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We study a problem of energy exchange in a system of two coupled oscillators subject to
1 : 1 resonance. Our results exploit the concept of limiting phase trajectories (LPTs). The LPT,
associated with full energy transfer, is, in certain sense, an alternative to nonlinear normal modes
characterized by conservation of energy. We consider two benchmark examples. As a first example,
we construct an LPT and examine the convergence to stationary oscillations for a Duffing oscillator
subjected to resonance harmonic excitation. As a second example, we treat resonance oscillations
in a system of two nonlinearly coupled oscillators. We demonstrate the reduction of the equations
of motion to an equation of a single oscillator. It is shown that the most intense energy exchange
and beating arise when motion of the equivalent oscillator is close to an LPT. Damped beating and
the convergence to rest in a system with dissipation are demonstrated.

1. Introduction

The problem of passive irreversible transfer of mechanical energy (referred to as energy
pumping) in oscillatory systems has been studied intensively over last decades; see, for
example, [1, 2] for recent advances and references. In this case, the key role of transient
process is evident, in contrast to great majority of conventional problems of nonlinear
dynamics, in which the main attention has been given to nonlinear normal modes (NNMs),
characterized by the conservation of energy. Recent studies [3, 4]; have shown that the NNM
approach is effective in the case of weak energy exchange, while the concept of the limiting
phase trajectories (LPT) can be used to describe intense energy exchange between weakly
coupled oscillators or oscillatory chains.
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The limiting phase trajectory (LPT) has been introduced [3] as a trajectory
corresponding to oscillations with the most intensive energy exchange between weakly
coupled oscillators or an oscillator and a source of energy; the transition from energy
exchange to energy localization at one of the oscillators is associated with the disappearance
of the LPT. Recently, the LPT ideas have been applied to the analysis of resonance-forced
vibrations in a 1DOF and 2DOF nondissipative system [3–6]. An explicit expression of the
LPT in a single oscillator [5, 6] is prohibitively difficult for practical utility. The purpose of
the present paper is to show that explicit asymptotic solutions can be obtained for a class
of problems that are associated with the maximum energy exchange, and introduce relevant
techniques.

The paper is organized as follows. The first part is concerned with the construction
of the LPT for the Duffing oscillator subject to 1 : 1 resonance harmonic excitation. In
Section 2 we briefly reproduce the results of [5, 6]. We derive the averaged equations
determining the slowly varying envelope and the phase of the nonstationary motion
and then construct the LPT for different types of motion. Section 3 introduces the
nonsmooth temporal transformations as an effective tool of the nonlinear analysis. Section 4
examines the transformations of the LPT into stationary motion in the weakly dissipated
system.

In the remainder of the paper (Section 5), we analyse the dynamics of a 2DOF
system. The system consists of a linear oscillator of mass M (the source of energy) coupled
with a mass m (an energy sink) by a nonlinear spring with a weak linear component.
Excitation is due to an initial impulse acting upon the mass M. It is shown that motion of
the overall structure can be divided into two stages. The first stage is associated with the
maximum energy exchange between the oscillators; here, motion is close to beating in a
nondissipative system. At the second stage, trajectories of both masses in the damped system
are approaching to rest. The task is to construct an explicit asymptotic solution describing
both stages of motion for each oscillator. To this end, we reduce the equations of a 2DOF
system to an equation of a single oscillator and then find beating oscillations characterizing
the most intense energy exchange in a nondissipative system. A special attention is given to a
difference between the dynamics of the Duffing oscillator and an equivalent oscillator in the
presence of dissipation. While the Duffing oscillator is subjected to harmonic excitation, the
2DOF system is excited by an initial impulse applied to the linear oscillator. The response of
the linear oscillator, exponentially vanishing at t → ∞, stands for an external excitation for
the nonlinear energy sink. We examine the transformation of beating to damped oscillations.
We show that a solution of the system, linearized near the rest state, is sufficient to describe
the second part of the trajectory.

2. Resonance Oscillations of the Duffing Oscillator

2.1. Main Equations

We investigate the transient response of the Duffing oscillator in the presence of resonance
1:1. The dimensionless equation of motion is

d2u

dt2
+ 2εγ

du

dt
+ u + 8αεu3 = 2εF sin(1 + εs)t, (2.1)
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where ε > 0 is a small parameter. We recall that maximum energy pumping from the source
of excitation into the oscillator takes place if the oscillator is initially at rest; this corresponds
to the initial conditions

t = 0+, u = 0,
du

dt
= 0. (2.2)

An orbit satisfying conditions (2.2) is said to be the limiting phase trajectory [3].
In order to describe the nonlinear dynamics, we invoke a complex-valued transforma-

tion [7–9]. Introduce the variables ψ and ψ∗, such that

u =
1
2i
(
ψ − ψ∗

)
, v =

1
2
(
ψ + ψ∗

)
,

ψ = v + iu, ψ∗ = v − iu,
(2.3)

where i =
√
−1; the asterisk denotes complex conjugate. It will be shown that only one

complex function is sufficient for a complete description of the dynamics. Inserting ψ, ψ∗

from (2.3) into (2.1), a little algebra shows that (2.1) is equivalent to the following (still exact)
equation of motion

dψ

dt
− iψ + εiα

(
ψ − ψ∗

)3 + εγ
(
ψ + ψ∗

)
− 2εF sin(1 + εs)t = 0. (2.4)

Applying the multiple scales method [10, 11], we construct an approximate solution
of (2.4) as an expansion

ψ(t, ε) = ψ0(τ0, τ1) + εψ1(τ0, τ1) + · · · ,

d

dt
=

∂

∂τ0
+ ε

∂

∂τ1
,
d2

dt2
=

∂2

∂τ2
0

+ 2ε
∂2

∂τ0∂τ1
+ · · · ,

(2.5)

where τ0 = t and τ1 = εt are the fast and slow time-scales, respectively. A similar
representation is valid for the function ψ∗. Then we substitute expressions (2.5) in (2.4) and
equate the coefficients of like powers of ε. In the leading order approximation, we obtain

∂ψ0

∂τ0
− iψ0 = 0,

ψ0(τ0, τ1) = ϕ0(τ1)eiτ0

(2.6)

A slow function ϕ0(τ1) will be found at the next level of approximation. Equating the
coefficients of order ε leads to

∂ψ1

∂τ0
+
dϕ0

dτ1
eiτ0 − iψ1 + iα

(
ψ0 − ψ∗0

)3 + γ
(
ψ0 + ψ∗0

)
+ iF

(
ei(τ0+sτ1) − e−i(τ0+sτ1)

)
= 0, (2.7)
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In order to avoid the secular growth of ψ1(τ0, τ1) in τ0, that is, avoid a response not
uniformly valid with increasing time, we eliminate resonance terms from (2.7). This yields
the following equation for ϕ0:

dϕ0

dτ1
+ γϕ0 − 3iα

∣
∣ϕ0

∣
∣2
ϕ0 = −iFeisτ1 , ϕ0(0) = 0. (2.8)

Next we introduce the polar representation

ϕ0 = aeiδ, (2.9)

where a and δ represent a real amplitude and a real phase of the process ϕ0(τ1). Inserting
(2.9) into (2.8) and setting separately the real and imaginary parts of the resulting equations
equal to zero, (2.8) is transformed into the system

da

dτ1
+ γa = − F sinΔ,

a
dΔ
dτ1

= − sa + 3αa3 − F cosΔ,

(2.10)

where a > 0, Δ = δ −sτ1. It now follows from (2.3), (2.9) that

u(t, ε) = a(τ1) sin(t + Δ(τ1)) +O(ε). (2.11)

This means that the amplitude a(τ1) and the phase Δ(τ1) completely determine the process
u(t,ε) (in the leading-order approximation). Note that a = 0 if the oscillator is not excited.

2.2. Critical Parameters and LPTs of the Undamped Oscillator

In this section, we recall main definitions and results concerning the dynamics of the
nondissipative system. In the absence of damping, system (2.10) is rewritten as

da

dτ1
= − F sinΔ,

a
dΔ
dτ1

= − sa + 3αa3 − F cosΔ.

(2.12)

It is easy to prove that system (2.12) conserves the integral of motion

H =
3
4
αa4 − sa

2

2
− Fa cosΔ = H0, (2.13)
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where H0 depends on initial conditions. In the phase plane, the LPT corresponds to the
contour H = 0, as only in this case a system trajectory goes through the point a = 0. Taking
H0 = 0, we obtain the following expression:

H = a
(

3
4
αa3 − s

2
a − F cosΔ

)
= 0. (2.14)

Formula (2.14) implies that the LPT has two branches, the first branch is a = 0; the
second branch satisfies the cubic equation

3
4
αa3 − s

2
a − F cosΔ = 0. (2.15)

Equality (2.15) determines the second initial condition a(0+) = 0, cosΔ(0+) = 0. We
suppose that da/dτ1 > 0 at τ1 = 0+; under this assumption, Δ(0+) = −π/2. Hence the initial
conditions for the LPT take the form

τ1 = 0+, a(0+) = 0,Δ(0+) = −π
2
. (2.16)

Throughout this paper, we write 0 instead of 0+, except as otherwise noted.
Next we determine critical parameters of system (2.12). The steady states of (2.12)

satisfies the equations

da

dτ1
= 0,

dΔ
dτ1

= 0. (2.17)

The second equation is equivalent to the equality

−sa + 3αa3 − F sgn(cosΔ) = 0, (2.18)

where cosΔ = ±1. We analyze the properties of (2.18) considering the properties of its
discriminant D1

D1 =
1

9α2

(
F2

4
− s3

81α

)

. (2.19)

If D1 < 0, (2.18) has 3 different real roots; if D1 > 0, (2.18) has a single real and two
complex conjugate roots; if D1 = 0, two real roots will merge; see, for example, [12]. The
latter condition gives the first critical value of the parameter α

α∗1 =
4s3

81F2
. (2.20)

A straightforward investigation proves that, if α > α∗1 (strong nonlinearity), there exists
only a single stable centre C+: (0, a+) (Figure 1); if α < α∗1 (weak nonlinearity), there exist two
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Figure 1: Phase portrait (a) and plot of a(τ1) (b) for s = 0.4, F = 0.13, α = 0.187 = α∗1.

stable centres C−: (−π , a−), C +: (0, a+), and an intermediate unstable hyperbolic point O: (−π ,
a0), see Figures 2 and 3.

We now suppose that α < α∗1, that is the system may exhibit both types of oscillations,
either near Δ = −π , or near Δ = 0 (Figures 2–4). In both cases, the LPT begins at a = 0, Δ
= −π/2 but the run of the LPT depends on the relationship between the parameters. In order
to find a critical value α∗2 < α∗1 ensuring the transition from small to large oscillations, we
analyze (2.15). Consider the discriminant of (2.15)

D2 =
4
α2

(

F2 − 2s3

81α

)

(2.21)

In the critical case α = α∗2, an unstable hyperbolic point coincides with the maximum of the
left branch of the LPT at Δ = −π (Figure 2). This means that D2 = 0 at α∗2, or

α∗2 =
2s3

81F2
=
α∗1
2
, (2.22)

which defines a boundary between small quasilinear (α < α∗2) and large nonlinear (α > α∗2)
oscillations. In particular, for s = 0.4, F = 0.13 we obtain α∗2 = 0.0935 (Figure 2).

Figures 3 and 4 are plotted for α < α∗2 and α > α∗2, respectively. In Figure 3(a), one
can see the LPT encircling the center C− of relatively small oscillations; Figure 4(a) shows the
LPT encircling the centre C+ of large oscillations; this case is associated with the maximum
energy absorption. Figures 3(b) and 4(b) demonstrate the behavior of the function a(τ1)
corresponding to the respective branch of the LPT. Note that both branches of the LPT begin
at the same point a = 0, Δ = −π/2.

If α = α∗1 = 2α∗2, the above-mentioned coincidence of the stable and unstable points at
Δ = −π results in the transformation of the phase portraits (Figure 1) and disappearance of
the stable centre C −. Figure 1(a) demonstrates a single stable fixed point at Δ = 0.
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Figure 2: Passage from small to large oscillations: α = 0.0935 = α∗2.
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Figure 3: Phase portrait (a) and plot of a(τ1) (b) for quasilinear oscillations: s = 0.4, F = 0.13, α = 0.093 < α∗2.
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Figure 4: Phase portrait (a) and plot of a(τ1) (b) for strongly nonlinear oscillations: s = 0.4, F = 0.13, α∗2 < α
= 0.094 < α∗1.
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Figure 5: Potential Ψ(a) in the small (a) and large (b) scales.

2.3. Reduction to the 2nd-Order Equation

For the further analysis, it is convenient to reduce the equation of the LPT to the second-order
form. Using (2.15) to exclude Δ, we obtain the following equation:

d2a

dτ2
1

+ f(a) = 0,

a = 0,
da

dτ1
= F at τ1 = 0,

(2.23)

where

f(a) =
a

4

(
3
2
αa2 − s

)(
9
2
αa2 − s

)
=
dΨ(a)
da

,

Ψ(a) =
a2

8

(
3
2
αa2 − s

)2

.

(2.24)

Note that (2.23) can be treated as the equation of a conservative oscillator with potential Ψ(a),
yielding the integral of energy

E =
1
2
v2 + Ψ(a) =

1
2
F2, v =

da

dτ1
. (2.25)

Figure 5 depicts the potential Ψ(a) in the small and large scales for system (3.1) with
the parameters α = 1/3, s = 1/4. The phase portrait is given in Figure 6.

The amplitude of oscillations A0 is defined by the following equality (see Figure 6(b)):

E = Ψ(A0) =
1
2
F2. (2.26)



Mathematical Problems in Engineering 9

−0.1

−0.05

0ν

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

a

(a)

−2

−1.5

−0.5

0.5

−1

0ν

1

1.5

2

0 0.5 1 1.5 2A0

a

(b)

Figure 6: Phase portraits of (2.23) in the small (a) and large (b) scales.

From (2.25) we have v = da/dτ1 = ±
√
F2 − 2Ψ(a). Thus, the half-period of oscillations

is defined as

T1(A0) =
∫A0

0

da
√
F2 − 2Ψ(a)

. (2.27)

It follows from Figures 1 and 6 that a high-energy system is weakly sensitive to the
shape of the potential; the orbit is close to the straight line until it reaches the wall of the
potential well. This implies that motion of system (2.23) is similar to the dynamics of a
particle moving with constant velocity between two motion-limiters. A connection between
the smooth and vibro-impact modes of motion in a smooth nonlinear oscillator has been
revealed in [13, 14]; a detailed exposition of this approach can be found in [2, Chapter 6].

The vibro-impact hypothesis suggests that the time T ∗1 to reach A0 is calculated as

T ∗1 =
A0

F
. (2.28)

Note that T ∗1 < T1, as the vibro-impact approximation ignores the deceleration of
motion in the vicinity of A0, when the velocity falls below the maximum level F. Formally, T ∗1
can be found from (2.27) by letting Ψ(a) = 0.

3. Analysis of the Transient Dynamics

In what follows, we consider the dynamics of a weakly damped oscillator with strong
nonlinearity (α > α∗); it is often the case of particular interest.

As seen in Figure 7, the damped system exhibits strongly nonlinear behavior on the
time interval [0, T ∗1 ]; an instant T ∗1 corresponds to the first maximum of the function a(τ1).
After that motion becomes similar to smooth oscillations about the stationary point. This
allows separating the transient dynamics into two stages. While on the interval 0 ≤ τ1 ≤ T ∗1
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Figure 7: Phase portrait (a) and plot of a(τ1) (b) for strongly nonlinear oscillations in a dissipative system.

motion is close to the LPT of the undamped system, at the second stage, τ1 ≥ T ∗1 , motion is
similar to quasilinear oscillations.

In the remainder of this section we investigate a segment of the trajectory on the
interval [0, T ∗1 ]. The task is to calculate an instant T ∗1 and the values a(T ∗1 ) and Δ(T ∗1 )
determining the starting point for the second interval of motion. For simplicity, we assume
that dissipation is sufficiently small and may be ignored on the interval [0, T ∗1 ]. This allows
one to approximate the first part of the trajectory by a corresponding segment of the LPT of
the nondissipative system.

As mentioned above, the dynamics of a strongly nonlinear oscillator is similar to
free motion of a particle moving with constant velocity between two motion-limiters. This
allows us to employ the method of nonsmooth transformations [1, 2] in the study of strongly
nonlinear oscillations.

At the first step, we introduce nonsmooth functions τ(φ) and e(φ) = dτ /dφ defined as
follows:

τ = τ
(
φ
)
=

2
π

∣∣∣∣arcsin
(

sin
πφ

2

)∣∣∣∣,

e
(
φ
)
= 1, 0 < φ ≤ 1, e

(
φ
)
= − 1, 1 < φ ≤ 2,

(3.1)

where φ = Ωτ1, the frequency Ω will be found below. Plots of functions (3.1) are given in
Figure 8. In a general setting, the solution of (2.12) is constructed in the form

a(τ1) = X1(τ) + e
(
φ
)
Y1(τ), Δ(τ1) = X2(τ) + e

(
φ
)
Y2(τ),

d

dτ1
= Ω

(
e
∂

∂τ
+

∂

∂φ

)
.

(3.2)

We recall that ∂e/∂φ = δ(φ − n), where δ(φ − n) is Dirac’s delta-function, n = 1, 2, . . . .
We exclude δ-singularity by requiring

Y1,2 = 0 at τ = 1, 2, . . . . (3.3)
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This implies that

da

dτ1
= Ω

(
e
∂X1

∂τ
+
∂Y1

∂τ

)
,

dΔ
dτ1

= Ω
(
e
∂X2

∂τ
+
∂Y2

∂τ

) (3.4)

provided Y1,2 = 0 at τ = 1, 2,. . . . To derive the equations for Xi, Yi, i = 1, 2, we insert (3.4) into
(2.12) and separate the terms with and without e. This yields the set of equations

Ω
∂Y1

∂τ
= −F sinX2 cosY2,

Ω
∂X1

∂τ
= −F sinY2 cosX2,

Ω
(
X1

∂Y2

∂τ
+ Y1

∂X2

∂τ

)
+ sX1 − 3αX3

1 − 9αX1Y
2
1 = −F cosY2 cosX2,

Ω
(
X1

∂X2

∂τ
+ Y1

∂Y2

∂τ

)
= F sinY2 sinX2.

(3.5)

It is easy to prove that (3.5) are satisfied by Y1 = 0, X2 = 0. Under these conditions, the
variables X1 and Y2 satisfy the equations similar to (2.12)

Ω
∂X1

∂τ
+ F sinY2 = 0,

ΩX1
∂Y2

∂τ
+ sX1 − 3αX3

1 + F cosY2 = 0,

(3.6)
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with the initial conditions X1 = 0, Y2 = −π/2 at τ = 0. System (3.6) is integrable, yielding the
integral of motion similar to (2.14)

3
4
αX3

1 −
s

2
X1 − F cosY2 = 0. (3.7)

Then, it follows from (3.3) and (3.6) that

∂X1

∂τ
= 0 at Y2 = 0, τ = 1. (3.8)

It is worth noting that equalities (3.8) have a clear physical meaning: they represent the condition
of maximum of X1 at Y2 = 0.

For the further analysis, it is convenient to transfer (3.6) into the second-order form.
Using (3.7) to exclude Y2, the resulting equation and the initial conditions are written as

Ω2
∂2X1

∂τ2
+ f(X1) = 0,

X1 = 0, Ω
dX1

dτ
= F,

(3.9)

where f (X1) is defined by (2.24). A precise solution of (3.9), expressed in terms of elliptic
functions, is prohibitively difficult for practical utility [6, 13]. In order to highlight the
substantial dynamical features, the solution to (3.6), (3.9) is expressed in terms of successive
approximations

X1 = x0 + x1 + · · · , Y2 = y0 + y1 + · · · , Ω = Ω0(1 + ε1 + · · · ), (3.10)

where it is assumed that |x1(τ | � |x0(τ)|, |y1(τ | � |y0(τ)|, ε1 � 1 on an interval of interest.
The validity of this assumption will be tested below by numerical simulations. Since the
vibro-impact approximation is insensitive to the presence of the potential, the function x0

is chosen as the solution of the equation

∂2x0

∂τ2
= 0 (3.11)

with the initial conditions x 0 = 0, Ω0∂x0/∂τ = F at τ = 0. It follows from (3.11) that

x0(τ) = A0τ, A0Ω0 = F. (3.12)

From (3.1) and the maximum condition we have

Ω0T
∗
1 = 1, T ∗1 = Ω−1

0 =
A0

F
,

x0(τ) = Fτ1, 0 ≤ τ1 ≤ T ∗1 , x0
(
τ
(
T ∗1

))
= x0(1) = A0.

(3.13)
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We now recall that system (3.9) is conservative; it possesses the integral of energy

E1 =
1
2
V 2

1 +
1
Ω2

Ψ(X1) =
1

2Ω2
F2, V1 =

dX1

dτ
, (3.14)

where Ψ(X 1) is defined by (2.24). By analogy with (2.26), we obtain

Ψ(X1) =
1
2
F2 at τ = 1. (3.15)

Inserting (3.10), (3.12) into (3.15) and ignoring small terms, we then have the equation
to determine A0

Ψ(A0) =
1
2
F2. (3.16)

Given A0, we obtain from T ∗1 = A0/F (see (2.28)).
The approximation x 1 is governed by the following equation:

Ω2
0
∂2x1

∂τ2
= −f(x0),

x1(τ) = −Ω−2
0

∫ τ

0
(τ − ξ)f(A0ξ)dξ,

(3.17)

Given A0 and Ω0, formula (3.17) yields

x1(τ) = −
A0τ

3

4Ω2
0

[
9α2

56
(A0τ)4 − 3sα

5
(A0τ)2 +

s2

6

]

. (3.18)

We now find the function Y2(τ). Arguing as above, we construct Y2 = y0 + y1, where
y0 can be found from the first equation (3.6), in which we let X1 = x0. This yields

y0 = − arcsin
(

F

A0Ω0

)
= −π

2
, 0 < τ < 1. (3.19)

The term y1(τ) is defined by the second equation (3.6). As before, we take X1 = x0 and
exclude cosY2 by (3.7) to get

∂y1

∂τ
=

1
Ω0

(
−s

2
+

9
4
αA2

0τ
2
)
,

y1(τ, t0) =
1
Ω0

(
−sτ

2
+

3
4
αA2

0τ
3
)
.

(3.20)
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Figure 9: LPT of system (2.12) (a) and solution a(τ1) of system (2.10) (b) solid line—numerical solution;
dashed line—the leading-order approximation x0; dot-and-dash line—the first order approximation x0 +
x1.

As an example, we calculate the LPT for system (2.12) with the parameters

γ = 0, s = 0.2, α = 0.333, F = 1 (3.21)

and compare the results with the numerical solution for system (2.10), in which γ = 0.04.
Calculations by formulas (3.13), (3.16) give A0 = 1.67, T ∗1 = Ω−1

0 = 167. Thus we have
the maximum M = X1(T ∗1 ) ≈ 1.67 at T ∗1 ≈ 1.67 in the leading-order approximation and M1 ≈
1.67 at T ∗1 ≈ 2 for the numerical solution a(τ1) (Figure 9(a)); for system (2.10) with γ = 0.05
the numerical solution gives the maximum M ≈ 1.56 at T ∗1 ≈ 2.1. This confirms that small
dissipation can be ignored over the interval 0 ≤ τ ≤ T ∗.

It is easy to check by a straightforward calculation that the correction x 1 is negligible.
In a similar way, one can evaluate the small term y1.

4. Quasilinear Oscillations

In this section, we examine quasilinear oscillations on the second interval of motion, τ > 1. It
is easy to see that an orbit of the dissipative system tends to its steady state as τ → ∞. The
steady state O: (a0, Δ0) for system (2.10) is determined by the equality

a2
[(
s − 3αa2

)2
+ γ2

]
= F2, (4.1)
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or, for sufficiently small γ ,

γa0 = −F sinΔ0, sa0 − 3αa3
0 = −F cosΔ0,

Δ0 ≈ −
γa0

F
+O

(
γ3
)
, a0

(
s − 3αa2

0

)
= −F +O

(
γ2
)
.

(4.2)

Let ξ = a − a0, β = Δ − Δ0 denote deviations from the steady state. In addition, we
must impose the matching conditions

a0 + ξ = x∗0,
dξ

dτ1
= 0 at τ1 = T ∗1 , (4.3)

where x∗0 = x0(T ∗1 ), T
∗
1 is determined by (2.28).

We suppose that the contribution of nonlinear force in oscillations near O is relatively
small. Under this assumption, one can consider the system linearized near O

dξ

dτ1
+ Fβ = − γξ,

dβ

dτ1
− k1

a0
ξ = − γβ,

(4.4)

where k1 = 9αa2
0 − s. If k1 > 0, the solution of system (4.4) takes the form

ξ(z) = c0e
−γ(τ1−T∗1 ) cos κ

(
τ1 − T ∗1

)
, β(z) = rc0e

−γ(τ1−T∗1 ) sin κ
(
τ1 − T ∗1

)
, τ1 − T ∗1 > 0,

(4.5)

where we denote c0 = x∗0 − a0, κ2 = Fk1/a0 > 0, r = κ/F. In particular, taking the parameters
(3.21) we find x∗0 = 1.46, a0 = 1.065, Δ0 = 0.1, k1 = 3.2, and, therefore, c0 = 0.395, κ =

√
3.

Figure 10 demonstrates a good agreement between a numerical solution of (2.10) with
parameters (3.21) (solid line) and an approximate solution found by matching the segment
(3.12) (dot-and-dash) with the solution (4.5) of the linearized systems (dash) at the point
T ∗1 . Despite a certain discrepancy in the initial interval of motion, the numerical and analytic
solutions approach closely as τ1 increases. This implies that a simplified model (3.12), (3.16)
matched with solution (4.5) suffices to describe a complicated near-resonance dynamics.

Arguing as above, one can obtain the solution in case k1 < 0. Denoting k2 = F|k1|/a0

and assuming γ � k, we find a solution similar to (4.5) with cosh(k(τ1 − T ∗1 )) and sinh(k(τ1 −
T ∗1 )) in place of cos(κ(τ1 − T ∗1 )) and sin(κ(τ1 − T ∗1 )), respectively.

We now correlate numerical and analytic results. As seen in Figure 11, the first
maximum of the slowly varying envelope of the process u(t,ε) equals M1 ≈ 1.5; it is reached
at the instant t∗ ≈ 20, or T ∗1 ≈ 2; the second maximum M2 ≈ 1.4 is at t∗ ≈ 60, T ∗1 ≈ 6, the third
maximum M3 ≈ 1.3 is at t∗ ≈ 100, T ∗1 ≈ 10, and so forth. When these results are compared
with that of Figure 10, it is apparent that the numerically constructed envelope is in a good
agreement with the asymptotic approximations of the function a(τ1).
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Figure 10: Transient dynamics of system (2.10): numerics (solid); segment (3.12) (dot-and-dash); solution
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Figure 11: Numerical integration of (2.1): ε = 0.1, s = 0.2, α = 0.333, F = 1, γ = 0.05.

5. Dynamics of a 2DOF System

5.1. Reduction of a 2DOF System to a Single Oscillator

In this section we present a reduction of the dynamical equations of a 2DOF system to an
equation of a single oscillator. The system consists of a linear oscillator of mass M (the source
of energy) coupled with a mass m (an energy sink) by a nonlinear spring with a weak linear
component. For brevity, we consider the nonlinear spring with cubic nonlinearity. In this case,
the equations of motion and the initial conditions have the following form:

M
d2x1

dt2
+ γ̃

dx1

dt
+ k1x1 + k3(x1 − x2)3 +D(x1 − x2) + η̃

(
dx1

dt
− dx2

dt

)
= 0,

m
d2x2

dt2
− k3(x1 − x2)3 −D(x1 − x2) − η̃

(
dx1

dt
− dx2

dt

)
= 0,

(5.1)
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with the initial conditions

t = 0 : x1 = x2 = 0 :
dx1

dt
= V0 > 0,

dx2

dt
= 0. (5.2)

Here x1 and x2 are the displacements of the masses M and m, respectively; k1 > 0
is the stiffness of linear spring; k3 > 0 is the coefficient of nonlinear coupling between the
linear oscillator and the sink; D is the coefficient of linear coupling (D < 0 corresponds to a
system with multiple states of equilibrium); the coefficients γ̃ and η̃ characterize dissipation
in the linear oscillator and the coupling, respectively. For simplicity, we let γ̃ = 0. Note that
energy transfer cannot be activated in a nonexited system. In the absence of external forcing,
it requires nonzero initial conditions for at least a single unit.

In what follows we assume that m/M = ε2 � 1. Then, we introduce the dimensionless
time variable τ0 = ω0t, where ω0 =

√
k1/M. In these notations, system (5.1) becomes

d2x1

dτ2
0

+ x1 + ε2c(x1 − x2)3 + ε3d(x1 − x2) + ε3η

(
dx1

dτ0
− dx2

dτ0

)
= 0,

d2x2

dτ2
0

− c(x1 − x2)3 − εd(x1 − x2) − εη
(
dx1

dτ0
− dx2

dτ0

)
= 0,

τ0 = 0 : x1 = x2 = 0; v1 = εv0, v2 = 0,

(5.3)

where we denote

ε2c =
k3

k1
, ε3d =

D

k1
, ε3η =

η̃
√
k1M

, εv0 =
V0

ω0
, vi =

dxi
dτ0

. (5.4)

In addition, we consider the relative displacement u = x2 – x1, du/dτ0 = v satisfying
the equation

d2u

dτ2
0

+
d2x1

dτ2
0

+ εη
du

dτ0
+ cu3 + εdu = 0, (5.5)

with the initial conditions τ0 = 0: u = 0, v = −ε v0. Using (5.3), (5.5), the variable x1 can be
excluded. We recall that oscillations in the damped system vanish at rest O1: (x1 = x2 = 0, v1

= v2 = 0) as τ0 → ∞. This implies that the effect of dissipation, whatever small it might be,
must be considered in the approximate solution; otherwise, the convergence toO1 is ignored.
Hence the solution of the first equation (5.3) should be written as

x1(τ0) = εv0hε(τ0) sin τ0 − ε2c

∫ τ0

0
hε(τ0 − s) sin(τ0 − s)u3(s)ds + ε3 . . . ,

hε(τ0) = e−(ε
3η/2)τ0 ,

(5.6)
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and, by (5.6),

d2x1

dτ2
0

= − εv0hε(τ0) sin τ0 − ε2cu3(τ0) + ε2c

∫ τ0

0
hε(τ0 − s) sin(τ0 − s)u3(s)ds + ε3 · · · . (5.7)

Next, we insert (5.7) into (5.5) and ignore small terms insubstantial for the asymptotic
analysis. As a result, we obtain the following equation:

d2u

dτ2
0

+ εη
du

dτ0
+ cu3 + εdu = εv0hε(τ0) sin τ0 − εcε(τ0),

cε(τ0) = εcIε, Iε =
∫ τ0

0
hε(τ0 − s) sin(τ0 − s)u3(s)ds,

(5.8)

with the initial conditions u(0) = 0, v(0) = −ε v0. We will show that, under conditions of 1:1
resonance, Iε(τ0) ∼ ε−1, cε(τ0) ∼ 1; this means that the integral term should be taken into
consideration in the asymptotic analysis.

Formula (5.8) represents a nonhomogeneous integro-differential equation with respect
to u, that is above transformations reduce the original 2DOF system to a single oscillator of a
more complicated structure. The initial condition v(0) = −ε v0 implies that initially the system
is close to rest, and the trajectory of system approaches the LPT of (5.8). Thus the task is to
construct the LPT for the integro-differential equation (5.8).

5.2. Equations of the Resonance Dynamics

To study the system subject to 1:1 resonance, we rewrite (5.8) in the form

du

dτ0
− v = 0,

dv

dτ0
+ (1 + 2εσ)u + εμ

(
cu3 − u

)
+ ε

(
ηv − v0hε(τ0) sin τ0

)
+ εcε (τ0) = 0,

u(0) = 0, v(0) = − εv0.

(5.9)

In (5.9), we denote μ = 1/ε, σ = d/2. The resonance conditions imply that the parenthetical
expression with factor εμ is relatively small compared to all other terms of order 1.

As in Section 2, we use complex-valued transformations (2.5) and the multiple time-
scale method. Inserting (2.5) into (5.9), we then have

dψ

dτ0
− i(1 + εσ)ψ + εμi

[
c

8
(
ψ − ψ∗

)3 +
1
2
ψ − ψ∗

]

+ ε
(η

2
(
ψ + ψ∗

)
− iσψ∗ − v0hε(τ0) sin τ0

)
− εCε(τ0) = 0,

Cε(τ0) = εi
c

8

∫ τ0

0
hε(τ0 − s) sin(τ0 − s)

(
ψ − ψ∗

)3
ds

(5.10)
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Then we construct an approximate solution of (5.10) in terms of expansions (2.5) with the
slow and fast tine scales τ0 = t, τ1 = εt, respectively.

For the resonance effect to be considered in a proper way, the leading-order equation
and its solution should be

∂ψ0

∂τ0
− i(1 + εσ)ψ0 = 0,

ψ0(τ0, τ1) = ϕ0(τ1)ei(1+εσ)τ0 .

(5.11)

The function ϕ0(τ1) can be found from the equation

∂ψ1

∂τ0
+
dϕ0

dτ1
ei(1+εσ)τ0 − i(1 + εσ)ψ1 + iμ

[
c

8
(
ψ0 − ψ∗0

)3 +
1
2
ψ0 − ψ∗0

]

+ η
ψ + ψ∗

2
− iσψ∗ − v0hε(τ0) sin τ0 + C0ε(τ0) = 0,

(5.12)

where C0ε(τ0) = εi(c/8)
∫τ0

0 hε(τ0 − s) sin(τ0 − s)(ψ0 − ψ∗0)
3ds.

To avoid secularity, we separate the resonance terms including ei(1+εσ)τ0 and then
equate the sum to zero. First, we evaluate C0ε(τ0). To do so, we present the cubic term as
(ψ0 − ψ∗0)

3 = −3|ϕ0|2ϕ0e
i(1+εσ)τ0 + nonresonance terms, and then write C0ε(τ0) in the form

C0ε(τ0) = −ε
3c
16

∣∣ϕ0(τ1)
∣∣2
ϕ0(τ1)

∫ τ0

0
e−(ε

3η/2)(τ0−s)
(
ei(τ0−s) − e−i(τ0−s)

)
ei(1+εσ)sds + · · ·

= −ε3c
16

∣∣ϕ0(τ1)
∣∣2
ϕ0(τ1)[S1ε(τ0) − S2ε(τ0)] + · · · ,

(5.13)

where the nonresonance terms are omitted. Here we denote

S1ε(τ0) =
∫ τ0

0
e−(ε

3η/2)(τ0−s)ei(τ0−s)ei(1+εσ)sds =
ei(1+εσ)τ0

ε
(
iσ + ε2η

)
(

1 − e−[iσ+(ε3η/2)]τ0
)
,

S2ε(τ0) =
∫ τ0

0
e−(ε

3η/2)(τ0−s)e−i(τ0−s)ei(1+εσ)sds = e[i−(ε
3η/2)]τ0

∫ τ0

0
eε[i(2+σ)+ε

2η/2]sds ∼ O(1).

(5.14)

Ignoring S2 compared with S1, we calculate

C0ε(τ0) = −i
(

3c
16σ

)∣∣ϕ0(τ1)
∣∣2
ϕ0(τ1)

(
1 − h1ε(τ1)e−iστ1

)
ei(1+εσ)τ0 + nonresonance terms,

(5.15)

h1ε(τ1) = e−(ε
2η/2)τ1 . (5.16)
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If we sum the resonance constituents in all other terms of (5.12) and then equate the total sum
to zero, we obtain the equation

∂ϕ0

∂τ1
+ iμ

(
−3c

8
∣
∣ϕ0

∣
∣2
ϕ0 +

1
2
ϕ0

)
+
η

2
ϕ0 +

i

2
v0h1ε(τ1)e−iστ1

− i
3c

16σ
∣
∣ϕ0(τ1)

∣
∣2
ϕ0(τ1)

(
1 − h1ε(τ1)e−iστ1

)
= 0.

(5.17)

Then we insert the polar representation ϕ0 = aeiδ into (5.17) and set separately the real
and imaginary parts of the resulting equations equal to zero. In these transformations, the
last term in (5.17) can be omitted if 2μσ = μd >1. Under this assumption, we obtain

da

dτ1
= − γa − h1ε(τ1)F sinΔ,

a
dΔ
dτ1

= μa
(
−s + αa2

)
− h1ε(τ1)F cosΔ,

(5.18)

where Δ = δ + σ τ1, and σ = d/2, γ = η/2, α = 3c/8, s = (1/2)(1 − εd), F = v0/2.
By analogy with (2.16), we accept the initial conditions

a(0) = 0, Δ(0) = −π
2
. (5.19)

In the absence of dissipation (η = 0), system (5.18) takes the form

da

dτ1
= −F sinΔ,

a
dΔ
dτ1

= μa
(
−s + αa2

)
− F cosΔ,

(5.20)

which is very similar to (2.10). Critical parameters, stable centers, and the LPT for (5.20)
are derived in the same way as in Section 3. However, as mentioned above, steady state
positions of dissipated systems (2.10) and system (5.18) are different. This reflects the fact
that, while (2.10) is subjected to persistent harmonic excitation, the effect of an initial impulse
exponentially decreases with time. Therefore, the first segment of the trajectory (5.18) can be
approximated by a corresponding solution of (5.20) but the second segments convergences
to zero as τ1 =∞.

5.3. Dynamical Analysis of the Oscillator

5.3.1. Beating in a Nondissipative System

We now compare analytic and numerical results. We recall that numerical and experimental
studies [3, 4] have shown the effective energy exchange for sets of parameters. Following
[3, 4], we choose ε = 0.316 (ε2 = 0.1), c = 0.8, d = 0.632 (εd = 0.2), v0 = 2.215 (εv0 = 0.7). Note
that in this case μd = 2, and integral terms in (5.17) can be ignored.
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Figure 12: LPT of system (5.20) (a) and beating solution u(τ0) of (5.8).
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Figure 13: Plots of x1(τ0) (solid) and x2(τ0) (dash).

The LPT (Figure 12(a)) is calculated as a solution of (5.20) with initial conditions a(0)
= 0, Δ(0) = −π/2. One can see that the LPT approximates the envelope of the process u2(τ0)
(Figure 13) with an error about 10%. Thus we may conclude that the observed intense energy
exchange is associated with motion over the LPT.

We now calculate the critical parameter α∗1. Here we have μ2 = 10, F = 1.1075, εd = 0.2,
s = 0.4, and, by (2.20)

α∗1 =
3
8
, c∗1 =

4μ2s3

27F2
, c∗1 =

32μ2s3

81F2
= 0.205. (5.21)

Since the accepted value c 0.8 > c∗1 =, the resonance exchange takes place in the
domain of large oscillations demonstrated in Figure 1.
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Figure 14: Plots of x1(t) (solid) and x2(t) (dash) in the damped system.

5.3.2. The Transient Dynamics

Here we consider the resonance dynamics of a weakly dissipated system. We recall that, if
τ1 → ∞, the transient process in system (5.18) does not turn into a stationary process; it
vanishes at rest O: {a = 0}. To describe transient oscillations, we use the same arguments
as in Section 3. The trajectory is separated into two parts; motion is assumed to be close to
strongly nonlinear undamped oscillations over the interval [0, τ∗1 ]; then the orbit approaches
the point O with an exponentially decreasing amplitude of oscillations.

We note that the contribution of nonlinear force in oscillations near O is negligible. In
particular, this implies that the resonance construction of Section 5 is incorrect if τ1 is large
enough. In order to present the linearised dynamics, one can consider system (5.3) linearized
near the point O1: (x1 = x2 = 0, v1 = v2 = 0). Let ξ1 and ξ2 denote small deviations of x1, x2

from O1. A corresponding linearized system takes the form

d2ξ1

dτ2
0

+ ξ1 + ε3
[
d(ξ1 − ξ2) + η

(
dξ1

dt
− dξ2

dt

)]
= 0,

d2ξ2

dτ2
0

− εd(ξ1 − ξ2) − εη
(
dξ1

dt
− dξ2

dt

)
= 0.

(5.22)

In addition, we impose the matching constraints at τ0 = τ∗0 = τ∗1/ε, namely,

ξi = xi,
dξi
dτ0

=
dxi
dτ0

, (5.23)

where xi denotes the corresponding solution over [0, τ∗0 ].
Formally, one can reproduce above transformations and reduce system (5.22) to a

single integro-differential equation. However, a system of low dimensionality enables a
straightforward investigation.
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By definition, x1(τ∗0 ) ≈ 0 but |x2(τ∗0 )| is close to maximum, that is, dx2/dτ0 = dξ2/dτ0 ≈
0 at τ∗0 . The solution can be presented in the form

ξ1(τ0) = εv0e
−ε3η(τ0−τ∗0 )/2 sin

(
τ0 − τ∗0

)
,

ξ2(τ0) = C0e
−εη(τ0−τ∗0 )/2 cos

[√
εd

(
τ0 − τ∗0

)]
+ ε . . . ,

(5.24)

where ξ1(τ0) is defined by (5.6) with the negligible integral term (see discussion after (5.17));
ξ2(τ0) is obtained as a solution of the second equation in (5.22) provided ξ1(τ0) ∼ O(ε). It
is seen from (5.24) that the amplitude of ξ1(τ0) is much lesser than the amplitude of ξ2(τ0)
but the period and the rate of decay for ξ2(τ0) vastly exceed similar parameters for ξ1(τ0)).
Omitting detailed calculation, we note that the results of numerical simulation (Figure 14)
agree with the conclusions following from (5.23), (5.24). The parameters of simulations are
ε2 = 0.1, c = 0.8, εd = 0.2, εη = 0.2, εv0 = 0.7.

6. Conclusion

In this paper, we have extended the concept of the limiting phase trajectories (LPTs) to
dissipative oscillatory systems. Using this concept, we have constructed an approximate
solution describing the maximum energy exchange between coupled oscillators. The solution
consists of two parts: on an initial interval, the trajectory is close to the LPT of the
undamped system; then motion becomes similar to quasilinear oscillations, approaching an
asymptotically stable state. We have demonstrated a good agreement between numerical and
approximate analytical solutions for two typical examples, namely, the Duffing oscillator with
harmonic excitation and a system of two coupled oscillators excited by an initial impulse. In
addition, we have developed a procedure for reducing a 2DOF system to a single oscillator.
This allows us to obtain an approximate analytic solution describing the energy exchange
and beating with complete energy transfer in a 2DOF system.
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