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Pole assignment problems are special algebraic inverse eigenvalue problems. In this paper, we
research numerical methods of the robust pole assignment problem for second-order systems.
The problem is formulated as an optimization problem. Depending upon whether the prescribed
eigenvalues are real or complex, we separate the discussion into two cases and propose two
algorithms for solving this problem. Numerical examples show that the problem of the robust
eigenvalue assignment for the quadratic pencil can be solved effectively.

1. Introduction

Pole assignment problems are special algebraic inverse eigenvalue problems [1, 2]. The
nature model for the vibrating systems, arising in a wide range of applications, especially in
the design and analysis of vibration structures, such as bridges, buildings, and airplanes, can
be described by the second-order differential equation. The properties of systems of second-
order differential equation are governed by its associated quadratic eigenvalue problem
(QEP). To avoid unwanted oscillations of the vibratory system, pole assignment can change
the poles of the system by choosing a control force and improve its stability.

Consider the following second-order matrix differential equation:

Mz̈(t) + Cż(t) +Kz(t) = 0, (1.1)

where the dots denote differentiation with respect to time, and M, C, and K are n × n real
symmetric matrices; M is positive definite (denoted byM > 0). Separation of variables

Z(t) = xeλt, (1.2)



2 Mathematical Problems in Engineering

where λ ∈ C, x ∈ Cn is a constant vector, in (1.1), leads to the following quadratic eigenvalue
problem:

Q(λ)x =
(
λ2M + λC +K

)
x = 0, (1.3)

where Q(λ) = λ2M + λC + K is quadratic pencil. In general, the 2n eigenvalues of Q(λ) are
named poles of system (1.1). In engineering, the dynamics of equation (1.1) can be modified
by applying a control force Bu(t), where B ∈ Rn×m, u(t) ∈ Rm. The relation (1.1) now
becomes

Mz̈(t) + Cż(t) +Kz(t) = Bu(t). (1.4)

The special choice

u(t) = FT ż(t) +GTz(t), (1.5)

where F and G are n ×m real matrices, is called state feedback control, and (1.1) becomes

Mz̈(t) +
(
C − BFT

)
ż(t) +

(
K − BGT

)
z(t) = 0. (1.6)

The associated quadratic eigenvalue problem becomes

Qc(λ)x =
(
λ2M + λ

(
C − BFT

)
+
(
K − BGT

))
x = 0, (1.7)

where Qc(λ) = λ2M + λ(C − BFT ) +K − BGT is a closed-loop pencil.
The quadratic eigenvalue assignment problem is stated explicitly as follows.

Problem QEA

Given real matrices M,C,K ∈ Rn×n and B ∈ Rn×m, and a set of 2n complex numbers L =
{λ1, λ2, . . . , λ2n}, closed under complex conjugation, find real matrices F,G ∈ Rn×m, such that
the eigenvalues of Qc(λ) are equal to λj(j = 1, 2, . . . , 2n).

Conditions for the existence of solutions to problem QEA are known as in the
following theorem.

Theorem 1.1 (see [3]). Solutions F,G to problemQEA exist for every setL of self-conjugate complex
numbers if and only if the system (1.1) is completely controllable, that is

rank
[
λ2M + λC +K,B

]
= n, ∀λ ∈ C. (1.8)

In a realistic situation, it is desirable to choose the feedback to ensure that the
eigenstructure of closed-loop system is as robust, or insensitive to perturbation in the system
matricesM,C −BFT , andK −BGT , as possible to the following inverse eigenvalue problem,
known as the robust quadratic eigenvalue assignment problem.
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Problem RQEA

Given real matrices M,C,K, B, and a set of L as in problem QEA, find real matrices F,G ∈
Rn×m and matrix X ∈ Cn×2n, such that X̃ = [XT, (ΛX)T ]T is nonsingular, satisfying

MXΛ2 +
(
C − BFT

)
XΛ +

(
K − BGT

)
X = 0, Λ = diag{λ1, λ2, . . . , λ2n}, (1.9)

and the eigenstructure of the closed-loop system (1.6) is as robust as possible.
We remark that the requirement that the matrix Λ is diagonal, together with the

invertibility of X̃. These require the prescribed eigenvalues to be distinct. In the next section,
we derive conditions for the solution of problem RQEA.

In the majority of methods that have been proposed for solving problem RQEA,
the second-order control system (1.1) is rewritten as a first-order system. There are two
difficulties in using this approach. The first is the linear systemwhich has a double dimension
of the original quadratic system and, hence, the computational work used to solve the
problem is greater than necessary. The second difficulty arises because all the exploitable
properties such as definiteness, and sparsity, of the coefficient matrices M,C, and K, usually
offered by a practice problem, will be completely destroyed. So it is natural to wonder if
solutions of the robust pole assignment problem can be obtained without resorting to a first-
order reformulation.

Over the past years, many techniques for pole assignment without linearization have
been proposed. Chu and Datta [4] gave a method to solve Problem RQEA. Nichols and
Kautsky [5] recently have proposed a numerical method to solve this problem without
linearization; the measures of robustness are subject to structured perturbations.

Datta and Sarkissian [6] proposed a direct partial modal approach to solve the partial
eigenvalue assignment problem for second-order systems. It is “direct,” because the solutions
are obtained directly in the second-order system without any types of reformulations; It is
“partial modal,” because only a part of spectral data is needed for the solution. This method
do not, however, ensure the robustness of the closed-loop system. Qian [7], Qian and Xu [8]
recently have proposed a direct method to solve the robust partial pole assignment problem
for second-order systems which seems more efficient and reliable. Bai et al. ([9]) gave a new
optimization approach for solving this problem.

According to new measures ([10, 11]), we suggest in this paper two numerical
methods for solving the problem RQEA. Numerical results show that this problem can be
solved effectively.

We begin by presenting the solutions to problem RQEA without linearization. In
Section 3, we describe a new measure of robustness and formulate the problem as an
optimization problem. Two numerical methods are developed in Section 4, and numerical
results are given in Section 5.

2. Solution to Problem RQEA

Without loss of generality, We assume in this paper that the system (1.1) is completely
controllable, and B is of full column rank. The next theorem provides necessary and sufficient
conditions for the existence of solutions to problem RQEA.
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Theorem 2.1 (see [5]). Let X ∈ Cn×2n be such that X̃ = [XT, (ΛX)T ]T is nonsingular, where
Λ = diag{λ1, λ2, . . . , λ2n}, then there exist real matrices F,G, satisfying condition (1.9) of problem
RQEA if and only if

UT
1

(
MXΛ2 + CXΛ +KX

)
= 0, (2.1)

where

B =
[
U0, U1

][Z
0

]
, (2.2)

withU = [U0, U1] orthogonal and Z nonsingular. The matrices F,G are given by

[
GT, FT

]
= Z−1UT

0

[
MXΛ2 + CXΛ +KX

]
X̃−1. (2.3)

An immediate consequence of Theorem 2.1 is the following.

Corollary 2.2. Let xj be the right eigenvector of Qc(λ) corresponding to the prescribed eigenvalue
λj ∈ L, then

xj ∈ N
{
UT

1

(
λ2jM + λjC +K

)}
= Sj

(
j = 1, 2, . . . , 2n

)
, (2.4)

whereN{·} denotes right nullspace.

For every λj , find an orthogonal basis, comprised by columns of matrixSj for the space
Sj , j = 1, 2, . . . , 2n. Observe that the matrix Sj can be obtained by the QR decomposition of
(UT

1 (λ
2
jM + λjC +K))T .

Theorem 2.3. If the system (1.1) is completely controllable, then

dim
(
Sj

)
= m,

(
j = 1, 2, . . . , 2n

)
, (2.5)

where dim denotes the dimension of space Sj .

Proof. From Theorem 1.1, we can get

rank
[
B, λ2jM + λjC +K

]
= n, (2.6)
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then

n = rank

[
UT

0

UT
1

][
B, λ2jM + λjC +K

]

= rank

⎡
⎣Z UT

0

(
λ2jM + λjC +K

)

0 UT
1

(
λ2jM + λjC +K

)
⎤
⎦

= m + rank
[
UT

1

(
λ2jM + λjC +K

)]
.

(2.7)

So we can have rank[UT
1 (λ

2
jM + λjC +K)] = n −m, from which (2.5) easily follows.

According to the previous theory, we can write the following:

xj = Sjwj ∈ Sj ,
(
j = 1, 2, . . . , 2n

)
, (2.8)

where wj ∈ Cm, and if λj = λk, then xj = xk. Because in the case where λj is complex the
associated eigenvector is a complex vector, in order to ensure that the computed feedback
matrices are real, the eigenvector corresponding to the conjugate eigenvalue λj must be taken
to be the conjugate vector xj .

3. The Measures of Robustness

In this section, we present the measures of robustness for the second-order system. The
eigenvectors of the closed-loop system can be selected tominimize themeasure of robustness.

Consider a matrix Ã ∈ R2n×2n, if Ã is nondefective, namely, then there exists a
nonsingular matrix Ỹ = [ỹ1, ỹ2, . . . , ỹ2n] ∈ C2n×2n, such that

ÃỸ = ỸΛ, (3.1)

where Λ = diag(λ1, λ2, . . . , λ2n), let

Z̃H = [z̃1, z̃2, . . . , z̃2n]
H = Ỹ−1, (3.2)

then the sensitivity of the eigenvalues of λj of Ã to perturbations in the components of Ã
depends upon the magnitude of the condition number cj , where

cj =
∥∥ỹj

∥∥
2

∥∥z̃j
∥∥
2 ≥ 1. (3.3)

Hence, every reasonable measure of the magnitude of the vector c = (c1, c2, . . . , c2n)
T is a

reflection of the robustness of the system.
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If λ1 is a multiple eigenvalue of Ã and

λ1 = λ2 · · · = λr, λ1 /=λj , for j = r + 1, r + 2, . . . , 2n, (3.4)

then the sensitivity of eigenvalue λ1 depends upon the magnitude of the number

c̃1 = max{c1, c2, . . . , cr}. (3.5)

Therefore, it is natural to take

V = (2n)−1
∥∥∥Ỹ
∥∥∥
F

∥∥∥Ỹ−1
∥∥∥
F
:= (2n)−1κF

(
Ỹ
)

(3.6)

as global measure of the sensitivity of eigenvalue.
In essence, the aim of the robust eigenvalue assignment problem is to select

eigenvectors ỹj , such that ‖ỹj‖2 = 1 and the vectors ỹj are as orthogonal as possible to each
other. Therefore, in this paper we first consider the following measure Vh(d):

Vh(d) =

⎡
⎣
∑

1≤i<j≤2n d
2
ij

∣∣ỹH
i ỹj

∣∣2
∑

1≤i<j≤2n d
2
ij

⎤
⎦

1/2

, (3.7)

where

d = [d12, d13, . . . , d1,2n, d23, d24, . . . , d2,2n, . . . , d2n−1,2n]
T , dij > 0, ∀i, j. (3.8)

Observe that ifM is nonsingular, then theQEP (1.7) can be formulated as the following
standard eigenvalue problem:

Ã

[
x

λx

]
≡
[

0 I

M−1(K − BGT
)

M−1(C − BFT
)
][

x

λx

]
= λ

[
x

λx

]
. (3.9)

Let X̃ be the matrix comprised by the right eigenvectors of (3.9), then

X̃ =

[
x1 x2 . . . x2n

λ1x1 λ2x2 . . . λ2nx2n

]
:= [x̃1, x̃2, . . . , x̃2n]. (3.10)

By (2.8), we have

x̃j =

[
I

λjI

]
xj =

[
I

λjI

]
Sjwj. (3.11)
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From (3.7) it follows that

[Vh(d)]
2 =

∑
1≤i<j≤2n d

2
ij

∣∣x̃H
i x̃j

∣∣2
∑

1≤i<j≤2n d
2
ij

=
∑

1≤i<j≤2n
δij
∣∣∣x̃H

i x̃j

∣∣∣
2

=
∑

1≤i<j≤2n
δij

∣∣∣∣∣x
H
i

[
I, λiI

][ I

λjI

]
xj

∣∣∣∣∣
2

=
∑

1≤i<j≤2n
δij

∣∣∣∣∣w
H
i SH

i

[
I, λiI

][ I

λjI

]
Sjwj

∣∣∣∣∣
2

≡ f(w),

(3.12)

where

w =
[
wH

1 , wH
2 , . . . , wH

2n

]H
, wj =

[
w1j , w2j , . . . , wmj

]H ∈ Cm (
j = 1, 2, . . . , 2n

)
, (3.13)

δij =
d2
ij∑

1≤i<j≤2n d
2
ij

> 0, ∀i, j. (3.14)

Thus, we must solve an unconstrained optimization problem

min f(w), (3.15)

where f(w) and w are defined by (3.12) and (3.13), w ∈ CN and N = 2mn.

4. Numerical Methods

Unfortunately, it is difficult to solve the optimization problem (3.15). Depending upon
whether the prescribed eigenvalues are real or complex, we separate the discussion into two
cases.

Case 1. Assume that the prescribed eigenvalues are real.
In this case, where the eigenvectors are real vectors, (3.12) becomes

f(w) =
∑

1≤i<j≤2n
δij

(
wT

i S
T
i [I, λiI]

[
I

λjI

]
Sjwj

)2

. (4.1)
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Let

T =
{
w =

[
wT

1 , . . . , w
T
2n

]T
∈ RN : wj ∈ Rm,

∥∥wj

∥∥
2 = 1 ∀j

}
,

Aij = γijS
T
i [I, λiI]

[
I

λjI

]
Sj, rij(w) = wT

i Aijwj , Aij(w) = rij(w)Aij , ∀i /= j,

A(w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2I −A12(w) . . . −A1,2n(w)

−A12(w)T α2I . . . −A2,2n(w)

...
...

...
...

−A1,2n−1(w)T · · · α2I −A2n−1,2n(w)

−A1,2n(w)T · · · −A2n−1,2n(w)T α2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α > 0,

(4.2)

where γij =
√
δij , then minimizing the measure Vh(d) may be reduced to solving the

following nonlinear programming problem with constrains:

max wTA(w)w,
subject to w ∈ T.

(4.3)

Let

B =
{
w =

[
wT

1 , . . . , w
T
2n

]T
∈ RN : wj ∈ Rm,

∥∥wj

∥∥
2 ≤ 1 ∀j

}
, (4.4)

we can prove easily that the programming problem (4.3) is equivalent to the following
programming problem with inequality constrains:

max wTA(w)w,

subject to w ∈ B.
(4.5)

Let

D̃ =
{
D = diag

(
τ1I

(m), . . . , τ2nI
(m)
)
: τi ≥ 0, ∀i

}
. (4.6)

We consider a multiparameter eigenvalue problem

A(w)w = Dw, D ∈ D̃, w ∈ T. (4.7)

Using the Kuhn-Tucker optimality ([12, 13]), we can prove that every solution to problem
(4.5) is necessarily a solution to problem (4.7).
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In this section, we develop an algorithm, called Horst algorithm ([14]), to solve (4.7),
for finding a global optimal solution w of problem (4.3).

Algorithm 1. Initialization Step

Let ε > 0 be the termination scalar. GivenM,C,K ∈ Rn×n, B ∈ Rn×m,Λ = diag(λ1, λ2, . . . , λ2n) ∈
C2n×2n, choose an initial vector w(0) = [w(0)

1

T
,w

(0)
2

T
, . . . , w

(0)
2n

T
]T ∈ TN .

Main Step

(1) Find the decomposition (2.2) of B and an orthonormal basis, comprised by the columns
of the matrix Sj , for the subspaces Sj , j = 1, 2, . . . , 2n, defined by (2.4). Let k = 0.

(2) For i = 1, 2, . . . , 2n, we compute

ẑ
(k+1)
i = α2w

(k)
i −

i−1∑
j=1

w
(k)
i

T
Aijw

(k+1)
j Aijw

(k+1)
j −

2n∑
j=i+1

w
(k)
i

T
Aijw

(k)
j Aijw

(k)
j ,

τ
(k)
i =

∥∥∥ẑ(k+1)i

∥∥∥
2
,

w
(k+1)
i =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẑ
(k+1)
i

τ
(k)
i

if τ (k)i > 0,

w
(k)
i if τ (k)i = 0.

(4.8)

(3) Set Δw(k) = w(k+1) − w(k). If ‖Δw(k)‖2 ≤ ε, then w∗ = w(k+1) is an approximation
optimal solution, go to (4); if ‖Δw(k)‖2 > ε, then replace k by k + 1 and repeat step (2).

(4) Let X = [x1, x2, . . . , x2n], where xj is defined by (2.8), and construct feedback
matrices F,G by solving

[
GT, FT

]
= Z−1UT

0

[
MXΛ2 + CXΛ +KX

]
X̃−1. (4.9)

Case 2. Assume that prescribed eigenvalues are complex.
In this case, it is almost impossible to solve optimization problem (3.15) without

costing too much. Based on this ideal, we consider κF(X̃) = ‖X̃‖F‖X̃−1‖F , where X̃ is defined
by (3.10), and use some similar techniques developed by Kautsky et al. in 1985 ([15]).

Obviously, κF(X̃) = ‖X̃‖F‖X̃−1‖F achieves the minimum if and only if X̃ is unitary.

Let

W̃j = N

⎛
⎝
⎡
⎣ UT

1

(
λ2jM + λjC +K

)

λjU
T
1

(
λ2jM + λjC +K

)
⎤
⎦
⎞
⎠, (4.10)
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then x̃j ∈ W̃j . Let the columns of matrix Wj comprise an orthonormal basis, for the subspace
W̃j , and

Xj = span
{
x̃1, . . . , x̃j−1, x̃j+1, . . . , x̃2n

}
, (4.11)

and let yj be a normalized vector orthogonal to Xj . The objective here is to choose vectors
x̃j(j = 1, 2, . . . , 2n), such that each vector is as orthogonal as possible to the space Xj . Observe
that x̃j orthogonal to Xj is equivalent to choose x̃j ∈ W̃j , such that the angle between x̃j and
yj is minimized.

Obviously, yj must satisfy

[
x̃1, . . . , x̃j−1, x̃j+1, . . . , x̃2n

]H
yj = 0. (4.12)

The coefficient matrix of equation (4.12) is a (2n − 1) × 2n matrix, so we can easily solve yj

from equation (4.12), and let x̃j be the normalized projection of yj onto the space W̃j , then

x̃j =
WjW

H
j yj∥∥∥WH

j yj

∥∥∥
2

. (4.13)

This method is then to sweep through the columns of X̃ replacing the jth column in turn
with the normalized projection x̃j . Because the prescribed eigenvalue λj is complex, two
columns need to be altered simultaneously. Repeat the previous procedure until satisfying
the stopping criterion or reaching the maximal amount of iteration. We can choose

∥∥∥X̃HX̃ − I
∥∥∥
F
< ε, (4.14)

as the stopping criterion.
It is worthwhile to point out that the procedure is not guaranteed to converge, that

is, the criterion (4.14) may not be satisfied. To ensure the end of iteration, we need to set a
maximal amount of iteration kmax. Now we develop an algorithm, called orthogonal vector
method, for solving the problem RQEA.

Algorithm 2. Initialization Step

Let ε > 0 be the termination scalar, kmax is the maximal amount of iteration. Given M,C,K ∈
Rn×n, B ∈ Rn×m, and Λ = diag(λ1, λ2, . . . , λ2n) ∈ C2n×2n.

Main Step

(1) Find the decomposition (2.2) of B and an orthonormal basis, comprised by the
columns of the matrix Wj , for the subspaces W̃j , j = 1, 2, . . . , 2n, defined by (4.10).

(2) Select an initial matrix X̃ = [x̃1, x̃2, . . . , x̃2n], defined by (3.10), such that x̃j ∈ W̃ and
X̃ is nonsingular. Let k = 0.
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(3) If k < kmax, do

for j = 1, 2, . . . , 2n,

compute the solution yj of equation (4.12) and normalize yj ;

compute x̃j = WjW
H
j yj/‖WH

j yj‖2;

compute res1 = ‖X̃HX̃ − I‖F ;

update the jth column of X̃ with x̃j ;

compute res2 = ‖X̃HX̃ − I‖F .
If |res2 − res1| < ε, then go to (4), else continue;

(4) let k = k + 1; repeat (3) until convergence.
(5) let the first n rows of X̃ be X construct feedback matrices F,G by solving

[
GT, FT

]
= Z−1UT

0

[
MXΛ2 + CXΛ +KX

]
X̃−1. (4.15)

Although this method does not guarantee convergence, it is simple to implement, and
numerical results show that it often leads to better conditioned closed-loop systems.

5. Numerical Results

To illustrate the performance of the present algorithms, in this section we give some
numerical examples, which were carried out using MATLAB 6.1.

Example 5.1. In the first example we examine a case from [5], where the matrix M is very ill
conditioned. The system matrices M,C,K, and B are defined by

M =

⎡
⎢⎢⎣
5000 0 0

0 1 1

0 1 1.00001

⎤
⎥⎥⎦, C = 0, K =

⎡
⎢⎢⎣
−40 40 0

40 −80 40

0 40 −40

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
1 2

3 2

3 4

⎤
⎥⎥⎦. (5.1)

The system is undamped and the open-loop eigenvalues are

{±48999.0i, ±4.4726i, ±0.051635i}. (5.2)

The desired closed-loop eigenvalues λj , j = 1, 2, . . . , 6 are given by

L = {−1,−2,−3,−4,−5,−6}. (5.3)

With Algorithm 1, we choose an initial vector w(0) = [w(0)
1

T
,w

(0)
2

T
, . . . , w

(0)
2n

T
]T with

w
(0)
1 = [1, 0]T , w(0)

2 = [0, 1]T , w(0)
3 = 1/

√
2[1,−1]T , w(0)

4 = 1/
√
2[−1, 1]T , w(0)

5 = [1, 0]T , and
w

(0)
6 = [0, 1]T , and take γij = 1/

√
6(i, j = 1, 2, . . . , 6), α2 = 0.7. The corresponding matrix



12 Mathematical Problems in Engineering

X̃ has condition number κF(X̃) = 1.2626 × 105, and after three iterations, it is reduced to
κF(X̃) = 3.8416 × 104. The computed feedback matrices are given by

FT =

[
−312.9824 −7.3540 −6.6748
−0.0233 −0.0003 −0.0003

]
,

GT =

[
−194.9454 38.2092 −79.2761
19.9877 −60.0016 59.9985

]
.

(5.4)

Example 5.2. In the second example, we examine a case from [16]. The system matrices
M,C,K, and B are defined by

M = I4, C =

⎡
⎢⎢⎢⎢⎢⎣

0.5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0.5

⎤
⎥⎥⎥⎥⎥⎦
, K =

⎡
⎢⎢⎢⎢⎢⎣

5 −5 0 0

−5 10 −5 0

0 −5 10 −5
0 0 −5 6

⎤
⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦
. (5.5)

The open-loop eigenvalues are

{3.525,−3.559,−0.059 ± 3.732i,−0.191 ± 1.489i,−0.233 ± 2.692i}. (5.6)

The desired closed-loop eigenvalues λj , j = 1, 2, . . . , 8 are given by

L = {−1 ± i,−2 ± i,−3 ± i,−4 ± i}. (5.7)

With Algorithm 2, we choose ε = 10−6, kmax = 8, and the initial matrix X̃ is generated
by a random selection of vectors from each subspace. The corresponding matrix X̃ has
condition number κF(X̃) = 5.8818 × 103, and after eight iterations, it is reduced to κF(X̃) =
2.3927 × 103. The computed feedback matrices are given by

FT =

[
−5.5706 −15.6774 −92.7449 57.9760

0.0050 −13.4294 2.4449 0.0238

]
,

GT =

[
−5.3794 −173.3879 235.9619 −93.4799
−5.0455 −46.2669 113.8836 −70.6403

]
.

(5.8)
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