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Runge-Kutta and Adams methods are the most popular codes to solve numerically nonstiff ODEs.
The Adams methods are useful to reduce the number of function calls, but they usually require
more CPU time than the Runge-Kutta methods. In this work we develop a numerical study of a
variable step length Adams implementation, which can only take preassigned step-size ratios. Our
aim is the reduction of the CPU time of the code by means of the precalculation of some coefficients.
We present several numerical tests that show the behaviour of the proposed implementation.

1. The Variable-Stepsize Adams Method

The Adams methods (Bashforth and Adams [1], Moulton [2]) are the most popular multistep
formulas to solve a non-stiff initial value problem

y′(x) = f
(
x, y(x)

)
, y(x0) = y0. (1.1)

These codes, and other interesting multistep methods, are based on the replacement of f(x,
y(x)) by an interpolating polynomial p(x), and the approximation

y(x + h) = y(x) +
∫x+h

x

f
(
t, y(t)

)
dt � y(x) +

∫x+h

x

p(t)dt. (1.2)
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When the stepsize is constant, the explicit k-step Adams-Bashforth method can be
written in terms of the backward differences of f ,

yn+1 = yn + h
k−1∑

j=0

γ∗j ∇
jfn, (1.3)

where the coefficients γ∗j are obtained by the recurrence

γ∗0 = 1, γ∗j = 1 −
j∑

i=1

γ∗j−i

i + 1
. (1.4)

The formulation of the implicit k-step Adams-Moulton is straightforward, as can be
seen, for example, by Lambert in [3, Section 3.9]. The implicit equation is usually solved
using a PECE fixed-point implementation [3, page 144], starting from an Adams-Bashforth
formula. The order of the k-step ABM pair is k + 1 (an exhaustive study of the order of a
predictor-corrector pair can be seen in [3, Section 4.2] ), and it is equivalent to the k-order pair
based on k-step Adams-Bashforth and (k − 1)-step Adams-Moulton with local extrapolation
[3, pages 114-115].

The γ∗j coefficients do not depend on the step length, so they remain constant in the
whole integration and need only be computed once. However, they do vary when the stepsize
hn = xn+1 − xn is not constant, so they must be recalculated in each step of the integration.

There are lots of different ways to implement a variable-stepsize variable-order
Adams code (actually one different for each developer). For example, codes as DEABM [4],
VODE [5] and LSODE [6, 7] include some controls to diminish the computational cost in
some situations by keeping the stepsize constant, or by avoiding the growth of the order.
Nowadays, symbolic programs such as Matlab and Mathematica as well as their numerical
solvers of ODEs ode113 [8] and NDSolve [9, pages 961–972,1068,1215-1216], are very popular.
We do not want to restrict our study to a particular code, so we will use in the tests a purer
implementation of the variable-stepsize Adams code, developed by ourselves, based on the
Krogh divided differences formulation [10].

Krogh developed a way to compute the Adams formulas in terms of modified divided
differences. Following the notation of Hairer et al. [11, pages 397–400], the variable-stepsize
explicit k-step Adams-Bashforth predictor is

pn+1 = yn + hn
k−1∑

j=0

gj(n)βj(n)φj(n), (1.5)

and the k-step Adams-Moulton corrector can be expressed as

yn+1 = pn+1 + hngk(n)φk(n + 1). (1.6)
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The coefficients can be calculated easily by the recurrences

β0(n) = 1, βj(n) = βj−1(n)
xn+1 − xn−j+1

xn − xn−j
, (1.7)

φ0(n) = fn, φj(n) = φj−1(n) − βj−1(n − 1)φj−1(n − 1). (1.8)

The calculation of gj(n) requires a double loop in terms of j and q:

c0,q(xn+1) =
1
q
,

cj,q(xn+1) = cj−1,q(xn+1) − cj−1,q+1(xn+1)
hn

xn+1 − xn−j+1
,

gj(n) = cj,1(xn+1).

(1.9)

The computational cost of the recalculation of gj(n) in each step is the major disadvantage of
the variable-stepsize Adams code when the cost is measured in CPU time.

2. The Stepsize Ratios

The coefficients “β(n)” and “g(n)” are scalar and they are independent of the function f . Let
us denote the ratios

ri =
hi+1

hi
. (2.1)

Then it is well known that dependence on the points xi in (1.7) and (1.9) is actually a
dependence only on the ratios ri.

2.1. The Coefficients in Terms of the Stepsize Ratios

Let us study the number of ratios needed for each coefficient.

Proposition 2.1. For j ≥ 1 the coefficient βj(n) only depends on the j ratios rn−1, rn−2, . . . , rn−j , and
for j ≥ 2 the coefficient gj(n) only depends on the j − 1 ratios rn−1, rn−2, . . . , rn−j+1.

Proof. We only need to apply the relation (with p > m)

xp − xm =
p−m−1∑

j=0

hm+j =
p−m−1∑

j=0

hm

j−1∏

i=0

rm+i

= hm · ϕp−m
(
rp−2, rp−3, . . . , rm

)
(2.2)
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to deduce that the fraction in (1.7) can be rewritten as

xn+1 − xn−j+1

xn − xn−j
=
hn−j+1 · ϕj

(
rn−1, rn−2, . . . , rn−j+1

)

hn−j · ϕj
(
rn−2, rn−3, . . . , rn−j

)

=
hn−j · rn−j · ϕj

(
rn−1, rn−2, . . . , rn−j+1

)

hn−j · ϕj
(
rn−2, rn−3, . . . , rn−j

)

= ψj
(
rn−1, rn−2, . . . , rn−j

)

(2.3)

and only depends on the j ratios rn−1, rn−2, . . . , rn−j . Using an inductive reasoning, starting
with the constant value β0(n) = 1, it follows that if j ≥ 1, then

βj(n) = Ψj

(
rn−1, rn−2, . . . , rn−j

)
. (2.4)

A similar proof can be developed for gj(n). Applying (2.2) to the fraction in (1.9),

hn
xn+1 − xn−j+1

=
hn−j+1 ·

∏j−2
i=0 rn−j+i+1

hn−j+1 · ϕj
(
rn−1, rn−2, . . . , rn−j+1

)

=

∏j−2
i=0 rn−j+i+1

ϕj
(
rn−1, rn−2, . . . , rn−j+1

)

= θj
(
rn−1, rn−2, . . . , rn−j+1

)
.

(2.5)

From this equation and the starting values

c0,q(xn+1) =
1
q
, c1,q(xn+1) =

1
q
(
q + 1

) , (2.6)

the inductive reasoning shows that, if j ≥ 2,

cj,q(xn+1) = Θj,q

(
rn−1, rn−2, . . . , rn−j+1

)
, (2.7)

and so

gj(n) = cj,1(xn+1) = Θj,1
(
rn−1, rn−2, . . . , rn−j+1

)
, (2.8)

and the proof is complete.

2.2. The Number of Coefficients in Terms of the Number of Ratios

Let us fix only λ ≥ 2 options to choose the ratios, that is,

ri ∈ {ω1, ω2, . . . , ωλ}, ∀i ≥ 0. (2.9)
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As the ratios ri belong to a finite subset, then the coefficients βj(n) and gj(n) belong
to finite spaces of possible events. As there are only a finite number of “β(n)” and “g(n)”
coefficients, they can be precalculated, and read at the start of the numerical integration. In
particular, the major computational disadvantage of the variable-stepsize Adams code (the
double loop in the computation of (1.9) in each integration step) is removed.

The importance of Proposition 2.1 is not the calculation of the functions Ψj and Θj,1,
but the existence of those functions and the number of the ratios for each one. Let us count
the number of different possible coefficients in terms of λ and the order k + 1. For simplicity
we ignore the constants β0(n) = 1, g0(n) = 1, and g1(n) = 1/2.

For the predictor (1.5) we require from β1(n) to βk−1(n). According to (1.8), the value
βk(n) is not necessary for φk(n + 1) in the corrector (1.6). From Proposition 2.1 it follows that
there are only λj different values for βj(n), so the total length is

λ + λ2 + · · · + λk−1 =
λk − λ
λ − 1

. (2.10)

Again from Proposition 2.1, if j ≥ 2, the coefficient gj(n) can only take λj−1 different
values. But in this case gk(n) is used in the implicit corrector (1.6), so it is necessary to
compute g2(n), . . . , gk(n) and (2.10) is also valid for the “g(n)” coefficients. We can formulate
the first lemma.

Lemma 2.2. The “β(n)” and “g(n)” coefficients needed in the k-step pair (1.5) and (1.6) can be
stored in two arrays of length (2.10).

A variable-stepsize algorithm needs an estimator of the error to change the stepsize.
This estimator can be computed in different ways. We follow Lambert’s [3, section 4.4] and
extend them to variable-stepsizes.

As the k-step pair is actually the k-order pair with local extrapolation, we can choose
the same local error estimator for both pairs, which leads to

LE0(n) = hn
(
gk(n) − gk−1(n)

)
φk(n + 1). (2.11)

In practice the variable-stepsize Adams method is also endowed with the capability
of changing its order, so it is necessary to obtain some local error estimators for decreasing or
increasing the order. By modifying the previous equation we obtain the estimators

LE−1(n) = hn
(
gk−1(n) − gk−2(n)

)
φk−1(n + 1),

LE+1(n) = hn
(
gk+1(n) − gk(n)

)
φk+1(n + 1),

(2.12)

for decreasing or increasing the order, respectively. The value of βk(n) is necessary for φk+1(n+
1) in LE+1(n), and also gk+1(n), so Lemma 2.2 can be updated to the following lemma.

Lemma 2.3. The “β(n)” and “g(n)” coefficients needed for the predictor (1.5), the corrector (1.6),
and the estimators (2.11) and (2.12) can be stored in two arrays of length

λ + λ2 + · · · + λk−1 + λk =
λk+1 − λ
λ − 1

. (2.13)
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The CPU time used by the code will increase drastically if we let the order grow
without control. For this reason it is necessary to impose a maximum order. In double
precision (8 bytes per data, 15-16 decimal digits) the maximum order is usually k + 1 =
13 (Lambert [3, page 144]). For our purposes we let this maximum as a parameter MO
(Maximum Order). We must emphasize that, when the maximum order k + 1 = MO is
reached, the estimator LE+1(n) is not necessary, and then we do not need to calculate (and
store) βMO−1(n) and gMO(n). This fact produces the final lemma.

Lemma 2.4. The “β(n)” and “g(n)” coefficients needed for a Variable-Step Variable-Order Adams
k-step code, with order up to k + 1 = MO, can be stored in two arrays of length

λ + λ2 + · · · + λMO−2 =
λMO−1 − λ
λ − 1

. (2.14)

The amount of RAM needed to store and read the coefficients can be an important
disadvantage of a fixed ratios implementation. In the following section we search some useful
choices of λ and ωm in (2.9).

3. The Fixed Ratios Strategy

Usually, the implementation of the variable-stepsize Adams method includes a restriction in
the ratios of the kind of

ω ≤ ri ≤ Ω (3.1)

that appears in the stability of generic multistep variable-stepsize methods (Hairer et al. [11,
page 403]) and in the convergence of the variable-stepsize variable-order Adams method
(Shampine [12]). Then, the stepsizes ratio is obtained by adapting equation (391a) by Butcher
in [13, page 293]:

r = max

(

ω,min

(

Ω, 0.9
(

tol
est

)1/(k+1)
))

. (3.2)

The fixed ratios implementation that we propose selects the ratio as the largest ωm in
(2.9) lower to r in (3.2):

ri = max{ωm ≤ r}. (3.3)

The pathologic case ωm > r for 1 ≤ m ≤ λ can be easily avoided by including ω1 = ω as the
minimum of the prefixed ratios.

For the numerical study we programmed a code, denoted as VSVOABM, with a
classical implementation. VSVOABM uses (3.2) for the stepsize selection, and lets the order
vary freely up to k+1 = 13. In addition, we denote by FRABM (fixed ratios Adams-Bashforth-
Moulton) a code based on VSVOABM, changing (3.2) by (3.3) to select the new stepsize. As
the prefixed ratio ri in (3.3) is lower than r in (3.2), the stepsize selected in FRABM will be
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smaller than the one that VSVOABM would choose from the same estimator, so the error of
FRABM is expected to be lower (of course using more steps). As the coefficients “β(n)” and
“g(n)” do not depend on the problem, they were precalculated only once, stored in a file
and put in RAM at the start of the integration in FRABM. Then, in each step, they are read
from memory instead of being calculated. As FRABM was programmed from VSVOABM,
the comparison of the two will show the behaviour of the classical strategy let the ratios free
and calculate the coefficients in each step versus the new fix a finite number of ratios and read the
coefficients from RAM in each step.

The authors presented in [14] a large number of experiments. In this paper we
summarize them. First of all we tested the following problems. In all of them the variation of
the stepsize is crucial.

(1) Five revolutions of the classical Two-Body problem used in many relevant books,
such as Butcher [13, pages 4–7], Dormand [15, pages 86–90], or Shampine [16, pages
90–95]. The variation of the stepsize grows with the eccentricity of the ellipsis. We
test a pair of different problems, one with middle eccentricity e = 0.6 and another
one with high eccentricity e = 0.9.

(2) An Arenstorf problem [17] with the popular orbit printed by Butcher in [13, page
9]. of Hairer et al. [11, page 130, Figure 0.1] shows that a variable-stepsize strategy
is very important in this problem.

(3) The Lorenz problem in the interval [0, 16], extremely sensitive to errors in the first
steps [11, pages 120, 245].

(4) A fictitious seven-body problem, denoted Pleiades [11, pages 245-246]. In this
problem the function f(x, y) is expensive to evaluate.

In the figures we compare the decimal logarithm of the CPU time versus the decimal
logarithm of the error, with tolerances from 10−3 to 10−13, except in the Lorenz problem
in which tolerances were restricted from 10−7 to 10−13 (see Hairer et al. [11, page 245] for
an explanation). Nowadays most of these problems can be solved quickly in a standard
computer, so CPU time was measured with extreme precision in “uclocks” (about 840
nanoseconds, less than 1 microsecond).

The main conclusions were the following.

(i) Ratios ωm must be close to 1, even if the stepsize may vary a lot in the integration
(Section 3.1).

(ii) Coefficients “β(n)” must be calculated from (1.7) in each step and coefficients
“g(n)” must be precalculated once and read in each step (Section 3.2).

(iii) FRABM methods with λ = 5 ratios, ri ∈ {0.5, 0.9, 1, 1.1, 2}, and maximum orders
MO = 10 and MO = 12 are two good methods with very different RAM
requirements (Section 3.3).

3.1. The Ratios in the Classical Implementation

We present some results of five revolutions of a highly eccentric orbit e = 0.9 of the Two-
Body problem with VSVOABM. In Figure 1 we see significant changes in the stepsize. In the
beginning of a revolution (perigee) it is about one hundred times less than in the middle of a
revolution (apogee). However, the ratios in Figure 2 remain near to 1 everywhere, even those
less than 0.9 from the rejected steps.
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Figure 1: Decimal logarithm of the stepsizes in a highly eccentric two-body problem.
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Figure 2: Ratios in a highly eccentric two-body problem.

We have tested some other eccentricities in the Two-Body problem. As the eccentricity
reduces to 0, the changes in the stepsizes in Figure 1 diminish. In any case, the structure of
Figure 2 shows little change.

In Table 1 we order the ratios and select the percentiles 25, 50 (the median), and 75 of
the accepted steps for different tolerances. The percentiles approach to unity as the tolerance
reduces, probably because the selected orders increase with small tolerances (see in Shampine
[16, page 262, Figure 5.3]). In Table 2 we show the behaviour of the ratios in a global sample
obtained with tolerances from 10−3 to 10−13 for all the proposed problems.

We must conclude that a good choice of a finite number of prefixed ratios must select
them near to 1, even for problems with big changes in the stepsize.

3.2. The Difference between the ”β(n)” and the “g(n)” Coefficients

The coefficients “β(n)” and “g(n)” are archived in two arrays of the same size, so the CPU
time required when we search for a particular βj(n) or gj(n) must be the same. However, there
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Table 1: Percentiles 25, 50, and 75 of the ratios for the highly eccentric e = 0.9 two-body problem.

Tolerance P25 P50 P75
10−3 0.94 1.04 1.17
10−4 0.96 1.11 1.14
10−5 0.95 1.07 1.11
10−6 0.93 1.04 1.09
10−7 0.93 1.03 1.07
10−8 0.94 1.02 1.06
10−9 0.95 1.02 1.04
10−10 0.95 1.02 1.04
10−11 0.96 1.01 1.03
10−12 0.97 1.01 1.03
10−13 0.97 1.01 1.02

Table 2: Relevant percentiles of the ratios of accepted steps in a global sample.

P10 P20 P25 P30 P33 P40 P50 P60 P66 P70 P75 P80 P90
0.94 0.96 0.97 0.98 0.98 1.00 1.01 1.02 1.03 1.03 1.04 1.04 1.09

is an important difference when we compute them from their algorithms, because while βj(n)
is calculated by means of the single loop (1.7), a double loop is required in (1.9) for gj(n).

We present different FRABM integrations for the Arenstorf problem, all of them with
λ = 4 prefixed ratios, ri ∈ {0.5, 0.9, 1.1, 2}, and maximum order MO = 13. We change the
way to evaluate (computing or reading) the (“β(n)”/“g(n)”) coefficients, which produces four
different implementation modes. In all of them the coefficients must be the same, and also
the numerical results and errors (round-off errors can produce in (3.2) slightly different
estimators est and different selections of the ratio ri in (3.3), but it does not happen often). As
the CPU time can be different for the four FRABM methods, the comparison must provide
parallel graphs.

In all the tests we made, both reading “g(n)” strategies (diamonds and squares in
Figure 3) won to both computing “g(n)” strategies (stars and triangles). In Figure 3 the
best implementation mode resulted to be reading “β(n)” and “g(n)”. In other problems we
tested computing “β(n)” and reading “g(n)” was slightly superior. Taking into account all
the tests, both strategies were virtually tied, and they were doubtlessly more efficient than
both computing “g(n)” modes. But as storing “β(n)” requires an important amount of RAM,
we discard the reading mode for “β(n)”, so from now on the FRABM implementation will
compute “β(n)” from (1.7) in each step, and only precalculate, store, and read in each step
“g(n)”. In this way RAM requirements are halved.

3.3. Proposing Some FRABM Algorithms

Now we will develop some concrete FRABM algorithms. It is impossible to reproduce all of
the experiments we made in [14] comparing sets of ratios obtained by statistical and intuitive
processes, so in this paper we only present the final conclusions.

First of all, we looked for the minimum and maximum ratios ω and Ω. These ratios
will not be used often, but they are indispensable. The minimum ω1 = ω < 0.9 is required
for the rejected steps, and the maximum ωλ = Ω will be used specially in the first steps,
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Figure 3: FRABM, computing versus reading “β(n)” and “g(n)” in the Arenstorf problem.
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Figure 4: Two different λ = 4, MO = 13 FRABM methods in the Lorenz problem.

as the first stepsize h0 must be very small because the code starts with the minimum order
k + 1 = 2. Computing (and not reading) the “g(n)” coefficients directly from (1.9) only in
these special cases looks like an interesting idea, because it sets two preassigned ratios free.
However, we must note that using one nonpreassigned ratio ri /∈ {ω1, ω2, . . . , ωλ} forces the
code to compute the next k “g(n)” coefficients from (1.9) to eliminate ri from (2.8), and the
computational cost will be increased.

In our experiments there were no clear winners, but maybe the pair ω = 0.5 and Ω = 2
was more robust than other compared ratios, so we assumed the criterion of Dormand [15,
page 73] and Butcher [13, page 293] and selected this pair.

With the addition of the ratio ω2 = 1 we obtained the basic doubling and halving
FRABM3 method with λ = 3 prefixed ratios, ri ∈ {0.5, 1, 2}. Lemma 2.4 shows that for
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Table 3: RAM cost in terms of the number of prefixed ratios λ for maximum order MO = 11.

λ Number of coefficients RAM cost
3 29523 0.23 MB
4 349524 2.67 MB
5 2441405 18.63 MB
6 12093234 92.26 MB
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Figure 5: FRABMλ with 3 ≤ λ ≤ 6, MO = 11 in the Lorenz problem.

maximum order MO = 13 this method only requires 265719 “g(n)” coefficients and 2.03 MB
of RAM to store them in double precision.

In the vast majority of occasions the stepsize is accepted, not rejected. That is why we
decided to keep ω1 = 0.5 as the unique prefixed ratio for rejections, and looked for ωm ≥
0.9 if m ≥ 2. In fact, taking into account the numerical results of our tests, for λ > 3 we
decided to fix ω2 = 0.9, and ωλ−1 = 1.1 as its companion. In particular, the method with λ = 4
ratios, ri ∈ {0.5, 0.9, 1.1, 2} (from now on denoted FRABM4, diamonds in Figure 4), performed
significantly better than the one with ri ∈ {0.5, 0.98, 1.03, 2} obtained with percentiles 33 and
66 in Table 2 (stars in Figure 4).

We tested several different strategies for λ = 5 ratios, including the one with percentiles
25, 50, and 75 from Table 2. However, the best strategy turned out to be the simplest: adding
ω3 = 1 to the ratios in FRABM4. Then for FRABM5 we selected ri ∈ {0.5, 0.9, 1, 1.1, 2}. The
methods with ratios obtained by means of a statistical criterion from Table 2 performed clearly
worse than others selected intuitively in all the tests we made.

For no specific reason, we add the ratio 1.05 to develop a λ = 6 method, with
ri ∈ {0.5, 0.9, 1, 1.05, 1.1, 2}. In Figure 5 we compared the behaviour of FRABM methods with
3 ≤ λ ≤ 6 ratios, all of them with maximum order MO = 11 (the RAM requirements of the
methods are in Table 3).

In Figure 5, and in all the problems we tested, FRABM5 was the best of the compared
methods. We cannot assure that λ = 5 ratios are a better choice than λ = 6; we assure that
in all of our tests the combination λ = 5, ri ∈ {0.5, 0.9, 1, 1.1, 2} performed better than λ = 6,
ri ∈ {0.5, 0.9, 1, 1.05, 1.1, 2}. This situation did not change when we raised λ. We compared
methods with 3 ≤ λ ≤ 10 ratios, all of them with the same MO = 9 (reduced through the fault
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Figure 6: FRABM5, maximum orders MO = 12 and MO = 13 in the Pleiades problem.

Table 4: RAM cost in terms of the number of prefixed ratios λ and the maximum order MO.

λ MO RAM Category
3 13 2.03 MB Low cost
4 11 2.67 MB Low cost
5 10 3.73 MB Low cost
4 12 10.67 MB Middle cost
5 11 18.63 MB Middle cost
4 13 42.67 MB High cost
5 12 93.13 MB High cost

of the RAM cost for λ = 10), and FRABM5 was always the winner. It is surprising because
FRABM5, MO = 9 only requires an amount of 0.75 MB of RAM.

We cannot conclude yet that the best method is FRABM5, because when λ < 5 bigger
maximum orders MO are attainable with lower RAM cost. However, it appears that when
λ > 5 the improvement of the error is less than the growth of the CPU time (and of course the
RAM requirements), so we restrict our study to 3 ≤ λ ≤ 5.

We divided the methods into three categories in terms of their RAM requirements (see
Table 4), with the usual restriction MO ≤ 13 for λ = 3, 4, and MO = 12 for FRABM5. As the
case λ = 3 reaches the maximum order MO = 13 with low-cost, FRABM3 was considered in
the three categories.

We rejected the case MO = 13 for FRABM5 because it needs the enormous amount of
465.66 MB of RAM. Besides, the RAM requirements worked against the efficacy of the code.
Figure 6 shows the comparative of FRABM5 methods with maximum orders MO = 12 and
MO = 13 in the Pleiades problem. In all the problems under consideration the case MO = 13
was not competitive with MO = 12, specially for large tolerances.

The behaviour of the methods shown in Figure 6 is an exception. The efficacy of
FRABMλ methods in Table 4 was consistent with its maximum order, that is, it was better
with higher MO. However the middle cost methods were between low-cost and high-cost
methods for all the problems in almost every tolerance, so we discarded them because they
were not the winners in any circumstance.
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Figure 8: High cost, FRABM3 with MO = 13, FRABM4 with MO = 13, and FRABM5 with MO = 12 in the
Arenstorf problem.

Figures 7 and 8 show representative examples of the performance of the methods in
all the problems under consideration. FRABM3 with MO = 13 was clearly the poorest of
the compared methods in both categories. For low- and high-cost FRABM5, MO = 10, 12
won FRABM4, MO = 11, 13, respectively. Thus, combinations of λ = 5 prefixed ratios
{0.5, 0.9, 1, 1.1, 2} with maximum orders MO = 10 and MO = 12 are officially chosen as our
two FRABM candidates to solve general non-stiff ODEs.
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4. The Behaviour of FRABM5

In this section we compare the pair of selected FRABM5 methods (green line with stars for
MO = 10, red line with diamonds for MO = 12) and the classical implementation VSVOABM
with maximum order MO = 13 (blue line with squares). As the most popular representative
of Runge-Kutta methods, we include in the tests the version of the Dormand and Prince
DOPRI853 code [18] downloaded from E. Hairer’s website (black line with triangles).
Figure 9 shows the efficacy of these four methods when the computational cost is measured
in CPU time. We also present in Figure 10 the efficacy graphics with the computational cost
measured in number of function calls.

Let us interpret the figures. At a point where a pair of methods has the same y-
coordinate (error) the method with graph α units to the left in the x-coordinate gains
100 · (1 − 10−α)% in the cost.

Taking into account only the Adams methods and CPU time, both FRABM5 codes
clearly beat VSVOABM in both Two-Body, Arenstorf, Lorenz and Pleiades problems. The
difference fluctuates between 0.1–0.15 units in the x-coordinate (a gain of 20%–30% in CPU
time). Let us remark that FRABM5, MO = 10 requires the insignificant amount of 3.73 MB of
RAM and is the most efficient multistep method for large tolerances. The case MO = 12 is
more efficient for small tolerances, but its RAM cost grows to 93.13 MB.

When comparing the number of function calls, VSVOABM does not start very well in
large tolerances, but it can take advantage of its superior maximum order MO = 13 to win
FRABM5, MO = 10 in small tolerances. In the Two-Body problem with e = 0.9 the case
MO = 12 is slightly better than VSVOABM even in these small tolerances. In the rest of the
tests VSVOABM is the winner. We made some experiments (not included in this paper) to
compare the efficacy in number of function calls of VSVOABM with FRABM4 and FRABM5,
all of them with MO = 13. There was not a clear winner in our tests, which allows us to
assert that the main variable that produces differences among the Adams methods is not the
implementation mode, but the maximum order MO. This can be seen in the figures of Two-
Body with e = 0.6 and Pleiades.

It is well known that Runge-Kutta methods, like DOPRI853, can hardly compete with
multistep methods when comparing the number of evaluations. This can clearly be seen in
all of the experiments. However, as Runge-Kutta methods do not need to recalculate their
coefficients in each step, they are very superior in CPU time unless the function f(x, y) is
expensive to evaluate. DOPRI853 shows its potential in both Two-Body, Arenstorf,and Lorenz
problems, all of them with a cheap function f(x, y). The difference between DOPRI853 and
VSVOABM is about 0.4–0.6 units in the x-axis, so the gain of DOPRI853 oscillates between
60%–75%, which means that it is about 2.5–4 times faster than VSVOABM. It is true that the
fixed ratios strategy improves the efficacy of the Adams method, but the difference between
DOPRI853 and VSVOABM was so great that both FRABM5 methods are clearly worse than
DOPRI853 in these problems.

The function f(x, y) in the Pleiades is more complicated, and its evaluation requires
a significant amount of CPU time. DOPRI853 beats ABMVSVO in all tolerances, but the
difference is small, which allows both FRABM5 methods to win in this problem. For small
tolerances FRABM5, MO = 12 gains about 20% CPU time with respect to DOPRI853.

The Pleiades problem is expensive to evaluate because it is formed by 28 long first-
order differential equations. Hairer et al. [11, page 427] indicated that the efficacy of Adams
methods gets worse as the number of differential equations grows. To study this question in
our fixed ratios implementation we add two new expensive to evaluate ODEs extracted from
[11].
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Figure 9: Continued.
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Figure 9: Error versus CPU time. FRABM5 MO = 10: green line with stars, FRABM5 MO = 12: red line
with diamonds, VSVOABM MO = 13: blue line with squares, DOPRI853: black line with triangles.

(5) A discretized Brusselator with diffusion [11, pages 248-249], constituted by 882 short
first-order differential equations.

(6) A discretized hanging Rope problem. In this problem we let the dimension n in
equation (10.8) of [11, pages 247-248] as a free parameter. Then this problem
consists of 2nlong first-order differential equations.

The comparison in number of function calls in the Brusselator problem does not show
any new significant conclusion. However, in the Rope examples FRAMB5, MO = 12 beats
ABMVSVO even for small tolerances.

In the Brusselator problem, DOPRI853 clearly beats all FRABM5 methods in CPU time,
which corresponds to the indication of Hairer, Nørsett, and Wanner. In the Rope problem
we can also see the negative influence of the dimension in the behaviour of the multistep
methods. With 8 first-order equations FRABM5 methods are more efficient than DOPRI853,
specially with MO = 12, which gains up to 40% in small tolerances. For 24 equations
FRABM5, MO = 12 still remains in the first position in these tolerances, but now all of the
methods have similar results. However, DOPRI853 takes the lead for 80 equations, and the
difference grows for 320 equations. We must conclude that the statement in Hairer et al. [11,
page 427] about dimension and efficacy of the Adams code is also valid for the fixed ratios
implementation.

VSVOABM is not far from FRABM5 methods in the Brusselator and Rope problems,
but it only beats MO = 10 in small tolerances. FRABM5, MO = 12 is superior in all tolerances.

We sum up the conclusions of this efficacy section.

(1) When the CPU time is used to measure the efficacy, DOPRI853 is the best choice
when f(x, y) is short or it has a high number of components. However, the Pleiades
and Rope problems show that FRABM5 can beat DOPRI853 in CPU time when
f(x, y) has a moderate number of long components. For these kinds of ODEs we
propose our fixed ratios implementation, particularly FRABM5 with maximum
order MO = 10 for large tolerances and MO = 12 for small ones. VSVOABM was
not the best method in any test.
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Figure 10: Continued.
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Figure 10: Error versus evaluations. FRABM5 MO = 10: green line with stars, FRABM5 MO = 12: red line
with diamonds, VSVOABM MO = 13: blue line with squares, and DOPRI853: black line with triangles.

(2) When comparing the number of evaluations, fixed ratios and VSVO strategies are
comparable; only the maximum order MO produces differences between large and
small tolerances. In this chapter, specially relevant if the evaluation of f(x, y) has an
associated monetary cost, all the multistep methods won DOPRI853. In particular,
both FRABM5 were slightly better than VSVOABM in large tolerances. In small
tolerances FRABM5, MO = 12 was the leader in some problems and VSVOABM in
others, while the case MO = 10 did not win in any test. FRABM4, MO = 13 is a
choice with an acceptable RAM cost that performed slightly better than FRABM5,
MO = 12 in these small tolerances, and was virtually tied to ABMVSVO.
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