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The vehicle driving comfort has become one of the important factors of vehicle quality and
receives increasing attention. In this paper, the mechanical and mathematical models of the half-
car, five degrees of freedom (DOF) of a vehicle were established, as well as the pseudoexcitation
model of road conditions for the front wheel and the rear wheel. By the pseudoexcitation
method, the equations of transient response and power spectrum density were established. After
numerical simulation to vehicle vibration response of changeable driving, the results show that the
pseudoexcitation method is more convenient than the traditional method and effectively solves
the smoothness computation problems of vehicles while the pseudoexcitation method is used to
analyze vehicle vibration under nonstationary random vibration environments.

1. Introduction

The mechanical and mathematical model of vehicle systems is usually simplified as a
multiple-mass, complicated vibration system. Due to road excitation, vehicles may come into
complicated vibration, which is disadvantageous to passenger health and goods protection
[1, 2]. Therefore, it is important and necessary to control the vehicle’s vibration within a
limited and comfortable grade in order to ensure safety steering and physical health of
drivers and passengers, as well as the operating stability of man-vehicle-road system. In
the process of automobile moving, the random and changeable road surface is the main
factor to induce vehicle vibration. Therefore, investigation of vehicle’s stochastic vibration
[3, 4] induced by road excitation has been a significant problem of vehicle design and its
performance simulation.

At present, for this kind of problems, the Fourier transform analysis is used to
investigate the dynamic characteristics of constant driving problems of automobiles based
on stationary random vibration theory. After finishing vibration model of vehicles, it is
important to derive the frequency characteristic of vehicle vibration responses and to
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establish power spectrum density function of road excitation and vehicle vibration responses
[5]. Then it can be used to analyze the influence of vehicle structural parameters and road
excitation on vehicle random vibration [6]. Although this method was relatively simple,
its derivation process is too complicated, that is, this method needs not only to derive
the frequency response characteristics of vehicle vibration system, but also to derive the
frequency response characteristics of vehicle vibration response values.

However, in some circumstances, vehicles are running in changeable speeds, such as
in accelerating starting period and decelerating stopping period. In these cases, the road
excitation and the vehicle dynamic response in time domain are nonstationary [7, 8]. The
stochastic vibration analysis method based on Fourier transform and its inverse transform
has been used to study the changeable speed response of vehicles in unevenness roads,
but its computation work is enormous. The pseudoexcitation method was used to analyze
the stochastic vibration of structural systems [9–11]. By pseudoexcitation method, stochastic
vibration analysis was carried on a two-DOF system vibration of a quarter-vehicle model [12–
14], in which the vibration response of a constant speed moving vehicle was investigated to
a stationary random road excitation. The changeable speed vehicle vibration response was
also conducted under one-point road excitation [15]. In addition, some last investigations
[16, 17] have dealt with a quarter-car model with a harmonic excitation while the study [18]
considers the additional stochastic component in the road surface roughness. In this study,
the time-space frequency relationship of vehicle vibration under changeable speed moving
was derived by pseudoexcitation method, and then the equation of transient power spectrum
density of vehicle vibration response under nonstationary random road excitation input was
obtained. At the end, we also conducted the numerical simulations to the vibration responses
of a half-car, five-DOF vehicle system under changeable speed moving conditions.

2. Theory of Pseudoexcitation Method

When a linear system is randomly excited by self-spectrum density Sxx(w), the self-power
spectrum of its response y is

Syy(w) = |H(w)|2Sxx(w), (2.1)

where H(w) is the frequency response function, and its meaning is shown in Figure 1 [19],
that is, the corresponding harmonic response is y = H(w)eiwt when the random excitation
is replaced by harmonic excitation eiwt. From Figure 1, it can be seen that if it multiplies a
constant

√
Sxx before the excitation eiwt, it can create a pseudoexcitation,

x̃(t) =
√
Sxxe

iwt. (2.2)

After multiplying a same constant to its response value, it can give the following
equations:

ỹ∗ỹ =
∣∣ỹ
∣∣2Sxx = Syy,

x̃∗ỹ =
√
Sxxe

−iwt ·
√
Sxxe

iwt = SxxH = Sxy,

ỹ∗x̃ =
√
Sxxe

−iwt ·
√
SxxHeiwt = SxxH = Ssy.

(2.3)
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(a) Sxx H(w) Syy = |H|2Sxx

(b) x = eiwt H(w) y = Heiwt

(c) x̃ =
√
Sxxe

iwt H(w) ỹ =
√
SxxHeiwt

(d) x̃ =
√
Sxxe

iwt H(w)

ỹ1 =
√
SxxH1e

iwt

ỹ2 =
√
SxxH2e

iwt

Figure 1: The principle of pseudoexcitation method.

The last formula in the above 3 equations is the conventional expressions of self-spectrum
density or mutual spectrum density.

If the pseudoresponse values ỹ1 and ỹ2 are considered in the above system, the
following equations can be validated:

ỹ∗1ỹ2 = H1
∗√Sxxe−iwt ·H2

√
Sxxe

iwt = H1
∗SxxH2 = Sy1y2,

ỹ∗2ỹ1 = H2
∗SxxH1 = Sy2y1.

(2.4)

Then the matrixes of power spectrum density are as follows:

[
Syy
]
=
{
ỹ
}∗ ·
{
ỹ
}T
,

[
Sxy
]
= {x̃}∗ ·

{
ỹ
}T
,

[
Syx
]
=
{
ỹ
}∗ · {x̃}T .

(2.5)

If the pseudoexcitation of a random process is x̃(t) =
√
Sxxe

iwt, then it can give

˙̃x = iw
√
Sxxe

iwt, ¨̃x = −w2
√
Sxxe

iwt, (2.6)

Sẍẍ = w4Sxx. (2.7)

That is the power spectrum density of accelerations, and in the same way, we can
obtain the following equations:

S ¨̃y ¨̃y =
{ ¨̃y
}∗ ·
{ ¨̃y
}T
, (2.8)

S ¨̃y1 ¨̃y2
=
{ ¨̃y1

}∗ ·
{ ¨̃y2

}T
, (2.9)

where ∗ is a complex conjugate, and T is a matrix transfer.
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Figure 2: The mechanical model of a half-car, five-DOF automobile system.

After computing the vibration response of the system in the case of the pseudo
harmonic excitation, all the power spectrum densities of them can be solved according to
(2.5)–(2.9). Then the self-spectrum density and mutual spectrum density of them can also be
obtained.

3. Vibration Analysis of the Half-Car, Five-DOF Vehicle System in
Changeable Speeds

3.1. Mechanical and Mathematical Models of the System

For analyzing automobile vibration, it is important to establish its mechanical and
mathematical model of the automobile structural system, so that the vibration characteristic
response value of the mathematical model of vehicle vibration can be solved and obtained.
For the mechanical modeling of automobiles, a seven-DOF mechanical model [20] has been
developed to investigate the influence of active and semiactive suspension to automobile
dynamic performance. In addition, the moving smartness and operating stability of
automobiles were also investigated by spatial mechanical models of automobiles [21]. In
this study, a half-car, five-DOF linear mechanical model [22] of an automobile system was
developed as shown in Figure 2.

In Figure 2, ms is the mass of driver and chair and mb is the mass of automobile
structure. mf,mr are the nonspring supported mass of front and rear suspensions,
respectively. ks and cs are the rigidity coefficient and damping coefficient of the chair,
respectively. kf , kr are the rigidity coefficient of front and rear suspensions, respectively.
ktf , ktr are the rigidity coefficient of front and rear wheels, respectively. qf , qr are the road
excitation forces at front and rear wheels, respectively. l1 is the distance between chair and
vehicle mass center. l2, l3 are the distances from the vehicle mass center to front and rear
wheel axles, respectively.
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By Lagrange equations, the mathematical model of the vehicle mechanical model in
Figure 2 is as follows:

[M]
{
Z̈
}
+ [C]

{
Ż
}
+ [K]{Z} = [F]{Q}, (3.1)

where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ms 0 0 0 0

0 mb 0 0 0

0 0 mp 0 0

0 0 0 mf 0

0 0 0 0 mr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

cs −cs csl1 0 0

−cs cs + cf + cr −csl1 − cf l2 + crl3 −cf −cr
csl1 −csl1 − cf l2 + Crl3 csl

2
1 + cf l

2
2 + crl

2
3 cf l2 −Crl3

0 −cf cf l1 cf 0

0 −cr −crl3 0 cr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ks −ks ksl1 0 0

−ks ks + kf + kr −ksl1 − kf l2 + krl3 −kf −kr
ks −ksl1 − kf l2 + krl3 ksl

2
1 + kf l

2
2 + krl

2
3 kf l2 −krl3

0 −kf kf l2 kf + ktf 0

0 −kr −krl3 0 kr + ktr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0

0 0

0 0

ktf 0

0 ktr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, {Z} =
{
zs zb zp zf zr

}T
, {Q} =

{
qf qr

}T
.

(3.2)

3.2. Road Excitation

The unevenness degree of road profile can be generally described by power spectrum density.
The international GB7031 recommends that the power spectrum density of road profile is
described by

Sq(n) = Sq(n0)
(
n

n0

)−w
, (3.3)
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where Sq(n0) is the unevenness coefficient of road profile. n0 is the referenced spatial
frequency, n0 = 0.1 (m−1). n is the spatial frequency (m−1). w is the frequency exponent
of the graded road spectrum and generally chosen as 2. In this study, Sq(n0) is set as
Sq(n0) = 64 × 10−6 (m2/m−1), that is, Grade B road condition.

When automobiles move in changeable speeds, the excitations of automobile systems
are different in time domain and space domain. It is not stationary in space domain but
in time domain. However, the automobile’s mechanical responses are all nonstationary. By
the inherent characteristics of frequency response function H(w) of vehicle system in time
domain and the relation of time frequency w and space frequency n, the transient frequency
response function H(s, n) can be obtained, then we can solve the stochastic vibration of the
vehicle system in changeable speed moving [11, 23].

The unevenness degree of roads in time domain is shown as follows [24]:

q(t) = h0e
jwt, (3.4)

where h0 is the amplitude of unevenness degree of roads. The expression of unevenness
degree of roads in space domain is as follows:

q = h0e
jΩs, (3.5)

wt = Ωv, (3.6)

where Ω is the spatial angular frequency.
When the automobile is moving in a constant speed, s = vt, it has the following

relation, w = Ωs or f = nv.
When the automobile is moving in a changeable speed, it has

s = v0 +
at2

2
, (3.7)

where v0 is the initial velocity of the automobile and a is its acceleration. Then (3.6) can be
rewritten as

wdt = Ωds,

w = Ω
ds

dt
= 2nπ(v0 + at) = 2nπ

(
2as + v0

2
)1/2

.
(3.8)

Equation (3.8) reflects the time-space frequency relation of automobiles in an
accelerated moving.

3.3. Pseudoexcitation of Random Road at Front and Rear Wheels

By the time-frequency expression of unevenness degree of roads, a pseudoexcitation of road
q̃(t) can be built which is corresponding with the road excitation q(t), as follows:

q̃(t) =
√
Sq(n)eiwt. (3.9)
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Hypothesize that the road excitations on four wheels of the automobile are the same
and the delay relation [14] between front wheel excitation qf(t) and rear wheel excitation
qr(t) is as follows:

qr(t) = qf(t − τ), (3.10)

where τ = l/v, l is the distance between two wheel axles, then it has

q̃f(t) =
√
Sq(n)eiwt,

q̃r(t) = q̃f(t − τ) =
√
Sq(n)eiw(t−τ) = e−iwtτ q̃(t).

(3.11)

Therefore, the excitation input is written as follows:

{
q̃(t)
}
=

[
q̃f(t)

q̃r(t)

]

=

[
1

e−iwτ

]

q̃(t) =
{
Hq(w)

}
q̃(t). (3.12)

The road excitations from front wheel and rear wheel can be simplified as an excitation
input {q̃(t)}, and its frequency response characteristic is {Hq(w)}. Thus, the two-point
excitations are simplified as one-point excitation.

3.4. Formulation of System Response

For a multiple degrees-of-freedom system, its frequency response characteristic is the
complex number ratio of response vector and excitation vector. For the half-car, five-DOF
vehicle system in this study, if we supposed that its frequency response is [H(w)], then the
relation of pseudoresponse and pseudoexcitation is

{z̃(t)} = [H(w)]
{
q̃(t)
}
. (3.13)

Substituting (3.12) into (3.13) gives

{z̃(t)} = [H(w)]
{
Hq(w)

}
q̃(t) =

{
hg(w)

}
q̃(t). (3.14)

Since {hg(w)} = [H(w)]{Hq(w)}, then

{ ˙̃z(t)
}
=
{
hg(w)

} ˙̃q(t) = iw
{
hg(w)

}
q̃(t), (3.15)

{ ¨̃z(t)
}
= −w2{hg(w)

}
q̃(t). (3.16)

Substitute (3.15) and (3.16) into the system equation, then the system frequency
response function can be obtained as follows:

[H(w)] =
[
[K] −w2[M] + iw[C]

]−1
F, (3.17)
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where

[H(w)]5×2 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

H(w)s
H(w)b
H(w)p
H(w)f
H(w)r

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

. (3.18)

The frequency response functions of the relative displacement of suspension and the
dynamic loads of tires are as follows, respectively:

Hrd(w) =
zb(w) − l2zp(w) − zf(w)

qf(w)
,

Htf(w) =
zf(w) − zr(w)

qf(w)
ktf .

(3.19)

By substituting (3.13) into (3.19), it gives the frequency response functions of the
relative displacement of suspension and the dynamic loads of tires as follows:

Hrd(w) = Hb(w) − l2Hp(w) −Hf(w),

Htf(w) =
[
Hf(w) −Hr(w)

]
ktf .

(3.20)

It can be found that the system response result by pseudoexcitation method is the
same as the result obtained by Fourier transform analysis. After obtaining the automobile
structural parameters and the road excitation parameters, the pseudoexcitation responses
{z̃(t)} and { ¨̃z(t)} can be solved in accordance with (3.14) and (3.16). The response power
spectrum can be achieved according to (2.5) and (2.6).

The power spectrum matrix of vertical acceleration of the system is

{Sz̈z̈(w)} =
{ ¨̃z(t)

}∗ ·
{ ¨̃z(t)

}T
= w4{hg(w)

}√
Sq(n)e−iwt

{
hg(w)

}T√
Sq(n)eiwt

= w4{hg(w)
}{
hg(w)

}T
Sq(n)

= w4[H(w)]
{
Hq(w)

}{
Hq(w)

}T [H(w)]TSq(n).

(3.21)

By substituting w = 2nπ(2as + v0
2)1/2 into (3.21), the spatial acceleration power

spectrum density of system responses can be obtained as follows:

{Sz̈z̈(s, n)} = (2πn)4
(

2as + v0
2
)2
[H(s, n)]

{
Hq(s, n)

}{
Hq(s, n)

}T [H(s, n)]TSq(n), (3.22)



Mathematical Problems in Engineering 9

B
od

y
ac

ce
le

ra
ti

on

×104

7

6

5

4

3

2

1

0
150

100

50

0 0
1

2
3

Driving distance (m) Spatial frequency (1/m)

Figure 3: 3D spectrum of body acceleration.
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Figure 4: 2D spectrum of body acceleration.

where

H(s, n) =
[
[K] − 4n2π2

(
2as + v0

2
)
[M] + i

(
2nπ

√
2as + v0

2[C]
)]−1

F,

{
Hq(s, n)

}
=

⎡

⎣
1

e−i(2nπ
√

2as+v0
2τ)

⎤

⎦
√
Sq(n)e−i(2nπ

√
2as+v0

2t).

(3.23)

In the same way, according to the frequency response function of relative displacement
of suspensions and dynamic loads of tires, we can obtain the transient spatial power spectrum
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Figure 5: 3D spectrum of relative displacement of vehicle suspension.
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Figure 6: 2D spectrum of relative displacement of vehicle suspension.

density functions. It is important to substitute w = 2nπ(2as + v0
2)1/2 into them to get the

corresponding power spectrum density as follows:

Srd(s, n) = Hrd(s, n)Sq(n)[Hrd(s, n)]T ,

Stf(s, n) = Htf(s, n)Sq(n)
[
Htf(s, n)

]T
.

(3.24)

By means of computing {Sz̈z̈(s, n)}, Srd(s, n), and Stf(s, n), we can obtain the dynamic
characteristics of vehicles and driving comfort of vehicles.
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Figure 7: 3D spectrum of seat acceleration.
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Figure 8: 2D spectrum of seat acceleration.

4. Computing Case

In order to check the validation of the above mathematical models of transient response
analysis of the half-car, five-DOF automobile system based on pseudoexcitation, we carried
out the simulations as follows. To mimic an accelerating process of the automobile, set the
acceleration as a = 1.0 ms and the running distance as s = 150 m, respectively. The other
mechanical model parameters of the five-DOF automobile system are shown in Table 1.

Figures 3 and 4 show the 3D (three-dimensional) and 2D (two-dimensional)
spectrums of body acceleration, respectively. Figures 5 and 6 show the 3D and 2D spectrums
of relative displacement of vehicle suspension, respectively. Figures 7 and 8 show the 3D
and 2D spectrums of seat acceleration, respectively. Figures 9 and 10 show the 3D and
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Figure 9: 3D spectrum of tire acceleration.

Table 1: Mechanical model parameters of the five-DOF automobile system.

Items ms(kg) mb(kg) mp(kg.m2) mf (kg) mr(kg)
Values 70 2100 3500 140 210
Items ks kf kr ktf ktr
Values 12200 74000 120000 520000 520000
Items cs cf cr
Values 550 1800 1200

2D spectrums of tire acceleration, respectively. Figure 11 shows the 2D spectrum of tire
dynamic load. The nonstationary response spectrum analysis of the vehicle system shows
that the low-spatial frequency ingredient has a main role with vehicle speed increasing when
the vehicle moves in a constant acceleration. With the speed increasing, the peak values
of power spectrum of seat and body acceleration, as well as the low frequency values of
power spectrum of dynamic tire loads, are not monotonously increasing, and some local
values are decreasing. The changing of relative displacement of vehicle suspensions is not
large. The nonlinearity of the vehicle suspension is not included in the current study, this
is the limitation of this vehicle dynamic model, and it will be considered in the coming
study.

5. Conclusion

By pseudoexcitation method, the vibration response characteristics of the half-car, five-DOF
automobile system were obtained. The results show that the pseudoexcitation method is more
convenient than the traditional method and effectively solves the smoothness computation
of vehicles while the pseudoexcitation method is used to analyze vehicle vibration under
nonstationary random vibration.
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Figure 11: 2D spectrum of tire dynamic load.
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