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2 Departamento de Matemáticas, Universidad de Pinar del Rı́o, 20200 Pinar del Rı́o, Cuba
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We calculate some integrals involved in the temperature field evaluation of the ground, heated
by a borehole heat exchanger. This calculation allows a faster computation of that component of
the temperature field which involves the periodic oscillation of the ambient temperature or the
ambient heat flux.

1. Introduction

Ground-coupled heat pumps (GCHPs) are an attractive choice of system for heating
and cooling buildings [1]. By comparison with standard technologies, these pumps offer
competitive levels of comfort, reduced noise levels, lower greenhouse gas emissions, and
reasonable environmental safety. Furthermore, their electrical consumption and maintenance
requirements are lower than those required by conventional systems and, consequently, have
lower annual operating cost [2].

A GCHP exchanges heat with the ground through a buried U tube loop. Since this
exchange strongly depends on the thermal properties of the ground, it is very important
to have a knowledge of these properties when designing GCHP air-conditioning systems.
Methods to estimate them include literature searches, conducting laboratory experiments on
soil/rock samples, and/or performing field tests. The in situ tests are based on studying the
thermal response of the borehole heat exchanger to a constant heat injection or extraction. The
outputs of the thermal response test are the inlet and outlet temperature of the heat-carrier
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fluid as a function of time. From these experimental data, and with an appropriate model
describing the heat transfer between the fluid and the ground, the thermal conductivity of
the surroundings is inferred.

The results presented in this study are based on a model of the underground heat
transfer due to a borehole heat exchanger assuming that it works as a line heat source of
finite depth inside the ground. We assume as well a constant power of length unit for the
heat source considered and a periodic oscillation of the ambient temperature or heat flux on
the ground surface.

This paper is organized as follows. Section 2 describes the equations that model the
heat transfer inside the ground due to a borehole heat exchanger. Section 3 solves the integrals
given in literature for periodic oscillations of the ambient temperature or heat flux, on the
ground surface. Section 4 shows that our results agree with the literature in some particular
cases, such as the solution on the ground surface and the solution of the quasistationary
regime.

2. The Equations

Let us consider the heat equation in cylindrical coordinates, in which T(r, z, t) is the
temperature field,

∂T

∂t
− k∇2T =

Qz

C
δ(r)[H(z) −H(z − L)]. (2.1)

On the one hand, the thermal parameters of (2.1) are the ground thermal diffusivity k(m2s−1),
the heat flow per length unit Qz(Wm−1), and the volumetric heat capacity of ground
C(Jm−3K−1). On the other hand, the geometry of the heat source, depicted in Figure 1, has
been taken into account introducing the Heaviside function H for its finite length L and the
Dirac delta distribution δ for its infinitely thin width. Equation (2.1) is subject to to the initial
condition

T(r, z, 0) = T0 + kgeoz, z ≥ 0, (2.2)

where T0 is the undisturbed ground temperature and kgeo (Km−1) is the geothermal gradient.
We may consider that (2.1) is subject to a Dirichlet boundary condition, which represents a
time-dependent temperature on the surface z = 0,

T(r, 0, t) = ψ(t), t ≥ 0, (2.3)

or to a Neumann boundary condition, which represents a time-dependent heat flux on the
surface z = 0,

−λ∂zT(r, 0, t) = ψ(t), t ≥ 0, (2.4)
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z = 0

δ(r)

Qz L

Figure 1: Borehole heat exchanger model.

where λ(Wm−1K−1) is the ground thermal conductivity. We split the Cauchy problem posed
in (2.1), (2.2), and (2.3) or (2.4) in three terms [3], so that

T(r, z, t) = vd(r, z, t) + v0(z, t) + vs(z, t), (2.5)

and where the functions v0, vs and vd satisfy the Cauchy problems presented below.

2.1. The Problem for vd

The partial differential equation that vd (r, z, t) satisfies is

∂vd
∂t

− k∇2vd =
Qz

C
δ(r)[H(z) −H(z − L)], (2.6)

subject to a homogeneous initial condition,

vd(r, z, 0) = 0, z ≥ 0, (2.7)

and to a homogeneous Dirichlet boundary condition,

vd(r, 0, t) = 0, t ≥ 0, (2.8)

or to a Neumann boundary condition, homogenous as well,

∂zvd(r, 0, t) = 0, t ≥ 0. (2.9)
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The solution to (2.6), (2.7), and (2.8) is [4]

vd(r, z, t) =
Qz

8πλ

∫∞

r2/4kt
du

e−u

u

×
{

2 erf
(
z

r

√
u

)
+ erf

(
L − z
r

√
u

)
− erf

(
L + z
r

√
u

)}
,

(2.10)

and the solution to (2.6), (2.7), and (2.9) is

vd(r, z, t) =
Qz

8πλ

∫∞

r2/4kt

e−u

u

{
erf
(
z + L
r

√
u

)
− erf

(
z − L
r

√
u

)}
du, (2.11)

that we will present in a future work.

2.2. The Problem for v0

The partial differential equation that v0(z, t) satisfies is

∂v0

∂t
= k

∂2v0

∂z2 ,
(2.12)

subject to the initial condition

v0(z, 0) = T0 + kgeoz, z ≥ 0, (2.13)

and to a Dirichlet boundary condition,

v0(0, t) = 0, t ≥ 0, (2.14)

or to a Neumann homogeneous boundary condition

∂zv0(0, t) = 0, t ≥ 0. (2.15)

The solution to (2.12), (2.13), and (2.14) is [5, Equation 2.4.13],

v0(z, t) = T0 erf
(

z

2
√
kt

)
+ kgeoz, (2.16)

and the solution to (2.12), (2.13), and (2.15) is [5, Equation 2.9.7]

v0(z, t) = T0 + kgeo

{
z erf

(
z

2
√
kt

)
+

2
√
kt√
π

exp

(
− z2

4kt

)}
, (2.17)
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where the error function is defined as

erf(z) :=
2√
π

∫z
0
e−u

2
du. (2.18)

2.3. The Problem for vs

The partial differential equation that vs(z, t) satisfies is

∂vs
∂t

= k
∂2vs
∂z2

, (2.19)

subject to an homogeneous initial condition

vs(z, 0) = 0, z ≥ 0, (2.20)

and to the time-dependent Dirichlet boundary condition

vs(0, t) = ψ(t), t ≥ 0, (2.21)

or to the time-dependent Neumann boundary condition

−λ∂zvs(0, t) = ψ(t), t ≥ 0. (2.22)

The solution to (2.19), (2.20) and (2.21) is [5, Equation 2.5.1.]

vs(z, t) =
2√
π

∫∞

z/2
√
kt

ψ

(
t − z2

4ku2

)
e−u

2
du, (2.23)

and the solution to (2.19), (2.20) and (2.22) is [5, Equation 2.9.9]

vs(z, t) =

√
k

λ
√
π

∫ t
0

ψ(t − u)√
u

e−z
2/4kudu. (2.24)

3. Harmonic Analysis of the Boundary Condition

We may consider that on the ground surface we have a periodic temperature or heat flux
oscillation, due to daily or annual cycles. Therefore, ψ(t) is a periodic function of a certain
period τ , continuous and bounded, that we may expand in Fourier series

ψ(t) =
a0

2
+

∞∑
n=1

an cos(nωt) + bn sin(nωt), (3.1)
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where the frequency is ω = 2π/τ , and the coefficients an and bn are given by

a0 =
2
τ

∫ τ/2

−τ/2
ψ(u)du,

an =
2
τ

∫ τ/2

−τ/2
ψ(u) cos(nωu)du,

bn =
2
τ

∫ τ/2

−τ/2
ψ(u) sin(nωu)du,

(3.2)

where n ∈ �.

3.1. Dirichlet Boundary Condition

Substituting (3.1) in (2.23), we obtain

vs(z, t) =
a0

2
erfc

(
z

2
√
kt

)

+
2√
π

∞∑
n=1

an

∫∞

z/2
√
kt

cos

(
nωt − nωz2

4ku2

)
e−u

2
du

+ bn

∫∞

z/2
√
kt

sin

(
nωt − nωz2

4ku2

)
e−u

2
du,

(3.3)

where erfc(z) = 1 − erf(z) is the complementary error function. The integrals given in (3.3)
for t ≥ 0 may be rewritten as

∫∞

z/2
√
kt

cos

(
nωt − nωz2

4ku2

)
e−u

2
du = Re

[
einωtID,n(z, t)

]
,

∫∞

z/2
√
kt

sin

(
nωt − nωz2

4ku2

)
e−u

2
du = Im

[
einωtID,n(z, t)

]
,

(3.4)

where we have defined

ID,n(z, t) :=
∫∞

z/2
√
kt

exp

(
− inωz

2

4ku2 − u2

)
du. (3.5)

In order to calculate (3.5), let us apply the integral [6, Equation 7.4.33]

∫
exp

(
−ax2 − b

x2

)
dx =

√
π

4
√
a

[
e2

√
ab erf

(√
ax +

√
b

x

)
+ e−2

√
ab erf

(√
ax −

√
b

x

)]
+ const,

(3.6)
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taking a = 1, b = inωz2/4k, and z ≥ 0, so that

ID,n(z, t) =
√
π

4

[
exp

(
z
√
inω√
k

)
erfc

(
z

2
√
kt

+
√
inωt

)

+ exp

(
−z√inω√

k

)
erfc

(
z

2
√
kt

−
√
inωt

)]
.

(3.7)

Finally, substituting (3.7) in (3.4), we obtain for z, t ≥ 0,

∫∞

z/2
√
kt

cos

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

4
Re
{
einωt

[
A+
n(z, t) +A

−
n(z, t)

]}
,

∫∞

z/2
√
kt

sin

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

4
Im
{
einωt

[
A+
n(z, t) +A

−
n(z, t)

]}
,

(3.8)

where we have defined

A±
n(z, t) := exp

(
±z

√
inω√
k

)
erfc

(
z

2
√
kt

±
√
inωt

)
. (3.9)

As far as we know, the integrals given in (3.8) are not reported in the literature.

3.1.1. Neumann Boundary Condition

Substituting (3.1) in (2.24), we obtain

vs(z, t) =
a0
√
k

2λ
√
π

∫ t
0

e−z
2/4ku

√
u

du (3.10)

+

√
k

λ
√
π

∞∑
n=1

an

∫ t
0

cos[nω(t − u)]√
u

e−z
2/4kudu (3.11)

+ bn

∫ t
0

sin[nω(t − u)]√
u

e−z
2/4kudu. (3.12)

Integrating by parts and performing the substitution ζ = z/2
√
ku, considering z, t ≥ 0, we

may calculate the integral given in (3.10)

∫ t
0

e−z
2/4ku

√
u

du = 2
√
t exp

(
−z2

4kt

)
−
√
πz√
k

erfc
(

z

2
√
kt

)
. (3.13)
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In order to calculate the integrals given in (3.11) and (3.12), let us perform the substitution
u = v2, considering t ≥ 0, so that

∫ t
0

cos[nω(t − u)]√
u

e−z
2/4kudu = 2

∫√
t

0
cos
[
nω
(
t − v2

)]
e−z

2/4kv2
dv

= 2 Re
[
einωtIN,n(z, t)

]
,

(3.14)

and similarly

∫ t
0

sin[nω(t − u)]√
u

e−z
2/4kudu = 2 Im

[
einωtIN,n(z, t)

]
, (3.15)

where we have defined

IN,n(z, t) :=
∫√

t

0
exp

(
−inωv2 − z2

4kv2

)
dv. (3.16)

Taking a = inω, b = z2/4k, and z ≥ 0 in (3.6), we may rewrite (3.16) as

IN,n(z, t) =
√
π

4
√
inω

[
exp

(
−z√inω√

k

)
erfc

(
z

2
√
kt

−
√
inωt

)

− exp

(
z
√
inω√
k

)
erfc

(
z

2
√
kt

+
√
inωt

)]
.

(3.17)

Finally, substituting (3.17) in (3.14) and (3.15), for z, t ≥ 0, we obtain

∫ t
0

cos[nω(t − u)]√
u

e−z
2/4kudu =

√
π

2
Re

{
einωt√
inω

[
A−
n(z, t) −A+

n(z, t)
]}
,

∫ t
0

sin[nω(t − u)]√
u

e−z
2/4kudu =

√
π

2
Im

{
einωt√
inω

[
A−
n(z, t) −A+

n(z, t)
]}
.

(3.18)

As far as we know, the integrals given in (3.18) are not reported in the literature.

4. Particular Cases

As a consistency check, let us verify that in certain particular cases the new integrals given in
(3.8) and (3.18) are reduced to integrals reported in the literature. These particular cases have
to do with the quasistationary regime and the solution on the ground surface.
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4.1. Quasistationary Regime

Since there is a periodic oscillation on the ground surface, the surroundings of the borehole
heat exchanger never reach a stationary regime. However, according to [5, Section 2.6], we
may define a quasistationary regime in which the ground temperature field is stabilized
periodically. In this quasistationary regime, (3.8) becomes

∫∞

0
cos

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

4
Re
{
einωtAD,n(z)

}
, (4.1)

∫∞

0
sin

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

4
Im
{
einωtAD,n(z)

}
, (4.2)

where we have defined

AD,n(z) := lim
t→∞

[
A+
n(z, t) +A

−
n(z, t)

]
. (4.3)

Similarly, (3.18) becomes

∫∞

0

cos[nω(t − u)]√
u

e−z
2/4kudu =

√
π

2
Re

{
einωt√
inω

AN,n(z)

}
,

∫∞

0

sin[nω(t − u)]√
u

e−z
2/4kudu =

√
π

2
Im

{
einωt√
inω

AN,n(z)

}
,

(4.4)

where we have defined

AN,n(z) := lim
t→∞

[
A−
n(z, t) −A+

n(z, t)
]
. (4.5)

4.1.1. Dirichlet Case

Taking into account that erfc(∞) = 0 and erfc(−∞) = 2, we may calculate the limit given in
(4.3), so that (4.1) becomes

∫∞

0
cos

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

2
Re

{
einωt exp

(
−z√inω√

k

)}

=
√
π

2
e−z

√
nω/2k Re

{
ei(nωt−z

√
nω/2k)

}
,

(4.6)

where we have substitute
√
i = (1 + i)/

√
2. Thus, for z, t ≥ 0,

∫∞

0
cos

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

2
e−z

√
nω/2k cos

(
nωt − z

√
nω√
2k

)
. (4.7)
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Similarly, we may obtain

∫∞

0
sin

(
nωt − nωz2

4ku2

)
e−u

2
du =

√
π

2
e−z

√
nω/2k sin

(
nωt − z

√
nω√
2k

)
. (4.8)

Notice that (4.7) and (4.8) are sinusoidal in t, with an amplitude exponentially decreasing in
depth z. In the literature, we may find [7, Equation 3.928.1-2].

∫∞

0
e−p

2x2−q2/x2
sin

(
a2x2 +

b2

x2

)
dx =

√
π

2r
e−2rs cos(A+B)

× sin(A + 2rs sin(A + B)),

∫∞

0
e−p

2x2−q2/x2
cos

(
a2x2 +

b2

x2

)
dx =

√
π

2r
e−2rs cos(A+B)

× cos(A + 2rs sin(A + B)),

(4.9)

where a2 + p2 > 0 and

r = 4
√
a4 + p4, s = 4

√
b4 + q4,

A =
1
2

tan−1

(
a2

p2

)
, B =

1
2

tan−1

(
b2

q2

)
,

(4.10)

thus, taking p = 1, q = 0, and a = 0,

∫∞

0
e−x

2
sin

(
b2

x2

)
dx =

√
π

2
e−

√
2b sin

(√
2b
)
,

∫∞

0
e−x

2
cos

(
b2

x2

)
dx =

√
π

2
e−

√
2b cos

(√
2b
)
.

(4.11)

Therefore, rewriting the left side of (4.7) as

∫∞

0
cos

(
nωt − nωz2

4ku2

)
e−u

2
du = cos(nωt)

∫∞

0
cos

(
nωz2

4ku2

)
e−u

2
du

+ sin(nωt)
∫∞

0
sin

(
nωz2

4ku2

)
e−u

2
du,

(4.12)

and applying (4.11), taking b =
√
nωz/2

√
k, (z ≥ 0), we eventually get the same result as

(4.7). Similarly, we may check the result given in (4.8).
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4.1.2. Neumann Case

In a similar way as in the previous subsection, we may calculate (4.4) for z, t ≥ 0, arriving at

∫∞

0

cos[nω(t − u)]√
u

e−z
2/4kudu =

√
πe−z

√
nω/2k

√
nω

cos
(
nωt − z

√
nω√
2k

− π

4

)
, (4.13)

∫∞

0

sin[nω(t − u)]√
u

e−z
2/4kudu =

√
πe−z

√
nω/2k

√
nω

sin
(
nωt − z

√
nω√
2k

− π

4

)
. (4.14)

Once again, (4.13) and (4.7) are sinusoidal in t, with an amplitude exponentially decreasing
in depth z. In the literature, we may find [7, Equation 3.957.1-2]

∫∞

0
xμ−1e−β

2/4x cosax dx =
(

β

2
√
a

)μ[
e−iπμ/4Kμ

(
βeiπ/4√a

)
+ eiπμ/4Kμ

(
βe−iπ/4√a

)]
,

∫∞

0
xμ−1e−β

2/4x sinax dx = i
(

β

2
√
a

)μ[
e−iπμ/4Kμ

(
βeiπ/4√a

)
− eiπμ/4Kμ

(
βe−iπ/4√a

)]
,

(4.15)

where Re β > 0, Reμ < 1 and a > 0. Therefore, taking in (4.15), μ = 1/2, a = nω, β = z/
√
k,

(z ≥ 0), and knowing that the Macdonald function of order 1/2 is [8, Equation 5.5.5],

K1/2(z) =
√
π

2z
e−z, (4.16)

we eventually get the same results as (4.13) and (4.14).

4.2. Solution on the Ground Surface

Notice that in the special case z = 0, (3.8) becomes trivial,

∫∞

0
cos(nωt)e−u

2
du =

√
π

2
cos(nωt),

∫∞

0
sin(nωt)e−u

2
du =

√
π

2
sin(nωt),

(4.17)

while (3.18) are reduced to

∫ t
0

cos[nω(t − u)]√
u

du =
√
π Re

{
einωt√
inω

erf
(√

inωt
)}

,

∫ t
0

sin[nω(t − u)]√
u

du =
√
π Im

{
einωt√
inω

erf
(√

inωt
)}

.

(4.18)
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Since [8, Equation 2.4.1]

erf
(√

ix
)

√
i

=
√

2

⎡
⎣C
⎛
⎝
√

2
π
x

⎞
⎠ − iS

⎛
⎝
√

2
π
x

⎞
⎠
⎤
⎦, x ∈ �, (4.19)

where

C(z) :=
∫z

0
cos

πt2

2
dt,

S(z) :=
∫z

0
sin

πt2

2
dt

(4.20)

are the Fresnel integrals; then (4.18) may be expressed as

∫ t
0

cos[nω(t − u)]√
u

du =

√
2π
nω

⎡
⎣cos(nωt)C

⎛
⎝
√

2nωt
π

⎞
⎠ + sin(nωt)S

⎛
⎝
√

2nωt
π

⎞
⎠
⎤
⎦,

∫ t
0

sin[nω(t − u)]√
u

du =

√
2π
nω

⎡
⎣sin(nωt)C

⎛
⎝
√

2nωt
π

⎞
⎠ − cos(nωt)S

⎛
⎝
√

2nωt
π

⎞
⎠
⎤
⎦.

(4.21)

The results given in (4.21), agrees with [7, Equation 2.653.1-2]

∫
sin x√
x
dx =

√
2π S

(√
x
)
,

∫
cosx√
x
dx =

√
2π C

(√
x
)
.

(4.22)
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