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An analysis is presented to study the MHD free convection with thermal radiation and mass
transfer of polar fluid through a porous medium occupying a semi-infinite region of the space
bounded by an infinite vertical porous plate with constant suction velocity in the presence of
chemical reaction, internal heat source, viscous and Darcy’s dissipation. The highly nonlinear
coupled differential equations governing the boundary layer flow, heat, and mass transfer are
solved by using a two-term perturbation method with Eckert number E as a perturbation
parameter. The results are obtained for velocity, angular velocity, temperature, concentration, skin
friction, Nusselt number, and Sherwood number. The effect of variousmaterial parameters on flow,
heat, and mass transfer variables is discussed and illustrated graphically.

1. Introduction

Coupled heat and mass transfer problems in presence of chemical reaction are of importance
in many processes and have, therefore, received considerable amount of attention in recent
years. In processes such as drying, distribution of temperature andmoisture over agricultural
fields and graves of fruit trees, damage of crops due to freezing, evaporation at the surface
of a water body, energy transfer in a wet cooling tower, and flow in a desert cooler, heat
and mass transfer occur simultaneously. Possible applications of this type of flow can be
found in many industries. For example, in the electric power industry, among the methods
of generating electric power is one in which electrical energy is extracted directly from a
moving conducting fluid. Chemical reactions can be modeled as either homogeneous or
heterogeneous processes. This depends on whether they occur at an interface or as a single
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phase volume reaction. A homogeneous reaction is one that occurs uniformly throughout a
given phase. The species generation in a homogeneous reaction is the same as internal source
of heat generation. On the other hand, a heterogeneous reaction takes place in a restricted
area or within the boundary of a phase. It can therefore be treated as a boundary condition
similar to the constant heat flux condition in heat transfer. The study of heat and mass
transfer with chemical reaction is of great practical importance to engineers and scientists
because of its almost universal occurrence in many branches of science and engineering.
Das et al. [1] have studied the effects of mass transfer on the flow past impulsively started
infinite vertical plate with constant heat flux and chemical reaction. Diffusion of a chemically
reactive species from a stretching sheet is studied by Anderson et al. [2]. Anjali Devi and
Kandasamy [3] have analyzed the effects of chemical reaction, heat and mass transfer on
laminar flow along a semi-infinite horizontal plate. Muthucumaraswamy and Ganesan [4–
6] have studied the impulsive motion of a vertical plate with heat flux/mass flux/suction
and diffusion of chemically reaction species. Muthucumaraswamy [7] has analyzed the
effects of a chemical reaction on a moving isothermal vertical surface with suction. Ghaly
and Seddeek [8] have discussed the Chebyshev finite difference method for the effects of
chemical reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal
plate with temperature-dependent viscosity. Kandasamy et al. [9, 10] studied effects of
chemical reaction, heat and mass transfer along a wedge with heat source and concentration
in the presence of suction or injection, and chemical reaction, heat and mass transfer onMHD
flow over a vertical stretching surface with heat source and thermal stratification effects.
Mohamed et al. [11] have discussed the finite element method for the effect of a chemical
reaction on hydromagnetic flow and heat transfer of a heat generation fluid over a surface
embedded in a non-Darcian porous medium.

Convection problems associated with heat sources within fluid-saturated porous
media are of great practical significance in a number of practical applications in geophysics
and energy-related problems, such as recovery of petroleum resources, geophysical flow,
cooling of underground electric cables, storage of nuclear waste materials, ground water
pollution, fiber and granular insulations, solidification of costing, chemical catalytic reactors,
and environmental impact of buried heat generating waste. Effect of heat generation or
absorption on free convective flow with heat and mass transfer in geometries with and
without porous media has been studied by many scientists and technologists [12–22].

The study of flow and heat transfer for an electrically conducting polar fluid
past a porous plate under the influence of a magnetic field has attracted the interest of
many investigators in view of its applications in many engineering problems such as
magnetohydrodynamic (MHD) generator, plasma studies, nuclear reactors, oil exploration,
geothermal energy extractions, and the boundary layer control in the field of aerodynamics
[23]. Polar fluids are fluids with microstructure belonging to a class of fluids with
nonsymmetrical stress tensor. Physically, the represented fluids are consisting of randomly
oriented particles suspended in a viscous medium [24–26]. Ibrahim et al. [27] studied
unsteady magnetohydrodynamic micropolar fluid flow and heat transfer over a vertical
porous plate through a porous medium in the presence of thermal and mass diffusion with a
constant heat source. Rahman and Sattar [28] studied MHD convective flow of a micropolar
fluid past a vertical porous plate in the presence of heat generation/absorption. Kim [29]
investigated MHD convection flow of polar fluids past a vertical moving porous plate in a
porous medium. Helmy [30] obtained the solution for a magneto-hydromagnetic unsteady
free convection flow past a vertical porous plate for a Newtonian fluid and a special type
of non-Newtonion fluid known as micropolar fluids. Ogulu [31] studied the influence of
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radiation absorption on unsteady free convection and mass transfer flow of a polar fluid
in the presence of uniform magnetic field. Anjali Devi and Kandasamy [32] have analyzed
the effects of chemical reaction, heat and mass transfer on MHD flow past a semi infinite
plate. The flow and mass transfer on a stretching sheet with a magnetic field and chemically
reactive species are examined by Takhar et al. [33]. Raptis and Perdikis [34] have analyzed
the effect of a chemical reaction of an electrically conducting viscous fluid on the flow over a
nonlinearly (quadratic) semi-infinite stretching sheet in the presence of a constant magnetic
field which is normal to the sheet. Seddeek [35] has studied the finite element for the effects
of chemical reaction, variable viscosity, thermophoresis, and heat generation/absorption on a
boundary layer hydromagnetic flow with heat and mass transfer over a heat source. Sharma
and Thakur [36] have analyzed the effects of MHD on couple stress fluid heated from below
in porous medium. V. Sharma and S. Sharma [37] have discussed effects of thermosolutal
convection of micropolar fluids with MHD through a porous medium. The effect of heat
and mass transfer on MHD micropolar flow over a vertical moving porous plate in a porous
medium has studied by Kim [38]. The effect of rotation on a layer of micropolar ferromagnetic
fluid heated from below saturating a porous medium is investigated by Sunil et al. [39].

Many processes are new engineering areas occuring at high temperatures, and
knowledge of radiate heat transfer becomes very important for the design of the pertinent
equipment. Nuclear power planets gas turbines and the various propulsion devices for
aircraft, missiles, satellites, and space vehicles of radiation effects on the various types of
flows are quite complicated. On the other hand, heat transfer by simultaneous free convection
and thermal radiation in the case of a polar fluid has not received as much attention. This is
unfortunate because thermal radiation plays an important role in determining the overall
surface heat transfer in situations where convective heat transfer coefficients are small, as
is the case in free convection such situations are common in space technology [40]. The
effects of radiation on the flow and heat transfer of micropolar fluid past a continuously
moving plate have been studied by many authors; see [41–44]. The radiation effect on heat
transfer of a micropolar fluid past unmoving horizontal plate through a porous medium was
studied by Abo-Eldahab and Ghonaim [45]. Ogulu [46] has studied the oscillating plate-
temperature flow of a polar fluid past a vertical porous plate in the presence of couple stresses
and radiation. Rahman and Sultana [47] investigated the thermal radiation interaction of the
boundary layer flow of micropolar fluid past a heated vertical porous plate embedded in a
porous medium with variable suction as well as heat flux at the plate.

Recently, Mohamed and Abo-Dahab [48] investigated the effects of chemical reaction
and thermal radiation on the heat and mass transfer in MHD micropolar flow over a vertical
moving porous plate in a porous medium with heat generation.

The object of the present paper is to study the two-dimensional steady radiative heat
and mass transfer flow of an incompressible, laminar, and electrically conductive viscous
dissipative polar fluid flow through a porous medium, occupying a semi-infinite region
of the space bounded by an infinite vertical porous plate in the presence of a uniform
transverse magnetic field, chemical reaction of the first-order and internal heat generation.
Approximate solutions to the coupled nonlinear equations governing the flow are derived
and expression for the velocity, angular velocity, temperature, concentration, the rates of heat
and mass transfer, and the skin-friction are derived. Numerical calculations are carried out;
the purpose of the discussion of the results which are shown on graphs and the effects of the
various dimensionless parameters entering into the problem on the velocity, angular velocity,
temperature, concentration, the skin-friction, wall heat transfer, and mass transfer rates are
studied.
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2. Formulation of the Problem

The basic equations of mass, linear momentum, angular momentum, energy and concentra-
tion for steady flow of polar fluids with the vector fields are as follows:

∇ ·V = 0,

ρ(V · ∇)V =
(
μ + μr

)∇2V + 2μr(∇ ×Ω) + ρF,

ρk2(V · ∇)Ω = (Ca + Cd)[∇(∇ ·Ω) − ∇ × (∇ ×Ω)],

ρcP (V · ∇)T ∗ = λ∇2T ∗ +
(
μ + μr

)|∇ ×V|2 + μrΩ2 + 2μr[Ω · (∇ ×V)]

+ γ∗|∇ ×Ω|2 + ρΦ − ∇ · qr +Q,

(V · ∇)C∗ = D∗∇2C∗ −KnC
n.

(2.1)

Here, Φ is the dissipation function of mechanical energy per unit mass, V is the velocity
vector, Ω is the rotation vector, F is the body force vector, μ is the fluid viscosity, μr is the
dynamic rotational viscosity, n is the order of the reaction,Kn is the rate constant,Q = Qo(T ∗−
T ∗
∞) is the internal heat generation term, γ∗ is the spin-gradient of the fluid, and qr is the heat

flux vector included within the fluid as a result of temperature gradients.
We consider a two dimensional Carisian coordinates (x∗, y∗), steady hydromagnetic

free convection with thermal radiation and mass transfer flow of laminar, viscous,
incompressible, and heat generation polar fluid through a porous medium occupying a semi-
infinite region of the space bounded by an infinite vertical porous plate in the presence of a
transverse magnetic field and chemical reaction. x∗ is taken along the vertical plate and y∗ is
normal to it. The velocity, the angular velocity, the temperature, and the species concentration
fields are (u∗, v∗, 0), (0, 0, w∗), T ∗, and C∗, respectively. The surface is maintained at a constant
temperature T ∗

w different from the porous medium temperature T ∗
∞ sufficiently a way from

the surface and allows a constant suction. The fluid is assumed to be a gray, emitting-
absorbing, but nonscattering medium and the Rosseland approximation is used to describe
the radiative heat flux in the energy equation. The radiative heat flux in the x∗-direction is
considered negligible in comparison to the y∗-direction. A magnetic field of uniform strength
is applied transversely to the direction of the flow. Themagnetic Reynolds number of the flow
is taken to be small enough so that the induced magnetic field can be neglected. No electric
field is assumed to exit and both viscous and magnetic dissipations are neglected. A heat
source is placed within the flow to allow possible heat generation effects. The concentration
of diffusing species is assumed to be very small in comparison with other chemical species
which are present; the concentration of species far from the surface C∗

∞ is infinitesimally
small [49] and hence the Soret and Duffer effects are neglected. However, the effects of the
viscous dissipation and Darcy dissipation (ignoring the contribution due couple stresses as
a first approximation) are accounted in the energy balance equation. The chemical reaction
is taking place in the flow and all thermophysical properties are assumed to be constant.
The flow is due to buoyancy effects arising from density variations caused by differences
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in the temperature as well as species concentration. The diagrammatic of the problem is
displayed in Figure 1. The governing equations for this physical situation are based on
the usual balance laws of mass, linear momentum, angular momentum, and energy andmass
diffusion modified to account for the physical effects mentioned above.

These equations are given by

∂v∗

∂y∗ = 0, (2.2)

v∗ ∂u
∗

∂y∗ = gβt(T ∗ − T ∗
∞) + gβc(C∗ − C∗

∞) + (ν + νr)
∂2u∗

∂y∗2

+ 2νr
∂ω∗

∂y∗ − ν + νr
K′ u∗ − σB2

o

ρ
u∗,

v∗ ∂ω
∗

∂y∗ =
γ

I

∂2ω∗

∂y∗2 ,

(2.3)

v∗ ∂T
∗

∂y∗ =
λ

ρcP

∂2T ∗

∂y∗2 +
Qo

ρcP
(T ∗ − T ∗

∞)

+
ν

cP

(
∂u∗

∂y∗

)2

+
ν

K′cP
u∗2 − 1

ρcP

∂q∗r
∂y∗ ,

(2.4)

v∗ ∂C
∗

∂y∗ = D∗ ∂
2C∗

∂y∗2 −K1C
∗ (2.5)

after employing the “volume averaging” process [50] and γ = (Ca + Cd).
Since the fluid is viscous and especially a fluid with couple stress, according to

following D’ep [25], the boundary conditions are

u∗ = 0, T ∗ = T ∗
w, C∗ = C∗

w,
∂ω∗

∂y∗ = −∂
2u∗

∂y∗ , at y∗ = 0,

u∗ −→ ∞, ω∗ −→ 0, T ∗ −→ T ∗
∞, C∗ −→ C∗

∞, as y∗ −→ ∞.

(2.6)

These boundary condition are derived from the assumption that the couple stresses
are dominant during the rotation of the particles.

The radiative heat flux under Rosseland approximation (see, Raptis [41], Sparrow and
Cess [51]), q∗r , takes the form

q∗r = − 4σ∗

3K∗
∂T ∗4

∂y∗ . (2.7)
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Figure 1: Schematic of the problem.

It should be noted that by using the Rosseland approximation, we limit our analysis to
optically thick boundary layer and assuming the Eckert number to be small E � 1.

If the temperature differences within the flow are sufficiently small, then (2.7) can be
generalized by expanding T ∗4 into the Taylor’s series about T ∗

∞ and neglecting higher-order
terms, which gives [41]

T ∗ ∼= T ∗4
∞ + 4(T ∗ − T ∗

∞)T
∗3
∞ = 4T ∗3

∞ T ∗ − 3T ∗4
∞ . (2.8)

The works [41–48] and many authors used the linearized from (2.8) of thermal radiations.
Linearized thermal radiation, (2.8), makes the problem easy to handle; in this work we use
linear form of thermal radiation.

By using (2.7) and (2.8) into (2.4), we get

v∗ ∂T
∗

∂y∗ =
λ

ρcP

∂2T ∗

∂y∗2 +
Qo

ρcP
(T ∗ − T ∗

∞) +
ν

cP

(
∂u∗

∂y∗

)2

+
ν

K′cP
u∗2 +

16σ∗

3ρcP
T ∗3

K∗
∂2T ∗

∂y∗2 . (2.9)

The integration of the continuity (2.2) yields

v∗ = −vo, (2.10)

where vo is the constant suction velocity at the wall and the negative sign indicates that the
suction velocity is directed towards the plate.

We Introduce the following nondimensional quantities:

y =
y∗vo

ν
, u =

u∗

vo
, θ =

T ∗ − T ∗
∞

T ∗
w − T ∗∞

, ω =
ω∗ν

v2
o

, φ =
C∗ − C∗

∞
C∗

w − C∗∞
. (2.11)
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Figure 2: Effect of Δ on u, ω and φ respect to y, where, K = 0.5, Pr = 0.71, Q = 0.5, α = R = 0.1, Sc = 0.22,
Gm = Gr = M = 2, E = 0.01, and β = 2.

Substituting from (2.11) into (2.3), (2.5), and (2.9) and taking into account (2.10), we obtain

(1 + α)u′′ + u′ −
(
1 + α +KM

K

)
u = −(Grθ +Gmφ + 2αω′),

ω′′ + βω′ = 0,

(
1 +

4R
3

)
θ′′ + Prθ′ + PrQθ = −PrE

(

u
′2 +

u2

K

)

,

(2.12)

φ′′ + Scφ′ −ΔScφ = 0. (2.13)

The mass diffusion (2.13) can be adjusted to represent a destructive reaction if Δ > 0, no
chemical reaction if Δ = 0 and generation reaction if Δ < 0.

The dimensionless form of the boundary conditions (2.6) becomes

u = 0, ω′ = −u′′, θ = 1, φ = 1, at y = 0,

u −→ 0, ω −→ 0, θ −→ 0, φ −→ 0, as y −→ ∞,
(2.14)
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Figure 3: Effect of Sc on u, ω and φ respect to y, where, K = 0.5, Pr = 0.71, Q = 0.5, α = R = 0.1, Δ = 0.5,
Gm = Gr = M = 2, E = 0.01, and β = 2.

where prime denotes the differentiation with respect to y, and

α =
νr
ν
, β =

Iν

γ
, Pr =

ρνcP
λ

, E =
v2
o

cP
(
T

∗
w − T ∗

∞
) , R =

4σ∗T
∗3
∞

K∗λ
,

Gr =
νgβt

(
T

∗
w − T

∗
∞
)

v3
o

, Gm =
νgβc

(
C

∗
w − C

∗
∞
)

v3
o

, K =
K′v2

o

ν2
,

Q =
Qoν

ρcPv
2
o

, Sc =
ν

D∗ , Δ =
K1ν

v2
o

, M =
σB2

oν

ρv2
o

,

(2.15)

where the variables and related quantities are defined in the nomenclature.
The problem under consideration is now reduced to the system of (2.12)–(2.14), the

solutions of which are obtained in the following section.

3. Solution of the Problem

The exact solution of (2.13) subject to the corresponding boundary conditions (2.14) takes the
form

φ
(
y
)
= Exp

(
R1y

)
, (3.1)
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where

R1 =
−Sc −

√
Sc2 + 4ScΔ
2

. (3.2)

The problem posed in (2.12) subject to the boundary condition presented in (2.14) is highly
non-linear coupled equations and generally will involve a step by step numerical integration
of the explicit finite difference scheme. However, analytical solutions are possible. Since
viscous dissipation parameter E is very small in most of the practical problems, therefore,
we can advance an asymptotic expansion with E as perturbation parametric for the velocity,
angular velocity, and temperature profile as follow:

u = u0
(
y
)
+ Eu1

(
y
)
+O

(
E2

)
,

ω = ω0
(
y
)
+ Eω1

(
y
)
+O

(
E2

)
,

θ = θ0
(
y
)
+ Eθ1

(
y
)
+O

(
E2

)
,

(3.3)

where the zeroth order terms correspond to the case in which the viscous and Darcy’s
dissipation is neglected (E = 0). By the substitution of (3.3) into (2.12) and the boundary
conditions (2.14), we get the following system of equations.
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Zeroth order

(1 + α)u′′
0 + u′

0 −
(
1 + α +KM

K

)
u0 = −(Grθ0 +Gmφ + 2αω′

0
)
,

ω′′
0 + βω′

0 = 0,

(
1 +

4R
3

)
θ′′
0 + Pr

(
θ′
0 +Qθ0

)
= 0

(3.4)

subject to the reduced boundary conditions

uo = 0, ω′
0 = −u′′

0, θ0 = 1, at y = 0,

u0 −→ 1, ω0 −→ 0, θ0 −→ 0, as y −→ ∞.

(3.5)

First order

(1 + α)u′′
1 + u′

1 −
(
1 + α +KM

K

)
u1 = −(Grθ1 + 2αω′

1

)
,

ω′′
1 + βω′

1 = 0,

(
1 +

4R
3

)
θ′′
1 + Pr

(
θ′
1 +Qθ1

)
= −Pr

(

u
′2
0 +

u2
0

K

)
(3.6)
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subject to the reduced boundary conditions

u1 = 0, ω′
1 = −u′′

1, θ1 = 0, at y = 0,

u1 −→ 0, ω′
0 −→ 0, θ1 −→ 0, as y −→ ∞.

(3.7)
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Figure 10: Effect of Gr on u and ω respect to y, where, M = 2, Sc = 0.22, Δ = 0.5, Pr = 0.71, Q = 0.5,
α = R = 0.1, D = 0.5, Gm = 2, E = 0.01, and β = 2.

Solving (3.4) under the boundary conditions in (3.5) and (3.6) under the boundary
conditions (3.7) and substituting the solutions into (3.3), we obtain

u
(
y
)
= C2e

R5y +A1e
R3y +A2e

R1y +A3C1e
−βy

+ E
[
C4e

R5y +A14e
R3y +A15e

2R5y +A16e
2R3y +A17e

2R1y +A18e−2βy

+A19e
(R3+R5)y +A20e

(R1+R5)y +A21e
(R5−β)y +A22e

(R1+R3)y

+A23e
(R3−β)y +A24e

(R1−β)y +A25C3e
−βy

]
+O

(
E2

)
,

w
(
y
)
= [C1 + EC3]e−βy +O

(
E2

)
,

θ
(
y
)
= eR3y + E

[
D1e

R3y +A4e
2R5y +A5e

2R3y +A6e
2R1y

+A7e
−2βy +A8e

(R3+R5)y +A9e
(R1+R5)y +A10e

(R5−β)y

+A11e
(R1+R3)y +A12e

(R3−β)y +A13e
(R1−β)y

]
+O

(
E2

)
,

(3.8)

where the exponential indices and coefficients are given in the Appendix.
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Figure 11: Effect of α on u,ω, and θ respect to y, where, M = 2, Sc = 0.22, Δ = 0.5, Pr = 0.71, Q = 0.5,
R = 0.1, D = 0.5, Gm = Gr = 2, E = 0.01, and β = 2.

From the engineering point of view, the most important characteristics of the flow are
the skin friction coefficient Cf , Nuselt Nu, and Scherwood Sh numbers, which are given
below:

Cf =
(
du

dy

)

y=0
=
(
du0

dy
+ E

du1

dy

)

y=0
,

Nu = −
(
1 +

4R
3

)(
dθ

dy

)

y=0
= −

(
1 +

4R
3

)(
dθ0
dy

+ E
dθ1
dy

)

y=0
,

Sh = −
(
∂φ

∂y

)

y=0
= −R1.

(3.9)

If the thermal radiation and uniform transverse magnetic field are neglected, all the relevant
results obtained are deduced to the results obtained in [22].

4. Numerical Results and Discussions

For a computation work, we used a Matlab program as a software, to illustrate the behavior
of velocity u, angular velocity ω, temperature θ, and concentration φ fields; a numerical
computation is carried out for various values of the parameters that describe the flow
characteristics and the results are reported in terms of graphs. This is done in order to
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Figure 12: Effect of β on u and ω respect to y, where, M = 2, Sc = 0.22, Δ = 0.5, Pr = 0.71, Q = 0.5,
R = 0.1, D = 0.5, Gm = Gr = 2, E = 0.01, and α = 0.1.

illustrate the special features of the solutions. The chemical reaction parameterΔ = 0, 0.5, 1, 3,
where Δ = 0 corresponds to the case of no chemical reaction. Figure 2 presents the profiles
of the velocity, angular velocity, and concentration for various values of chemical reaction
parameter Δ > 0. It is noted from Figure 2 that an increase in the values of chemical reaction
parameter leads to decrease in the velocity and concentration and an increase in angular
velocity of the polar fluid. The MHD and the concentration boundary layer become thin as
the reaction parameters. The negative values of the angular velocity indicate that the angular
velocity of substructures in the polar fluid is clockwise. Schmidt number Sc is chosen for
hydrogen (Sc = 0.22), water-vapor (Sc = 0.62), and ammonia (Sc = 0.78) at temperature 25◦C
and one atmospheric pressure. It is noted from Figure 3 that an increasing of the values of
Schmidt number Sc leads a decrease in velocity and concentration. Physically, the increase of
Scmeans the decrease of molecular diffusivityD∗. That results in a decrease of concentration
boundary layer, hence, the concentration of the spices for small values of Sc and lower for
larger values of Sc. Also, it appears that there is a slight change in angular velocity with
various values of Sc.

The values of Prandtl number Pr are chosen to be Pr = 0.71, 1, 2, 3. The effect of
buoyancy is significant for Pr = 0.71 (air) due to the lower density. Figure 4 displays the effect
of the Prandtl number Pr on the velocity, angular velocity, and temperature; it is clear that
an increase of Pr leads to a decrease in u that physically is true because the increase in the
Prandtl number is due to the increase in the viscosities of the fluid which makes the fluid
thick and hence causes a decrease in the velocity of fluid; the temperature θ decreases with
the increasing of Pr; clearly, the increase of Prandtl number leads to a decreasing thermal
boundary layer thickness and more uniform temperature distribution across the boundary
layer. This results explain the fact that smaller values of Pr are equivalent to increasing the
thermal conductivities, so that heat is able to diffuse away from the surface more rapidly
than for higher values of Pr. Therefore, the boundary layer becomes thicker which finally
reduces the temperature, but slight change in angular velocity ω with causes the increasing
of Pr. The internal heat generation parameter Q is chosen to be Q = 0, 0.5, 1, 1.5, where Q = 0
corresponds to the case of no heat source. The effects of internal heat generation parameterQ
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Figure 13: Effect of E on u, ω, and θ respect to y, where, M = 2, Sc = 0.22, Δ = 0.5, Pr = 0.71, Q = 0.5,
R = 0.1, D = 0.5, Gm = Gr = 2, β = 2, and α = 0.1.

on the velocity and angular velocity are displayed in Figure 5. It is clear that as the parameter
Q increases, the velocity and angular velocity (in magnitude) lead to a fall. Further, it is
noticed that the temperature decreases; this result qualitatively agrees with the results in
[22].

The radiation parameter R is chosen to be R = 0, 1, 3, 5, where R = 0 corresponds to the
case of no thermal radiation. The effects of radiation parameter R on the velocity and angular
velocity are displayed in Figure 6; it is clear that as the parameter R increases, the velocity
and temperature increase. Also, it is noticed that the angular velocity decreases. In the aiding
flow, the effect of thermal radiation is to (i) increase the convection moment in the boundary
layer, (ii) increase the thermal boundary-layer thickness with an increase in the value of the
radiation parameter, and (iii) enhance the heat transfer coefficient in the medium. The effect
of magnetic field M parameter is shown in Figure 7, M = 0, 2, 4, 6, where, M = 0 indicates
to neglectes the magnetic field; it is observed that an increasing of the magnetic field leads to
decreasing of u because the application of transverse magnetic field will result in a restrictive-
type force (Lorenz’s force) similar to drag force which tends to resist the fluid flow and thus
reducing its velocity; also, it appears that increasing ofM tends to increasing ofω and a slight
change in θ.The effect of permeability K parameter is shown in Figure 8, K = 0.1, 0.2, 0.3, 0.5;
it is observed that an increase in the permeability leads to an increase of u but a decrease
of ω. This is due to the fact that the presence of a porous medium increases the resistance
to flow and when K tends to infinity (i.e., the porous media effects vanish), the velocity is
greater in the flow fluid. These results similar to those of Patil and Kulharni [22] could be
very useful in deciding the applicability of enhanced oil recovery in reservoir engineering.
The effects of solutal Grashof number Gm and Grashof number Gr on u and ωrespect to
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Figure 14: Effect of M, R, Gm, and E on Cf respect to Δ, where, Sc = 0.22, Pr = 0.71, Q = 0.5, α = 0.1,
Gr = 2, and β = 2.

y are presented in Figures 9 and 10, respectively. It is shown that the velocity u increases
with an increasing of Gm and Gr but the angular velocity decreases. In fact the increase in
the value of Gm and Gr tends to increase the thermal and mass buoyancy effect. This gives
rise to an increase in the induced flow. The effect of viscosity ratio α on the velocity angular
velocity and temperature profiles across the boundary layer is presented in Figure 11. The
numerical results show that the velocity distribution is lower for Newtonian fluid (α = 0)
with the fixed flow and material parameters, as compared with a polar fluid when
the viscosity ratio is less than 0.5. In addition, the angular velocity is decreased as α-parameter
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Figure 15: Effect of Gr, Sc, Pr, and k on Cf respect to Δ, where, Sc = 0.22, Δ = 0.5, Pr = 0.71, α = 0.1,
Gr = 2, and β = 2.

increases. However, the distribution of angular velocity across the boundary layer does not
show consistent variations with increment of α-parameter. Also, it appears that there is a
slight change in temperature with varies values of viscosity ratio α. Representative velocity
and angular velocity for various values of β are illustrated in Figure 12. It can be seen that
an increase in the polar parameter β leads to a decrease in u but an increase in ω. From
Figure 13, we may note that the velocity u and temperature θ change slightly to the increase
of the viscous dissipation E but the angular velocity ω increases with an increase of E.

The skin friction (Cf), the wall heat transfer (Nu), and the wall mass transfer (Sh)
coefficients are plotted in Figures 14–18, respectively. In Figures 14 and 15, the influences of
M,R,Gm,E,Gr, Sc,Pr, andK on skin friction coefficient are plotted against chemical reaction
parameter Δ, respectively. Figure 16 displays the effects of Gm,E,M, and R on skin friction
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Figure 16: Effect of Gm, E, M, and R on Cf respect to Q, where, Sc = 0.22, Δ = 0.5, Pr = 0.71, α = 0.1,
Gr = 2, and β = 2.

coefficient and plotted against heat generation parameter Q, respectively. From Figure 14, it
is seen that Cf increases with an increasing ofM,R, andGm but decreases with the increased
values of E. From Figure 15, it appears that the skin friction (Cf) increases with an increasing
of Gr and Pr and decreases with the increased values of Sc but there is no sensitive influence
with the various values of k. Also, It appears that from Figure 16 that Cf increases with an
increase of R and Gm but decreases with the increasing values of M and E. It is observed
that the wall slope of the velocity decreases against the chemical reaction parameter Δ and
heat generation parameter Q as magnetic field M and E but increases with various values
of solutal Grashof number Gm and the radiation R. Figure 17 displays the influence of
heat generation parameter Q on Nusselt number Nu (wall heat transfer coefficient) with
influence of Pr,M, and R. It is observed that the wall heat transfer coefficient increases as
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heat generation parameter is increased; also, with an increasing of Pr and R, the wall heat
transfer coefficient increases but decreases with an increasing of the magnetic fieldM.

The Sherwood number Sh (wall mass transfer coefficient) is plotted in Figure 18
respect to chemical reaction Δ with influence of Sc. It is observed that Sh increases with
an increasing of Δ and Sc.

Finally, it is clear from Figures 2–13 that the profiles of velocity u increase with
spanwise coordinate y until it attains a maximum value, after which it decreases and
approaches zero at the boundary. Also, it appears that the angular velocity ω starts from
minimum negative value, after which it increases and tends to zero with an increasing of y;
the negative values of the angular velocity indicate that the angular velocity of substructures
in the polar fluid is clockwise, but the magnitude of the temperature θ and concentration
φ start from their maximum value (unity) at the plate and then decays to approach zero
asymptotically.

5. Conclusion

The work considered here provides an analysis of a two-dimensional steady radiative heat
and mass transfer flow of an incompressible, laminar, and electrically conductive viscous
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dissipative polar fluid flow through a porous medium, occupying a semi-infinite region
of the space bounded by an infinite vertical porous plate in the presence of a uniform
transverse magnetic field, chemical reaction of the first order, and internal heat generation.
Approximate solutions to the coupled non-linear equations governing the flow are derived
and expression for the velocity, angular velocity, temperature, concentration, the rate of heat
and mass transfer, and the skin-friction are derived. Results are presented graphically to
illustrate the variation of velocity, angular velocity, temperature, concentration, skin friction,
Nusselt number, and Sherwood number with various parameters. In this study, the following
conclusions are set out:

(1) it appears that with an increasing of R,K,Gm, α, andGr, the velocity u is increased
and decreased with an increasing of Δ, Sc, Pr, Q, β, and M but there is a slight
change with various values of E;

(2) it is concluded that the angular velocity ω increases with an increasing of Δ, Sc, Pr,
β, E and Q but decreases with an increasing of R, K, M, Gm, α, and Gr;

(3) it is obvious that the temperature θ increases with an increasing of R but decreases
with an increasing of Pr and Q; there is a slight change with various values of M,
E, and α;

(4) it is clear that the concentration φ decreases with an increasing of Δ and Sc;

(5) with various values of R, Gr, and Gm, the skin friction Cf increases and decreases
with an increasing of M, Pr, Sc, and E with variation of Δ and Q;

(6) it is shown that Nusselt number increases with an increasing of Pr and R but
decreases with an increasing of M with various values of Q;

(7) finally, it is displayed that Sherwood number Sh increases with an increasing
of Sc with various values of Δ.
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Appendix

The exponential indices in (3.8) are defined by

R3,4 =
−3Pr ∓

√
9Pr2 − 4(3 + 4R)(3PrQ)

2(3 + 4R)
,

R5,6 =
−1 ∓√

1 + (4(1 + α)(1 + α +KM))/K
2(1 + α)

,

A1 =
−Gr

(1 + α)(R3 − R5)(R3 − R6)
, A2 =

−Gm

(1 + α)(R1 − R5)(R1 − R6)
,

A3 =
2αβ

(1 + α)
(
β + R5

)(
β + R6

) , A4 =
−3PrC2

2

(
K−1 + R2

5

)

4R2
5(3 + 4R) + 6PrR5 + 3PrQ

,

A5 =
−3PrA2

1

(
K−1 + R2

3

)

4R2
3(3 + 4R) + 6PrR3 + 3PrQ

, A6 =
−3PrA2

2

(
K−1 + R2

1

)

4R2
1(3 + 4R) + 6PrR1 + 3PrQ

,

A7 =
−3PrA2

3C
2
1

(
K−1 + β2

)

4β2(3 + 4R) − 6Prβ + 3PrQ
, A8 =

−6PrA1C2
(
K−1 + R3R5

)

(3 + 4R)(R3 + R5)2 + 3Pr(R3 + R5) + 3PrQ
,

A9 =
−6PrA2C2

(
K−1 + R1R5

)

(3 + 4R)(R1 + R5)2 + 3Pr(R1 + R5) + 3PrQ
, A14 =

−GrD1

(1 + α)(R3 − R5)(R3 − R6)
,

A10 =
−6PrA3C1C2

(
K−1 − βR5

)

(3 + 4R)
(
R5 − β

)2 + 3Pr
(
R5 − β

)
+ 3PrQ

, A15 =
−GrA4

R5(1 + α)(2R5 − R6)
,

A11 =
−6PrA1A2

(
K−1 + R1R3

)

(3 + 4R)(R1 + R3)2 + 3Pr(R1 + R3) + 3PrQ
, A16 =

−GrA5

(1 + α)(2R3 − R5)(2R3 − R6)
,

A12 =
−6PrA1A3C1

(
K−1 − βR3

)

(3 + 4R)
(
R3 − β

)2 + 3Pr
(
R3 − β

)
+ 3PrQ

, A17 =
−GrA6

(1 + α)(2R1 − R5)(2R1 − R6)
,

A13 =
−6PrA2A3C1

(
K−1 − βR1

)

(3 + 4R)
(
R1 − β

)2 + 3Pr
(
R1 − β

)
+ 3PrQ

, A18 =
−GrA7

(1 + α)
(
2β + R5

)(
2β + R6

) ,

A19 =
−GrA8

R3(1 + α)(R3 + R5 − R6)
, A20 =

−GrA9

R1(1 + α)(R1 + R5 − R6)
,

A21 =
−GrA10

β(1 + α)
(
R5 − β − R6

) , A22 =
−GrA11

(1 + α)(R1 + R3 − R5)(R1 + R3 − R6)
,
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A23 =
−GrA12

(1 + α)
(
R3 − β − R5

)(
R3 − β − R6

) , A24 =
−GrA13

(1 + α)
(
R1 − β − R5

)(
R1 − β − R6

) ,

A25 = A3,

C1 =
A1

(
R2

5 − R2
3

)
+A2

(
R2

5 − R2
1

)

A3
(
β2 − R2

5

) − β
, C2 =

A3
(
R2

3A1 + R2
1A2

)
+ (A1 +A2)

(
β −A3β

2)

A3
(
β2 − R2

5

) − β
,

C3 =
H2 − R2

5H1

A25
(
β2 − R2

5

) − β
, C4 =

H1
(
β2A25 − β

) −H2A25

A25
(
β2 − R2

5

) − β
,

D1 = −
13∑

i=4

Ai, H1 = −
24∑

j=14

Aj,

H2 = −
[
R2

3A14 + 4R2
5A15 + 4R2

3A16 + 4R2
1A17 + 4β2A18 + (R3 + R5)2A19 + (R1 + R5)2A20

+
(
R5 − β

)2
A21 + (R1 + R3)2A22 +

(
R5 − β

)2
A23 +

(
R1 − β

)2
A24

]
.

(A.1)

Nomenclature

B0: The magnetic induction Tesla
C∗: The species concentration mol·m−3

C∗
w: The surface concentration mol·m−3

C∗
∞: The species concentration far from the surface mol·m−3

Ca, Cd: The coefficients of couple stress viscosities
Cf : The skin-friction coefficient
Cm: The couple stress coefficient
cp: The specific heat at constant pressure J·kg−1·K−1

D∗: The chemical molecular diffusivity m2·s−1
E: The Eckert number
Gm: The solutal Grashof number
Gr: Grashof number
g: The acceleration due to the gravity m·s−2
I: The scalar constants of dimension equal to that of the moment of

inertia of unit mass m2

k: The radius of gyration of the polar fluid m
K

′
: The permeability of the porous media m−1

K∗: The mean absorption coefficient m−1

K: The dimensionless permeability
K1: The first-order chemical reaction rate s−1

M: The local magnetic field parameter
Nu: Nusselt number
Pr: The fluid Prandtl number
Q0: The heat generation coefficient W·m−3·K−1
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Q: The heat generation parameter
q∗r : The radiative heat flux W·m−2

R: The radiation parameter
Sc: The generalized Schmidt number
Sh: Sherwood number
t∗: The dimensionless time
T ∗: The temperature in the boundary layer K
T ∗
∞: The temperature far away from the plate K

T ∗
w: The temperature at the wall K

u: The dimensionless velocity
u∗, v∗: The velocities along and perpendicular to the plate m·s−1
vo: The constant suction velocity at the wall m·s−1
x∗ and y∗: The distances along and perpendicular to the plate, respectively m
y: The dimensionless spanwise coordinate normal to the plate
α, β: The material parameters characterizing the polarity of the fluid
βc: Volumetric coefficient of expansion with concentration K−1

βt: Volumetric coefficient of thermal expansion K−1

γ : The spin gradient velocity kg·m·s−1
θ: The dimensionless temperature
λ: The thermal conductivity of the fluid W·m−1·K−1

ν: The fluid kinematic viscosity m2·s−1
νr : The kinematic rotational viscosity m2·s−1
ρ: Fluid density kg·m−3

ρ∞: Fluid density far away from the surface kg·m−3

σ: The electrical conductivity of the fluid s·m−1

σ∗: The Stefan-Boltzmann constant W·m−2·K−4

ω∗: Angular velocity components m·s−1
ω: Dimensionless angular velocity
Δ: The chemical reaction parameter.
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