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Dynamic analysis of supported pipes conveying pulsating fluid is investigated in Hamiltonian
system using precise integration method (PIM). First, symplectic canonical equations of supported
pipes are deduced with state variable vectors composed of displacement and momentum. Then,
PIM with linear interpolation formula is proposed to solve these equations. Finally, this approach’s
precision is testified by several numerical examples of pinned-pinned pipes with different fluid
velocities and frequencies. The results show that PIM is an efficient and rapid approach for flow-
induced dynamic analysis o f supported pipes.

1. Introduction

As the pipes are widely used in many industrial fields, flow-induced vibration analysis of
pipes conveying fluid has been one of the attractive subjects in structural dynamics. It is
well known that pipeline systems may undergo divergence and flutter types of instabilities
generated by fluid-structure interaction. Over the last sixty years, extensive studies have been
carried out on dynamic analysis of pipeline systems subject to different boundary conditions
and loadings. Notable contributions in this area include the works of Chen [1] and Paidoussis
[2, 3]. At present, most of the research is concentrated on nonlinear dynamic analysis of pipes
conveying pulsating fluid. A recent survey on bifurcations for supported pipes can be found
in [4]. Folley and Bajaj [5] considered nonlinear spatial dynamic characteristics of cantilever
pipes conveying fluid.

In most cases, the corresponding ordinary differential motion equations of fluid-
conveyed pipes are deduced using Galerkin’s method in Lagrange system. Then many
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numerical methods, such as transfer matrix method, finite element method, perturbation
method, Runge-Kutta method, and differential quadrature method, are applied to solve these
equations.

For example, Jensen [6] analyzed dynamic behaviors of vibrating pipe containing fluid
subject to lateral resonant base excitation using the perturbation method of multiple scales.
Yang et al. [7] investigated the effect of fluid viscosity and mass ratio on instability regions of
a Kelvin-type viscoelastic pipe conveying harmonically pulsating fluid using multiple scales
method. Wang et al. [8] studied the nonlinear dynamics of curved fluid conveying pipe with
differential quadrature method.

Jeong et al. [9] proposed a finite element model of pipes conveying periodically
pulsating fluid and analyzed the influence of fluid velocities on pipe’s stability. Stangl et al.
[10] solved the extended version of Lagrange nonlinear equations for cantilevered pipes
using implicit Runge-Kutta solver HOTINT. Wang [11] explored numerically the effect of the
nonlinear motion constraints on dynamics of simply supported pipes conveying pulsating
fluid via the fourth-order Runge-Kutta scheme.

Nikolić and Rajković [12] used Lyapunov-Schmidt reduction and singularity theory
to investigate the behaviors of extensive fluid-conveying pipe supported at both ends
around the neighborhood of the bifurcation points. Furthermore, Modarres-Sadeghi and
Paı̈doussis [13] studied the possible postdivergence flutter instabilities of this complete
nonlinear supported pipe’s model with Houbolt’s finite difference method [14] and AUTO
Software package. Xu et al. [15] proposed the analytical expression of natural frequencies
of fluid-conveying pipes with the help of homotopy perturbation method. Those calculated
frequencies were in good agreement with experiment results.

Considering the effect of the internal and external fluids, the three-dimensional
nonlinear differential equations of a fluid-conveying pipe undergoing overall motions were
derived based on Kane’s equation and the Ritz method [16]. Moreover, the time histories
for the displacements were obtained using the incremental harmonic balance method. Based
on Timoshenko beam model, Shen et al. [17] studied the band gap properties of the flexural
vibration for periodic pipe system conveying fluid using the transfer matrix method. These
methods have proved to be effective in analyzing flow-induced vibration of certain pipes.

It is well known that analysis of pipe dynamics could be conducted based on
the energy-based approach according to Hamiltonian principle [18, 19]. However, these
approximation methods mentioned above are not ideal for Hamiltonian systems [20],
because they are not structurally stable, which means that the Hamiltonian system will
become dissipative.

Recently, many numerical algorithms, which can inherit the symplectic structure of
Hamiltonian system, have been studied. Especially, Zhong and Williams [21] have proposed
the precise integration method, which can give the highly precise numerical integration result
and approach the full computer precision for these homogeneous equations. Moreover, this
approach has been applied to solving complicated inhomogeneous problems with nonlinear
time-variant item, for example, Floquet transition matrix, control problems, and so on
[22–25].

In this paper, a Hamiltonian model of nonlinear flow-induced dynamics of supported
pipes is analyzed numerically using precise integration method. Firstly, nonlinear equations
of supported pipes conveying harmonically fluctuating fluid are deduced to two-order
ordinary differential equations using the Galerkin’s method. Then the equations are
transformed into symplectic canonical equations composed of displacement and momentum.
Moreover, PIM with linear interpolation formula is proposed. Finally, several numerical
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examples of pinned-pinned pipe conveying pulsating fluid are used to testify the precision of
this approach. The results are compared with those using traditional Runge-Kutta method.
The influence of different fluid parameters on nonlinear behaviors of supported pipes is also
discussed.

2. Formulation of Problem in Hamiltonian System

In this section, typical governing equations of supported pipe conveying fluid are deduced
in Hamiltonian system.

2.1. Equation of Motion

We consider a straight supported pipe conveying the harmonically pulsating flow (Figure 1).
It is assumed that the motion is planar, and the pipe is nominally horizontal. The cross-
sectional area of the flow is assumed constant. The effects of gravity and external tension
are ignored. Moreover, the pipe behaves like an Euler-Bernoulli beam in transverse vibration
and the fluid is assumed to be incompressible.

The transverse motion equation of the pipe is given by Paı̈doussis and Issid [26],

∂2M

∂x2
+m1(L − x)

∂u

∂t

∂2y

∂x2
+
(
m1u

2 + pA
)∂2y

∂x2
+ 2m1u

∂2y

∂x∂t
+ (m1 +m2)

∂2y

∂t2
= 0, (2.1)

where x is the longitudinal coordinate, y the transverse deflection, M the moment of flexure
of the pipe, L the pipe length, m1 the mass of the fluid conveyed per unit length, m2 pipe
mass per unit length, u the fluid velocity, p the fluid pressure, and A the cross-sectional area
of the flow.

Then the viscoelastic Kelvin-Voigt damping model is introduced,

M =
(
E + η

∂

∂t

)
Iy′′, (2.2)

where EI is the flexural stiffness of the pipe material, and η is the coefficient of Kelvin-Voigt
viscoelastic damping.

Moreover, the velocity u(t) of pulsating fluid is assumed to be harmonically
fluctuating, and has the following form:

u(t) = u0
(
1 + μ cosωt

)
,

u2(t) ≈ u2
0
(
1 + 2μ cosωt

)
,

(2.3)

where u0 is the mean flow velocity, μ the amplitude of the harmonic fluctuation (assumed
small), and ω the fluid pulsating frequency. This fluctuating flow velocity appears as
parametric excitation term in the equation of motion and may lead to parametric instabilities.
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Substituting (2.2) and (2.3) into (2.1) yields that

(
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∂

∂t

)
I
∂4y

∂x4
+
[
−m1u0(L − x)μω sinωt +m1u

2
0
(
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)
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+ 2m1u0
(
1 + μ cosωt

) ∂2y
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+ (m1 +m2)

∂2y

∂t2
= 0.

(2.4)

Incorporate the following dimensionless quantities:

ξ =
x

L
, W =

y

L
, τ =

t

L2

(
EI

m1 +m2

)0.5

, v = u0L
(m1

EI
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, T = pA

L2

EI
,
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m1 +m2
, H =

η

L2

(
I

E(m1 +m2)

)0.5

, ω = ωL2
(m1 +m2

EI

)0.5
.

(2.5)

Then the equation of motion can be nondimensionalized as

H
∂5W

∂ξ4∂τ
+
∂4W

∂ξ4
+
[
v2(1 + μ cosωτ

)2 − vβ0.5(1 − ξ)μω sinωt + T
]∂2W

∂ξ2

+ 2vβ0.5(1 + μ cosωτ
)∂2W

∂ξ∂τ
+
∂2W

∂τ2
= 0.

(2.6)

The motion equation above is inhomogeneous, as the derivative coefficients of W are
explicit functions of ξ and τ .

Then we discretize (2.6) using the Galerkin’s method. Let

W(ξ, τ) =
n∑
r=1

φr(ξ)qr(τ), (2.7)

where qi(τ) (i = 1, 2, . . . , n) are generalized coordinates of the discretized pipe and φi(ξ) are
eigenfunctions of the beam with the same boundary conditions.

It has been pointed out that instability boundaries for supported pipes could be
determined with adequate precision using the two-mode expansion [2]. So the two-mode
expansion of (2.7) is used in the analytical model for simplicity to investigate qualitative
behaviors of supported pipes conveying fluid.

Substitute (2.7) with n = 2 into (2.6). Then according to the orthogonal property of
modal modes, the partial differential equation could be transformed into the second-order
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ordinary differential equation

q̈ +
(
HΛ + 2β0.5vB

)
q̇ +
[
Λ +
(
v2 + T

)
C
]
q

= −
(

2β0.5vμ cosωτB
)
q̇ −
[
v22μ cosωτ

)
C + β0.5vμ sinωτ(D − C)

]
q,

(2.8)

q̈ +Gq̇ +Kq = f1(τ)q̇ + f2(τ)q, (2.9)

where

G = HΛ + 2β0.5vB, K = Λ +
(
v2 + T

)
C,

f1(τ) = −2β0.5vμ cosωτB,

f2(τ) = −2v2μ cosωτC − β0.5vμω sinωτ(D − C).

(2.10)

In (2.9), G and K denote the structural damping matrix and stiffness matrix,
respectively. These two matrices are associated with systematic parameters, such as
dimensionless flow velocity v and mass ratio β. λi (i = 1, 2) are the ith eigenvalues of the
supported pipe and Λ is the diagonal matrix with elements λ4

i .
Moreover, B, C, and D are matrices with elements bsr , csr , and dsr (s, r = 1, 2),

respectively. They are defined as

bsr =
∫1

0
φsφrdξ, csr =

∫1

0
φsφ

′′
rdξ, dsr =

∫1

0
φsξφη

′′
rdξ. (2.11)

Different value should be taken for those three parameters depending on different
boundary conditions of the pipe. For the pinned-pinned pipe, we have
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Figure 1: The simply supported pipe conveying fluid.

2.2. Symplectic Canonical Equation

According to Hamiltonian principle, the nonlinear equation of supported pipe conveying
pulsating fluid can be transformed into symplectic canonical equation with state variable
vectors composed of displacement Q and corresponding momentum P ,

V̇ = HV + F, (2.13)

where

V =
{
Q P

}T
,

Q =
{
q1 q2

}T
, P =

{
p1 p2

}T = Q̇ +
GQ

2
,

H =

⎡
⎢⎢⎢⎣

−G
2

I

−K − G
TG

4

(
G

2

)T

⎤
⎥⎥⎥⎦,

F =
{

0 0 f1P + (f2 − f1G)Q
}T
.

(2.14)

So, we can see that H is a 4 × 4 Hamiltonian symplectic matrix and F is a time-variant
matrix related to state variable vectors.

3. Precise Integration Method with
Linear Interpolation Approximation

In this section, the principle of precise integration method is briefly introduced. For a more
detailed explanation, it is suggested that [21, 22] are consulted.

The precise integration method for homogeneous equations with initial value is
fundamental, so it is described in the next subsection firstly.

3.1. Integration of Homogeneous Equation

The general solution of homogeneous equation V̇ = HV (V0 = V (0)) can be expressed as

V (t) = eHt · V0. (3.1)
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Suppose that the time step is τ = tk+1 − tk, and then we have the following recursive
steps:

V1 = TV0, V2 = TV1, . . . , Vk+1 = TVk, (3.2)

where T = eHτ . It is seen that how to compute the exponential matrix T is essential for the
integration precision.

Then split the time interval τ into a smaller one. Define Δt = τ/m and m = 2N . For
example, m = 1048576 when N = 20. As τ is small, Δt is an extremely small time interval.

Assume that Ta = (HΔt)(I +HΔt)/2, execute the cycle

For (i = 0; i < N; i + +) {Ta = 2Ta + Ta × Ta}, (3.3)

where I is the identity matrix.
So Ta is no longer a very small matrix. It could be computed by the following function:

T = I + Ta. (3.4)

The algorithm given above is called precise integration method. It has no serious
numerical round-off error and could approach full computer precision [20].

3.2. Integration of Inhomogeneous Equation

In this subsection, PIM with linear interpolation formula would be proposed to solve
inhomogeneous equations.

With the solution of homogeneous equation, (2.13) could been written as

V̇ (t) = HV (t) + F(V, t). (3.5)

Then its solution could be given by the Duhamel’s integration as

V (t) = eHtV0 +
∫ t

0
eH(t−τ)F(V, τ)dτ. (3.6)

Similarly, the duration of structural dynamic response is also divided into small time
intervals. The response between (tk, tk+1) can be written as

V (tk+1) = TVk +
∫ tk+1

tk

eH(tk−τ)F(V, τ)dτ. (3.7)

To solve this inhomogeneous equation, the analytical expression of the time-variant
item F(V, t) is required. But it is not always available.

In this study, the linear interpolation formula is used to approximate this nonlinear
item.
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Assume that

Fk+1 = Fk + (t − tk)Ḟk, (3.8)

where

Fk = F(V, tk), Ḟk =

(
∂F

∂t
+
∑
n

∂F

∂Vi

∂Vi
∂t

)

t=tk

. (3.9)

Substituting (3.8) into (3.7) gives the linear interpolation expression

V (tk+1) = T
[
Vk +H−1

(
Fk +H−1Ḟk

)]
−H−1

[
Fk +H−1Ḟk + τḞk

]
. (3.10)

Thus, we have the numerical expression of symplectic canonical equation using PIM
with linear interpolation formula.

In the next section, this method would be used to investigate the motion of supported
pipes conveying pulsating fluid under different conditions.

4. Numerical Examples

In this section, several numerical examples of pinned-pinned pipes are used to testify the
effectiveness of precise integration method.

4.1. Dynamic Response of Pipes Conveying Stable Fluid

In this subsection, this approach is used to analyze the dynamic response of stable fluid-
conveying pipes, especially for their computation stability after a long period. In this case,
the pipe’s dynamic function is a homogeneous equation. The results are compared with those
using traditional forth-order Runge-Kutta method.

Consider that the dimensionless mean flow velocity v is 2.0, the mass ratio β is 0.32
and the fluid pressure T = 1. The initial conditions are chosen to be [q1 q2 q̇1 q̇2]

T =
[−0.1 0.2 0.1 0.4]T . Time increases from 0 to 1000 s and the time step Δt is selected as 0.2 s.

Figure 2 illustrates time history of four state variables (q1 q2 p1 p2) of pipe’s middle
point using the Runge-Kutta method, while Figure 3 shows the results calculated by precise
integration method.

It can be found that there are evident differences for four state variables’ amplitudes
using two methods. The amplitudes in Figure 2 decrease gradually with time. When the
simulation time is long enough, state variables may converge to zero. However, those in
Figure 3 still keep constant with time, which are almost unaffected by the time step.

So we can conclude that there is the energy dissipation using traditional Runge-
Kutta method, which cannot get the accurate numerical results. However, precise integration
method is an energy conservative method and could maintain the stability of the numerical
simulation in the long period of time.
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Table 1: Computation time needed using two methods.

Method Δt = 0.2 s Δt = 0.5 s
Runge-Kutta Method 90 s 80 s
Precise Integration Method 5 s 4 s
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Figure 2: Time history of four state variables using Runge-Kutta method.

Table 1 lists the computation time needed for two methods, as two different time
intervals are selected. It can be noted that precise integration method needs much less
computing time than Runge-Kutta method.

4.2. Dynamic Response of Pipes Conveying Pulsating Fluid

In this subsection, PIM with linear approximation is used to analyze the dynamic response of
supported pipes conveying harmonically pulsating fluid. Similarly, the results are compared
with those using forth-order Runge-Kutta method.

Consider the dimensionless mean flow velocity v is 1, the amplitude μ = 0.4, the
frequency ω = 2.5, the mass ratio β = 0.32, and the fluid pressure T = 1. The initial conditions
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Figure 3: Time history of four state variables using precise integration method.

are chosen to be [q1 q2 q̇1 q̇2]
T = [−0.001 0.001 0 0]T . Time increases from 0 to 100 s, and

two time steps involved in this example are selected as Δt = 0.01 s and 0.05 s, respectively. By
the way, the relative stable dynamic response after 20 s is considered.

Figure 4 illustrates time history of displacement response and phase planes of pipe’s
middle point using the forth-order Runge-Kutta method, while Figure 5 shows the results
calculated by PIM, when the time step is 0.01 s. Figures 6 and 7 show the results with time
step 0.05 s using two methods, respectively.

These figures show that phrase planes of two modes would shrink gradually with time
and converge to a point if time is long enough. The precise integration method shows nearly
the same precision during calculating the dynamic response of supported pipes conveying
pulsating fluid.

Furthermore, Table 2 lists the computation time needed for two methods. Similarly,
PIM with linear interpolation formula need much less computing time than Runge-Kutta
method. This approach is very quick to obtain dynamic response because of running a
number of cycles during the computation, which is shown in (3.3). So it is suitable for long-
term dynamic analysis of fluid-conveyed pipes.
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Figure 4: Displacement response and phase diagram of pipe’s middle point using Runge-Kutta (Δt = 0.01).
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Figure 5: Displacement response and phase diagram of pipe’s middle point using PIM (Δt = 0.01).

Table 2: Computation time needed using two methods.

Method Δt = 0.01 Δt = 0.05
Runge-Kutta Method 16 s 12 s
Precise Integration Method 2 s 0.9 s

4.3. Stability Analysis of Pipes under Different Fluid
Velocities and Frequencies

In this subsection, the influence of different fluid parameters on nonlinear behaviors of
pinned-pinned pipes is discussed using PIM with linear interpolation formula.

The dimensionless fluid frequency ω increases from 0 to 70, and three fluid velocities
in this example are selected as v = 1.0, 1.5, and 2.0. The fluid frequency step and the time step
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Figure 6: Displacement response and phase diagram of pipe’s middle point using Runge-Kutta (Δt = 0.05).
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Figure 7: Displacement response and phase diagram of pipe’s middle point using PIM (Δt = 0.05).

are selected as Δω = 0.4 and Δt = 0.01 s, respectively. Others parameters are the same with
the preceding Section 4.2.

The displacement response q0 of the pipe’s middle point under different fluid
parameters is calculated. Figure 8 shows the displacement responses of the middle point
versus the pulsating fluid frequency. It can be seen that the pipe keeps stable at most
frequencies domain. For example, as ω = 5, the pipe behaves stable on the limit loop
condition, which is shown as Figure 9(a). However, when the frequencies lie between (16, 18)
and (46, 49), the pipes are unstable. For example, the pipe will be divergent as Figure 9(b)
shows when ω = 17. So, it is very dangerous for pipes’ operating safety.

Figures 10 and 11 show the displacement response variations of the middle point
versus the pulsating fluid frequency as v = 1.5 and 2.0, respectively. It can be shown that
the instable zone is changing with fluid frequencies. As v = 1.5, the instable zones are at
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Figure 8: Displacement response of pipe’s middle point as the function of the dimensionless pulsating
fluid frequency (v = 1.0).
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Figure 9: Phase diagram of pipe’s middle point as v = 1.0. (a) ω = 5; (b) ω = 17.

(14, 18), (44, 51), and (68, 70). As v = 2.0, the instable zones lie at (6, 7), (11, 16), (42, 50), and
(65, 70).

It can be seen that with the increasing of fluid velocity, the critical fluid frequency gets
smaller and the pipe shows complicated nonlinear vibration.

5. Conclusion

In this study, PIM with linear interpolation formula is presented to analyze nonlinear
dynamics of Hamiltonian model of supported straight pipe conveying pulsating fluid.
Several numerical examples are used to testify the effectiveness of this approach. The results
show this approach could keep stable even for long period of time, and is much more rapid
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Figure 10: Displacement response of pipe’s middle point as the function of the dimensionless pulsating
fluid frequency (v = 1.5).
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Figure 11: Displacement response of pipe’s middle point as the function of the dimensionless pulsating
fluid frequency (v = 2.0).

than traditional Runge-Kutta method. Moreover, the pipe’s nonlinear behaviors under the
condition of different fluid parameters are discussed.

The work presented here provides an alternative approach for investigating the
nonlinear dynamic response of the pipes conveying fluid. However, it should be pointed
out that linear interpolation formula is a rough approximation method, and more accurate
methods should be studied to analyze nonlinear flow-induced dynamics in Hamiltonian
system.
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