.23) and (3.25), for all m ∈ {1, 2, . . . , r}, we get

Min {Cm
i }ri=1

∥∥f
∥∥2 = Min

{
Cm

i

}r
i=1

r∑

i=1

∥∥fi
∥∥2

≤
r∑

i=1

Cm
i

∥∥fi
∥∥2 ≤

r∑

i=1

∑

n∈Z

∣∣〈fi, qi(n + am, )
〉∣∣2,

r∑

i=1

∑

n∈Z

∣∣〈fi, qi(n + am, ·)
〉∣∣2 ≤

r∑

i=1

Dm
i

∥∥fi
∥∥2

≤ Max
{
Dm

i

}r
i=1

r∑

i=1

∥∥fi
∥∥2 = Max

{
Dm

i

}r
i=1

∥∥f
∥∥2

.

(3.26)
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For

〈
f(t), qi(n + ai, t)

〉
=
∫

R

r∑

l=1

fl(t)qi(n + ai, t)dt

=
r∑

l=1

∫

R

fl(t)qi(n + ai, t)dt

=
∫

R

fi(t)qi(n + ai, t)dt

=
〈
fi(t), qi(n + ai, t)

〉
,

(3.27)

notice (3.26), we have

Min
{
Ci

i

}r

i=1

∥∥f
∥∥2 = Min

{
Ci

i

}r

i=1

r∑

i=1

∥∥fi
∥∥2

≤
r∑

i=1

Ci
i

∥∥fi
∥∥2

≤
∑

n∈Z

r∑

i=1

∣∣〈fi, qi(n + ai, ·)
〉∣∣2

=
∑

n∈Z

r∑

i=1

∣∣〈f, qi(n + ai, ·)
〉∣∣2,

∑

n∈Z

r∑

i=1

∣∣〈f, qi(n + ai, ·)
〉∣∣2 =

∑

n∈Z

r∑

i=1

∣∣〈fi, qi(n + ai, ·)
〉∣∣2

≤
r∑

i=1

Di
i

∥∥fi
∥∥2

≤ Max
{
Di

i

}r

i=1

r∑

i=1

∥∥fi
∥∥2

= Max
{
Di

i

}r

i=1

∥∥f
∥∥2

.

(3.28)

Let C = Min{Ci
i}

r

i=1, D = Max{Di
i}

r

i=1, then for all f ∈ V0, there exist constants number
0 < C ≤ D < ∞ such that

C
∥∥f

∥∥2 ≤
r∑

i=1

∑

n∈Z

∣∣〈f, qi(n + ai, ·)
〉∣∣2 ≤ D

∥∥f
∥∥2

. (3.29)

Hence, according to the definition of frame, {qi(n+ai, s) : 1 ≤ i ≤ r, n ∈ Z} is the frame for the
subspace V0. Let q(n + ai, s) =

∑r
l=1 ql(n + ai, s); by Theorem 3.5, clearly, 〈f(s), q(n + ai, s)〉 =

f(n + ai).
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Notice that

∣
∣
∣
∣
∣

〈

f(s),
r∑

l=1

ql(n + ai, s)

〉∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

r∑

l=1

〈
f(s), ql(n + ai, s)

〉
∣
∣
∣
∣
∣

2

≤
r∑

l=1

∣
∣〈f(s), ql(n + ai, s)

〉∣∣2.

(3.30)

Using (3.27) and (3.22), then

r∑

i=1

∑

n∈Z

∣
∣〈f(s), q(n + ai, s)

〉∣∣2 =
r∑

i=1

∑

n∈Z

∣
∣
∣
∣
∣

〈

f(s),
r∑

l=1

ql(n + ai, s)

〉∣
∣
∣
∣
∣

2

≤
r∑

i=1

∑

n∈Z

r∑

l=1

∣∣〈f(s), ql(n + ai, s)
〉∣∣2

=
r∑

i=1

∑

n∈Z

r∑

l=1

∣∣〈fl(s), ql(n + ai, s)
〉∣∣2

≤
r∑

l=1

(
r∑

i=1

Di
l

∥∥fl
∥∥2

)

≤
r∑

l=1

Max
{
Di

l : i ∈ {1, 2, . . . , r}
}∥∥fl

∥∥2

≤ Max
{
Max

{
Di

l : i ∈ {1, 2, . . . , r}
}
: l ∈ {1, 2, . . . , r}

}∥∥f
∥∥2

= D′∥∥f
∥∥2
.

(3.31)

For fl ∈ 〈φl〉, fp ∈ 〈φp〉, by Lemmas 3.1 and 3.4, notice that for all l ∈ {1, 2, . . . , r},
{fl(n + ai)}n∈Z ∈ l2, then

∑
n∈Z fl(n + ai)fp(n + ai) = 0, for all i ∈ {1, 2, . . . , r}, l /= p. Hence,

r∑

i=1

∑

n∈Z

∣∣〈f, q(n + ai, ·)
〉∣∣2 =

r∑

i=1

∑

n∈Z

(〈
f, q(n + ai, ·)

〉)(〈
f, q(n + ai, ·)

〉)

=
r∑

i=1

∑

n∈Z

(
r∑

l=1

〈
fl, ql(n + ai, ·)

〉
)⎛

⎝
r∑

p=1

〈
fp, qp(n + ai, ·)

〉
⎞

⎠

=
r∑

i=1

∑

n∈Z

r∑

l=1

∣∣〈fl, ql(n + ai, ·)
〉∣∣2

≥ Min
{
Min

{
Ci

l : i ∈ {1, 2, . . . , r}
}
: l ∈ {1, 2, . . . , r}

}∥∥f
∥∥2

≥ C′∥∥f
∥∥2

(3.32)



12 Mathematical Problems in Engineering

holds. From (3.31) and (3.32), we get that {q(n + ai, s) : i = 1, 2, . . . , r, n ∈ Z} is the frame for
the subspace V0. Then there exists a dual frame {si(· − k) : 1 ≤ i ≤ r, k ∈ Z} of {q(n + ai, s) :
i = 1, 2, . . . , r, n ∈ Z} such that

f =
r∑

i=1

∑

n∈Z

〈
f, q(n + ai, ·)

〉
si(· − k) =

r∑

i=1

∑

n∈Z
f(ai + n)si(· − k), ∀f ∈ V0. (3.33)

The proof is completed.

4. General Irregular Sampling Theorem

In many realistic situations, we try to reconstruct a continuous signal f ∈ V0 by using its
discrete samples {f(n + am + δn

m) : 1 ≤ m ≤ r, n ∈ Z}. Obviously, the samples cannot be
arbitrary; we must discuss the values δn

m of deviation from the uniformly noninteger points.
The following theorem studies this problem.

Based on the results in Section 3, we get the irregular sampling theorems.

Theorem 4.1. Let {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} be a frame for V0 with bounds A and B. Suppose that
〈φi〉 ⊥ 〈φj〉 for all i, j ∈ {1, 2, . . . , r}, i /= j, and φi, 1 ≤ i ≤ r are continuous such that

sup
t∈R

r∑

i=1

∑

k∈Z

∣∣φi(t − k)
∣∣2 < +∞. (4.1)

Moreover, suppose that there exist constants Ai and Bi, 0 < Ai ≤ Bi < +∞ such that

AiχEφi
(ω) ≤

∣∣∣φ̂∗
i (ω)

∣∣∣ ≤ BiχEφi
(ω), a.e. ω ∈ R. (4.2)

If there exists a sequence {δn
m : n ∈ Z,m = 1, 2, . . . , r} and two constants C and D, 0 < C ≤ D < ∞

such that

C
r∑

m=1

∑

n∈Z

∣∣f(n + am)
∣∣2 ≤

r∑

m=1

∑

n∈Z

∣∣f(n + am + δn
m) − f(n + am)

∣∣2 ≤ D
r∑

m=1

∑

n∈Z

∣∣f(n + am)
∣∣2 (4.3)

holds for any f ∈ V0. Then, there exists a frame {sm,n(t) : 1 ≤ m ≤ r, n ∈ Z} for V0 such that for any
f ∈ V0,

f(t) =
∑

n∈Z

r∑

m=1

f(n + am + δn
m)sm,n(t) (4.4)

holds, where the convergence is both in L2(R) and uniform on R.

Proof. From the argument of Theorem 3.6, it is easy to see that {q(a1, · − n), q(a2, · − n),
. . . , q(ar, · − n)}n∈Z = {q(n + a1, ·), q(n + a2, ·), . . . , q(n + ar, ·)}n∈Z is a frame for the closed
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subspace V0 of L2(R). Hence, there exist two constants C1 and C2, 0 < C1 ≤ C2 < ∞ such
that

C1
∥
∥f

∥
∥2 ≤

∑

n∈Z

r∑

k=l

∣
∣〈f, q(n + ak, ·)

〉∣∣2 =
∑

n∈Z

r∑

k=l

∣
∣f(n + ak)

∣
∣2 ≤ C2

∥
∥f

∥
∥2

, ∀f ∈ V0. (4.5)

By (4.3), we have

CC1
∥
∥f

∥
∥2 ≤

∑

n∈Z

r∑

k=l

∣
∣〈f, q

(
n + ak + δn

k , ·
)〉∣∣2 =

∑

n∈Z

r∑

k=l

∣
∣f

(
n + ak + δn

k

)∣∣2 ≤ DC2
∥
∥f

∥
∥2

. (4.6)

Then, {q(n + a1 + δn
1 , ·), q(n + a2 + δn

2 , ·), . . . , q(n + ar + δn
r , ·)}n is also a frame for the closed

subspace V0 of L2(R). So, there exists a dual frame {si(· − k) : 1 ≤ i ≤ r, k ∈ Z} of
{q(n + ai + δn

i , ·) : 1 ≤ i ≤ r, k ∈ Z} such that

f(t) =
∑

n∈Z

r∑

m=1

f(n + am + δn
m)sm(t − n) (4.7)

for any f ∈ V0.

Theorem 4.2. Let {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} be a frame for V0 with bounds A and B. Suppose that
〈φi〉 ⊥ 〈φj〉 for all i, j ∈ {1, 2, . . . , r}, i /= j, and φi, 1 ≤ i ≤ r are continuous such that

sup
t∈R

r∑

i=1

∑

k∈Z

∣∣φi(t − k)
∣∣2 < +∞. (4.8)

Moreover, suppose that there exist constants Ai and Bi, 0 < Ai ≤ Bi < +∞ such that

AiχEφi
(ω) ≤

∣∣∣φ̂∗
i (ω)

∣∣∣ ≤ BiχEφi
(ω), a.e. ω ∈ R. (4.9)

If there exists a sequence {δn
m : n ∈ Z,m = 1, 2, . . . , r} and a constant 0 < θ < 1 such that

r∑

m=1

∑

n∈Z

∣∣f(n + am + δn
m) − f(n + am)

∣∣2 ≤ θ2
r∑

m=1

∑

n∈Z

∣∣f(n + am)
∣∣2 (4.10)

holds for any f ∈ V0, then, there exists a frame {sm,n(t) : 1 ≤ m ≤ r, n ∈ Z} for V0 such that for any
f ∈ V0

f(t) =
∑

n∈Z

r∑

m=1

f(n + am + δn
m)sm,n(t) (4.11)

holds, where the convergence is both in L2(R) and uniform on R.
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Proof. If

r∑

m=1

∑

n∈Z

∣
∣f(n + am + δn

m) − f(n + am)
∣
∣2 ≤ θ2

r∑

m=1

∑

n∈Z

∣
∣f(n + am)

∣
∣2, (4.12)

then

(
1 − θ2

) r∑

m=1

∑

n∈Z

∣
∣f(n + am)

∣
∣2 ≤

r∑

m=1

∑

n∈Z

∣
∣f(n + am + δn

m)
∣
∣2

≤
(
1 + θ2

) r∑

m=1

∑

n∈Z

∣
∣f(n + am)

∣
∣2.

(4.13)

By Theorem 4.1, we get the desired result.

5. Perturbation of Uniform Noninteger Sampling in
Shift-Invariant Spaces

Our objective is to find explicit formulas or algorithms to calculate the ranges of the
perturbations of uniform noninteger sampling in shift-invariant spaces. In order to establish
the algorithm for perturbations of uniform noninteger sampling for frame in shift-invariant
spaces, we need to introduce the function class Lλ

am[a, b] (λ > 0, σ ∈ [0, 1), 0 ∈ [a, b] ⊂
[−1, 1]) defined and used in [10].

Definition 5.1. Lλ
am[a, b] (λ > 0 and σ ∈ [0, 1), 0 ∈ [a, b] ⊂ [−1, 1]) consists of all the

measurable functions f, for which the norm

∥∥f
∥∥
Lλ
am [a,b] = sup

{rk}k⊂[a,b]

∑
k

∣∣f(k + σ + rk) − f(k + σ)
∣∣

supk|rk|λ
< ∞. (5.1)

Theorem 5.2. Let {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} be a frame for V0 with bounds A and B. Suppose that
there exist constants Ai and Bi, 0 < Ai ≤ Bi < +∞ such that

AiχEφi
(ω) ≤

∣∣∣φ̂∗
i (ω)

∣∣∣ ≤ BiχEφi
(ω), a.e. ω ∈ R. (5.2)

Moreover, suppose that 〈φi〉 ⊥ 〈φj〉 for all i, j ∈ {1, 2, . . . , r}, i /= j, and φi, 1 ≤ i ≤ r are continuous
such that

sup
t∈R

r∑

i=1

∑

k∈Z

∣∣φi(t − k)
∣∣2 < +∞. (5.3)

Then, for any {δn
m} ⊂ [−θΦ, θΦ] ∩ [a, b], 1 ≤ m ≤ r, n ∈ Z, there is a frame {Sm,n} of V0 such that

f(t) =
∑

n∈Z

r∑

m=1

f(n + am + δn
m)sm(t − n) (5.4)
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holds in L2(R) for any f ∈ V0 if

δΦ <

⎛

⎝ C1/2

∑r
m=1

∥
∥φm

∥
∥
Lλ
am [a,b]

⎞

⎠

1/λ

. (5.5)

Proof. Notice that {φi(· − k) : 1 ≤ i ≤ r, k ∈ Z} is a frame for V0, then, for all f ∈ V0, there
exists a square summable sequence {cnm} such that f =

∑
n∈Z

∑r
m=1 c

n
mφm(· −n) holds in L2(R).

Similar to the argument of Theorem 5 in [10], let

Δ =
∑

n∈Z

r∑

m=1

∣
∣f(n + am + δn

m) − f(n + am)
∣
∣2

=
∑

n∈Z

r∑

m=1

∣∣∣∣∣

∑

k∈Z

r∑

i=1

cki
(
φi(n + am + δn

m − k) − φi(n + am − k)
)
∣∣∣∣∣

2

=
∑

n∈Z

r∑

m=1

∑

k∈Z

r∑

i=1

∑

l∈Z

r∑

j=1

cki c
l
j

(
φi(n + am + δn

m − k) − φi(n + am − k)
)

× (
φj(n + am + δn

m − k) − φj(n + am − k)
)

=
∑

k∈Z

r∑

i=1

∑

l∈Z

r∑

j=1

cki c
l
j

∑

n∈Z

r∑

m=1

(
φi(n + am + δn

m − k) − φi(n + am − k)
)

× (
φj(n + am + δn

m − k) − φj(n + am − k)
)
.

(5.6)

Take

ak,i;l,j =
∑

n∈Z

r∑

m=1

(
φi(n + am + δn

m − k) − φi(n + am − k)
)

× (
φj(n + am + δn

m − k) − φj(n + am − k)
)
.

(5.7)

Then, ak,i;l,j = al,j;k,i holds for any k, l ∈ Z, 1 ≤ i, j ≤ r, and

Δ =
∑

k∈Z

r∑

i=1

∑

l∈Z

r∑

j=1

cki c
l
jak,i;l,j ≤

∑

k∈Z

r∑

i=1

∑

l∈Z

r∑

j=1

∣∣ak,i;l,j
∣∣

((
cki

)2
+
(
clj

)2
)

2

=
1
2

⎛

⎝
∑

k∈Z

r∑

i=1

⎛

⎝
∑

l∈Z

r∑

j=1

∣∣ak,i;l,j
∣∣

⎞

⎠
(
cki

)2
+
∑

l∈Z

r∑

j=1

(
∑

k∈Z

r∑

i=1

∣∣ak,i;l,j
∣∣
)(

clj

)2

⎞

⎠

=
∑

k∈Z

r∑

i=1

⎛

⎝
∑

l∈Z

r∑

j=1

∣∣ak,i;l,j
∣∣

⎞

⎠
(
cki

)2 ≤
⎛

⎝ sup
k∈Z,1≤i≤r

∑

l∈Z

r∑

j=1

∣∣ak,i;l,j
∣∣

⎞

⎠
∑

k∈Z

r∑

i=1

(
cki

)2
.

(5.8)
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Moreover

sup
k∈Z,1≤i≤r

∑

l∈Z

r∑

j=1

∣
∣ak,i;l,j

∣
∣ ≤ sup

k∈Z,1≤i≤r

∑

l∈Z

r∑

j=1

∑

n∈Z

r∑

m=1

∣
∣φi(n + am + δn

m − k) − φi(n + am − k)
∣
∣

× ∣
∣φj(n + am + δn

m − l) − φj(n + am − l)
∣
∣

= sup
k∈Z,1≤i≤r

∑

n∈Z

r∑

m=1

∣
∣φi(n + am + δn

m − k) − φi(n + am − k)
∣
∣

×
∑

l∈Z

r∑

j=1

∣
∣φj(n + am + δn

m − l) − φj(n + am − l)
∣
∣

≤
(

r∑

m=1

∥
∥φm

∥
∥
Lλ
am [a,b]

)2(

sup
n,m

|δn
m|2

)

.

(5.9)

Hence

Δ ≤
∑

k∈Z

r∑

i=1

(
cki

)2
(

r∑

m=1

∥∥φm

∥∥
Lλ
am [a,b]

)2(

sup
n,m

|δn
m|λ

)2

. (5.10)

From the argument in Theorem 3.6, {q(n + ai, ·) : n ∈ Z, 1 ≤ i ≤ r} is a frame for the
closed subspace V0. By (3.25), then

r∑

i=1

∑

n∈Z

∣∣f(n + ai)
∣∣2 =

r∑

i=1

∑

n∈Z

∣∣〈f, q(n + ai)
〉∣∣2 ≥ C

∥∥f
∥∥2 ≥ C

r∑

i=1

∥∥f
∥∥
i. (5.11)

Again from the proof process in Theorem 3.6, obviously,

∥∥fi
∥∥2 ≥

∑

k∈Z

∣∣〈fi, qi(k + ai, ·)
〉∣∣2

=
∑

k∈Z

∣∣fi(k)
∣∣2

=
1
2π

∥∥∥∥∥

∑

k∈Z

∑

l∈Z
cliφi(k − l)e−ikω

∥∥∥∥∥

2

∗

=
1
2π

∥∥∥∥∥
φ̂∗
i

∑

k∈Z
cki

∥∥∥∥∥

2

∗

≥ A2
i

∑

k∈Z

(
cki

)2

(5.12)
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holds, where ‖f‖∗ is defined by

∥
∥f

∥
∥
∗ =

(∫2π

0

∣
∣f(t)

∣
∣2
)1/2

, (5.13)

then

r∑

i=1

∑

n∈Z

∣
∣f(n + ai)

∣
∣2 ≥ CMin

{
A2

1, A
2
2, . . . , A

2
r

} r∑

i=1

∑

k∈Z

(
cki

)2
. (5.14)

By Theorem 4.2, we only need to show that

(
r∑

m=1

∥∥φm

∥∥
Lλ
am [a,b]

)2(

sup
n,m

|δn
m|λ

)2

≤ θ2C. (5.15)

This is exactly implied by (5.5). We get the desired result.

6. Conclusion

Multiwavelets have orthogonality, regularity, short compact support, symmetry, and high
approximation order. It is not possible in the scalar wavelet case. In our paper, we study the
sampling theorem for frames in multiwavelet subspaces and obtain the sufficient condition
under which the regular sampling theorem holds. Notice that the measurements may
not be made at uniform points; we establish an irregular sampling theorem for frame in
multiwavelet subspaces. Finally, an estimate for the perturbations of regular sampling in
shift-invariant spaces is derived.
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