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We study a new integrable KdV6 equation from the point of view of its exact solutions by using
an improved computational method. A new approach to the projective Riccati equations method
is implemented and used to construct traveling wave solutions for a new integrable system, which
is equivalent to KdV6 equation. Periodic and soliton solutions are formally derived. Finally, some
conclusions are given.

1. Introduction

The sixth-order nonlinear wave equation

(
∂3x + 8ux∂x + 4uxx

)(
ut + uxxx + 6u2

x

)
= 0 (1.1)

has been recently derived by Karasu-Kalkanl1 et al. [1] as a new integrable particular case of
the general sixth-order wave equation

uxxxxxx + αuxuxxxx + βuxxuxxx + γu2
xuxx + δutt + ρuxxxt +ωuxuxt + σutuxx = 0, (1.2)
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where, α, β, γ , δ, ρ, ω, σ are arbitrary parameters, and u = u(x, t), is a differentiable function.
By means of the change of variable

v = ux,

w̃ = ut + uxxx + 6u2
x,

(1.3)

equation (1.1) converts to the Korteweg-de Vries equation with a source satisfying a third-
order ordinary differential equation (KdV6)

vt + vxxx + 12vvx − w̃x = 0,

w̃xxx + 8vw̃x + 4w̃vx = 0,
(1.4)

which is regarded as a nonholonomic deformation of the KdV equation [2]. Setting

v(x, t) =
1
2
u(x,−t),

w̃(x, t) =
1
2
w(x, t),

(1.5)

the system (1.4) reduces to [2, 3]

ut − 6uux − uxxx +wx = 0,

wxxx + 4uwx + 2uxw = 0.
(1.6)

A first study on the integrability of (1.6) has been done by Kupershmidt [2]. However, only at
the end of the last year, Yao and Zeng [4] have derived the integrability of (1.6). More exactly,
they showed that (1.6) is equivalent to the Rosochatius deformations of the KdV equation
with self-consistent sources (RD-KdVESCS). This is a remarkable fact because the soliton
equations with self-consistent sources (SESCS) have important physical applications. For
instance, the KdV equation with self-consistent sources (KdVESCS) describes the interaction
of long and short capillary-gravity waves [5]. On the other hand, when w = 0 the system
(1.6) reduces to potential KdV equation, so that solutions of the potential KdV equation are
solutions to (1.1). Furthermore, solving (1.6) we can obtain new solutions to (1.1). In the
soliton theory, several computational methods have been implemented to handle nonlinear
evolution equations. Among them are the tanh method [6], generalized tanh method [7, 8],
the extended tanh method [9–11], the improved tanh-coth method [12, 13], the Exp-function
method [14–16], the projective Riccati equations method [17], the generalized projective
Riccati equations method [18–23], the extended hyperbolic function method [24], variational
iteration method [25–27], He’s polynomials [28], homotopy perturbation method [29–31],
and many other methods [32–35], which have been used in a satisfactory way to obtain
exact solutions to NLPDEs. Exact solutions to system (1.6) and (1.1) have been obtained
using several methods [3, 4, 36–38]. In this paper, we obtain exact solutions to system (1.6).
However, our idea is based on a new version of the projective Riccati method which can
be considered as a generalized method, from which all other methods can be derived. This
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paper is organized as follows. In Section 2 we briefly review the new improved projective
Riccati equations method. In Section 3 we give the mathematical framework to search exact
for solutions to the system (1.6). In Section 4, we mention a new sixth-order KdV system from
which novel solutions to (1.6) can be derived. Finally, some conclusions are given.

2. The Method

In the search of the traveling wave solutions to nonlinear partial differential equation of the
form

P(u, ux, ut, uxx, uxt, utt, . . .) = 0, (2.1)

the first step consists in use the wave transformation

u(x, t) = v(ξ), ξ = x + λt, (2.2)

where λ is a constant. With (2.2), equation (2.1) converts to an ordinary differential equation
(ODE) for the function v(ξ)

P
(
v, v′, v′′, . . .

)
= 0. (2.3)

To find solutions to (2.3), we suppose that v(ξ) can be expressed as

v(ξ) = H
(
f(ξ), g(ξ)

)
, (2.4)

where H(f(ξ), g(ξ)) is a rational function in the new variables f(ξ), g(ξ) which are solutions
to the system

f ′(ξ) = ρf(ξ)g(ξ),

g2(ξ) = R
(
f(ξ)

)
,

(2.5)

being ρ /= 0 an arbitrary constant to be determinate and R(f(ξ)) a rational function in the
variable f(ξ). Taking

f(ξ) = φN(ξ), (2.6)

where φ(ξ)/= 0, and N/= 0, then (2.5) reduces to

φ′(ξ) =
ρ

N
φ(ξ)g(ξ),

g2(ξ) = R
(
φN(ξ)

)
.

(2.7)
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From (2.7)we obtain

(
φ′(ξ)

)2 = ρ2

N2
φ2(ξ)R

(
φN
)
. (2.8)

Let N = −1 and R(f(ξ)) = α + βf(ξ) + γf(ξ)2, with α/= 0. In this case, (2.8) reduces to

(
φ′(ξ)

)2 = ρ2φ(ξ)2R
(
φ(ξ)−1

)
= ρ2

(
αφ2(ξ) + βφ(ξ) + γ

)
, (2.9)

and (2.5) are transformed into

f ′(ξ) = ρf(ξ)g(ξ),

g2(ξ) = α + βf(ξ) + γf(ξ)2.
(2.10)

The following are solutions to (2.9):

φ1(ξ) =
1
4α
(−2β + (1 −Δ) sinh

(
ρ
√
αξ
)
+ (1 + Δ) cosh

(
ρ
√
αξ
))
,

φ2(ξ) =
1
4α
(−2β − (1 −Δ) sinh

(
ρ
√
αξ
)
+ (1 + Δ) cosh

(
ρ
√
αξ
))
.

(2.11)

Therefore, solutions to (2.10) are given by

f(ξ) =
−4α

2β ± (1 −Δ) sinh
(
ρ
√
αξ
) − (1 + Δ) cosh

(
ρ
√
αξ
) ,

g(ξ) =
√
α
(
(1 + Δ) sinh

(
ρ
√
αξ
) ∓ (1 −Δ) cosh

(
ρ
√
αξ
))

2β ± (1 −Δ) sinh
(
ρ
√
αξ
) − (1 + Δ) cosh

(
ρ
√
αξ
) .

(2.12)

In all cases Δ = β2 − 4αγ .

3. Exact Solutions to the Integrable KdV6 System

Using the traveling wave transformation

u(x, t) = v(ξ),

w(x, t) = w(ξ),

ξ = x + λt + ξ0,

(3.1)
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the system (1.6) reduces to

(
λv(ξ) − 3v2(ξ) − v′′(ξ) +w(ξ)

)′
= 0, (3.2)

w′′′(ξ) + 4v(ξ)w′(ξ) + 2v′(ξ)w(ξ) = 0. (3.3)

Integrating (3.2) with respect to ξ and setting the constant of integration to zero we obtain

λv(ξ) − 3v2(ξ) − v′′(ξ) +w(ξ) = 0,

w′′′(ξ) + 4v(ξ)w′(ξ) + 2v′(ξ)w(ξ) = 0.
(3.4)

Using the idea of the projective Riccati equations method [19–22], we seek solutions to (3.4)
as follows:

v(ξ) = H1
(
f(ξ), g(ξ)

)
=

M∑
0

aif
i(ξ) +

2M∑
M+1

aig(ξ)fi−(M+1)(ξ),

w(ξ) = H2
(
f(ξ), g(ξ)

)
=

N∑
0

bif
i(ξ) +

2N∑
N+1

big(ξ)fi−(N+1)(ξ),

(3.5)

where f(ξ) and g(ξ) satisfy the system given by (2.10) (with ρ = 1). Substituting (3.5) into
(3.4), after balancing we have that

M = 2, (3.6)

andNis an arbitrary positive constant. By simplicity we takeN = M. Therefore, (3.5) reduce
to

v(ξ) = H1
(
f(ξ), g(ξ)

)
=

2∑
0

aif
i(ξ) +

4∑
3

aig(ξ)fi−(3)(ξ),

w(ξ) = H2
(
f(ξ), g(ξ)

)
=

2∑
0

bif
i(ξ) +

4∑
3

big(ξ)fi−(3)(ξ).

(3.7)

Substituting this last two equations into (3.4), using (2.10) we obtain an algebraic system in
the unknowns a0, a1, a2, a3, a4, b0, b1, b2, b3, b4, λ, α, β, and γ . Solving it and using (3.7), (2.12),
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and (3.1) we have the following set of new nontrivial solutions to KdV6 system (1.6). In all
cases, a1 = a3 = b1 = b3 = β = 0

λ =
2b4 ∓

√
α2a2

4 + 9b24
a4

, b0 =
1
6

⎛
⎜⎝−αb4

a4
− 6b24

a2
4

±
2b4
√
α2a2

4 + 9b24
a2
4

⎞
⎟⎠,

b2 = −a4b4, a0 =
−αa4 + 3b4 ∓

√
α2a2

4 + 9b24
6a4

, a2 = −a2
4, γ = a2

4.

(3.8)

A combined formal soliton solution is:

u1(x, t) =
−αa4 + 3b4 ∓

√
α2a2

4 + 9b24
6a4

+
(
−a2

4

)( −4α
±(1 + 4αa2

4

)
sinh

[√
αξ
] − (1 − 4αa2

4

)
cosh

[√
αξ
]
)2

+ a4

(
−4α

±(1 + 4αa2
4

)
sinh

[√
αξ
] − (1 − 4αa2

4

)
cosh

[√
αξ
]
)

×
(√

α
((
1 − 4αa2

4

)
sinh

[√
αξ
] ∓ (1 + 4αa2

4

)
cosh

[√
αξ
])

±(1 + 4αa2
4

)
sinh

[√
αξ
] − (1 − 4αa2

4

)
cosh

[√
αξ
]
)
,

w1(x, t) =
1
6

⎛
⎜⎝−αb4

a4
− 6b24

a2
4

±
2b4
√
α2a2

4 + 9b24
a2
4

⎞
⎟⎠

+ (−a4b4)

(
−4α

±(1 + 4αa2
4

)
sinh

[√
αξ
] − (1 − 4αa2

4

)
cosh

[√
αξ
]
)2

×
(√

α
((
1 − 4αa2

4

)
sinh

[√
αξ
] ∓ (1 + 4αa2

4

)
cosh

[√
αξ
])

±(1 + 4αa2
4

)
sinh

[√
αξ
] − (1 − 4αa2

4

)
cosh

[√
αξ
]
)

′

(3.9)

where a4, b4, α are arbitrary constants, and ξ = x + λt + ξ0.
Furthermore,

λ =
8α2 + 20αa0 + 15a2

0

2α + 3a0
, b0 = −2

(
4α2a0 + 7αa2

0 + 3a3
0

)

2α + 3a0
,

b4 = 0, a4 = 0, b2 = −2
(
4αγa0 + 3γa2

0

)

2α + 3a0
, a2 = −2γ.

(3.10)
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A soliton solution is given by

u2(x, t) = a0 +
(−2γ)

(
−4α

±(1 + 4αγ
)
sinh

[√
αξ
] − (1 − 4αγ

)
cosh

[√
αξ
]
)2

,

w2(x, t) = −2
(
4α2a0 + 7αa2

0 + 3a3
0

)

2α + 3a0

+

(
−2
(
4αγa0 + 3γa2

0

)

2α + 3a0

)

×
(

−4α
±(1 + 4αγ

)
sinh

[√
αξ
] − (1 − 4αγ

)
cosh

[√
αξ
]
)2

,

(3.11)

where a0, α, γ are arbitrary constants and ξ = x + λt + ξ0.

3.1. A New System

A direct calculation shows that (1.1) reduces to

uxxxxxx + 20uxuxxxx + 40uxxuxxx + 120u2
xuxx + uxxxt + 4uxxut + 8uxuxt = 0. (3.12)

On the other hand, it is easy to see that (3.12) can be written as

(
∂2x + 4uxx∂

−1
x + 8ux

)
(uxt + uxxxx + 12uxuxx) = 0. (3.13)

Using the analogy between KdV equation and MKdV equation and motivated by the
structure of (3.13), the authors in [38] have introduced the so-called MKdV6 equation

(
∂3x + 8v2

x∂x + 8vxx∂
−1
x vx∂x

)(
vt + vxxx + 4v3

x

)
= 0, (3.14)

and they showed that

(
∂3x + 8ux∂x + 4uxx

)(
ut + uxxx + 6u2

x

)
=

(
2vx +

√
2

2i∂x

)
,

(
∂3x + 8v2

x∂x + 8vxx∂
−1
x vx∂x

)(
vt + vxxx + 4v3

x

)
= 0,

(3.15)
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where v2
x +

√
2/2ivxx is the Miura transformation between KdV6 equation (1.1) and MKdV6

equation (3.14). Therefore, solving (3.14), according to (3.15), solutions to (1.1) are obtained.
Setting wx = v2

x, then the new MKdV6 equation is equivalent to new system

vxxxxxx + 20v2
xvxxxx + 80vxvxxvxxx + 20v3

xx + 120v4
xvxx + vxxxt + 8v2

xvxt + 4vxxwt = 0,

wxx − 2vxvxx = 0.
(3.16)

In equivalent form, with s = vx, w = vt + vxxx + 4v3
x, from (3.14) the following system is

derived:

st + sxxx + 12s2sx −wx = 0,

wxxx + 8s2wx + 8sxz = 0,

zx − swx = 0.

(3.17)

We believe that traveling wave solutions to these systems can be obtained using the method
used here. By reasons of space, we omit them.

4. Conclusions

In this paper we have derived two new soliton solutions to KdV6 system (1.2) by using a
new approach of the improved projective Riccati equations method. The results show that the
method is reliable and can be used to handle other NLPDE’s. Other methods such as tanh,
tanh-coth, and exp-function methods can be derived from the new version of the projective
Riccati equation method. Moreover, newmethods can be obtained using the exposed ideas in
the present paper. Other methods related to the problem of solving nonlinear PDEs exactly
may be found in [39, 40].
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