
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 817194, 14 pages
doi:10.1155/2010/817194

Research Article
Euler-Maclaurin Closed Form Finite
State Space Model for a String Applied to
Broadband Plate Vibrations

Michael J. Panza

Mechanical Engineering, Gannon University, 109 University Square, Erie, PA 16541, USA

Correspondence should be addressed to Michael J. Panza, panza@gannon.edu

Received 29 July 2009; Revised 9 February 2010; Accepted 2 March 2010

Academic Editor: Paulo Batista Gonçalves
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The Euler-Maclaurin sun formula is applied to the infinite series Green’s function solution in the
space-time Laplace transform domain for the one dimensional wave equation for a string fixed at
each end. The resulting approximate closed form solution is used to derive a single third order
input-output ordinary differential equation to model the string dynamics. The average modal
density of a plate is shown to be comparable to a string. A finite three state-space model is
developed for the string and applied to the vibrations of a plate subjected to broadband random
and impulse inputs. The applications include the direct problem of determining the response to a
disturbance input and the inverse problem of identifying the disturbance input with a finite state
observer based on the finite string model. Numerical simulations using many plate modes are
obtained in the time and frequency domains and are used to compare the multimodal plate model
to the finite string based model and to demonstrate how the finite string based model can be used
to represent the multimodal vibrations of the plate.

1. Introduction

The broadband high-frequency analysis of distributed parameter systems governed by
partial differential equations usually requires a very large multimodal model, a many-node
discrete grid finite difference or finite element model, or a statistical energy analysis (SEA)
approach. For multimodal models, most work to date has been for disturbance inputs such as
impulse type or a low-frequency random type. For example, disturbance force identification
problems for structures such as beams and plates using a multimodal model of vibration have
been the subject of studies [1, 2] where several lower-order modes are used to represent the
structure subjected to either an impulse-type input or a low-frequency random-type input.
These reduced order models are usually sufficient for frequencies less than about 200 Hz. A
novel discrete high-frequency forced vibration method using a large number of plate modes
and based on the high-frequency plate modal density was applied for a harmonic force varied
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over a wide range of frequencies [3]. A large order discrete grid space time model for the free
vibrations of string and cable structures is well suited for computer solutions [4] but there
must be a very large number of spatial nodes to provide accurate vibration responses for high
frequencies. Finite element models provide direct computer solutions especially for shock-
type inputs where the lower modes dominate the response [5]. SEA methods are suitable for
higher frequencies where many modes participate in the response and are usually applied
to high-frequency random vibration which results in audible noise radiation typically above
200 Hz [6, 7]. The statistical nature of the method adds a degree of uncertainty to the results.

Although the three model methods discussed above are quite good for a range of
applications where vibration and noise response are the primary goal of the model, they must
be selected and formed to suit the specific application and frequency range and are somewhat
complicated for use in the design of control systems or observers. A small-order finite state
space model that can encompass a broad frequency range from very low to very high may be
a useful alternative when design considerations are important. There is a dearth of work to
develop small-order finite state space models for distributed parameter systems where design
considerations for a broad range of frequencies are required in both vibration and noise
problems. A simple model that is applicable for both low-frequency vibration due to shock-
type inputs and high-frequency vibration due to broadband random type inputs can be a
good alternative to the three more sophisticated models (multimodal, discrete/finite element,
and SEA) discussed above. Recent studies [8–10] have shown that the Euler-Maclaurin sum
formula can be used to provide an approximate closed form representation for the infinite
space-time series that results from the solution to distributed parameter systems governed
by the wave equation.

This paper has two main objectives. First is to show how the approximate closed
form solution to the wave equation for a string fixed on each end obtained from the Euler-
Maclaurin sum formula can be transformed into a low-order finite state space form. Second
is to show how this finite state space model can be used in the dynamics of a plate, a
task motivated by the approximate similarity of the mode spacing for a string and a plate.
The Euler-Maclaurin sum formula is applied to obtain an approximate closed form Green’s
function for the infinite series solution of a string. A third-order finite state space model is
developed from the approximate solution and compared to a multimodal model of a simply
supported plate for a broadband random input and an impulse input. The string model is
then used in a finite Leuenberger observer for estimating a broadband disturbance applied
to a plate. The justification for using a string model for problems of multimodal broadband
frequency vibration of a plate stems from a comparison of the natural frequency spacing of
a string and a plate with the same fundamental frequency. The average modal density n(f)
at high enough frequencies (f) of a thin plate of any shape, thickness h, surface area S, and
longitudinal wave speed cL is compared to the fundamental frequency f1 of a square simply
supported plate with a ν = 0.3 Poisson’s ratio [11],

n
(
f
)
=

√
12S

2hcL
, f1 =

πhcL√
12S
√

1 − ν2
−→ Δf =

1
n
(
f
) = 0.61f1. (1.1)

Thus the average modal frequency spacing Δf of a plate compares to some degree to the
frequency spacing Δfstring = f1 for a string. The Euler-Maclaurin finite string model may
provide a reasonable alternative to a multimodal plate model with the same fundamental
frequency.
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2. Approximate Green’s Function for String Wave Equation

We consider a string with fixed ends, length L, mass M, and wave speed c. The Green
function g(x, t) satisfies the following partial differential equation and boundary conditions
with δ being the Dirac delta function

c2 ∂
2g

∂x2
−
∂2g

∂t2
= − L

M
δ(x − xo)δ(t), g = 0 @x = 0, L. (2.1)

Defining G(x, s) as the t domain Laplace transform of g(x, t), the solution to (2.1) in the
complex s domain can be expressed as an infinite series of eigenfunctions (modes) with
natural frequencies ωn = nω1

G(x, s) =
2
M

∞∑

n=1

sin
(nπx

L

)
sin
(nπxo

L

)( 1
s2 +ω2

n

)
. (2.2)

With the fundamental mode n = 1 separated out, (2.2) can be expressed in the form

G(x, s) =
2
M
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(πx
L

)
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(πxo

L

)( 1
s2 +ω2

1

)

− 1
M
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[
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](
1

s2 +ω2
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+

1
M
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n=2

cos
[
nπ(x − xo)

L

](
1

s2 +ω2
n

)
.

(2.3)

Defining a1 = π(x + xo)/L and a2 = π(x − xo)/L, the sums in (2.3) have the form

Si =
∞∑

n=2

cos(nai)
s2 + n2ω2

1

. (2.4)

The following form of the Euler-Maclaurin sum formula from Apostol [12] is applied to the
sum in (2.4)

∞∑

n=2

fn =
∫∞

2
f
(
μ
)
dμ +

(
1
2

)
[
f(2) + f(∞)

]
+
∫∞

2

∂f

∂μ

(
μ −
[
μ
]
− 1

2

)
dμ, (2.5)

where the brackets [ ] represent the smallest integer part. Since the goal of this paper
is obtaining an approximate closed form solution, the second integral is considered as a
remainder R(x, s) with an upper bound given by

RMaxi =
∣∣∣∣

∫∞

2
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− 1
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(2.6)
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The main part of the Euler-Maclaurin sum in (2.5) is the integral which is split up into two
parts

∫∞

2
f
(
μ
)
dμ =

∫∞

0

cos
(
μai
)

s2 + μ2ω2
1

dμ −
∫2

0

cos
(
μai
)

s2 + μ2ω2
1

dμ. (2.7)

The first integral in (2.7) is considered dominant and has a closed form solution from the lists
of Fourier transforms given by Oberhettinger [13]

∫∞

0

cos
(
μai
)

s2 + μ2ω2
1

dμ =
π

2ω1s

[
e−(sai/ω1)U(ai) + e(sai/ω1)U(−ai)

]
, (2.8)

where U is the unit-Heaviside step function.
The second integral in (2.7) is considered minor compared to the first. Combining all

the terms in (2.5)–(2.8), the Euler-Maclaurin approximate closed form solution for Green’s
function is given by

MG(x, s) = 2 sin
(πx
L

)
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(2.9)

For the work in this paper, G is simplified by considering the point x = x0 = L/2 which gives
a1 = π and a2 = 0 and cancels the Rmax terms and the two cos(2ai) terms. The finite integral
is considered small and may be approximately evaluated as

−
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+
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(2.10)

Green’s function in (2.9) becomes

MG(s) =

(
2

s2 +ω2
1

)

+
π

2ω1s

(
1 − e−(πs/ω1)

)
+
[
− 2
ω1s

tan−1
(

2ω1

s

)
to 0
]
. (2.11)
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Figure 1: Frequency response for EM result for three ranges: (a) Fundamental for 0–20 Hz, (b) EM sum for
0–200 Hz, and (c) EM sum for 200–2000 Hz.

3. Finite State Space Model from Approximate Green’s Function

The Euler-Maclaurin approximate form of Green’s function from (2.11) is used for
determining a closed form finite state space model for the string. Since the state space
model is most useful in the time domain, numerical simulations will be presented in the
time domain. Since the focus of the simulations for the random input is the steady state
response, a damping term is included for the fundamental mode to allow the transient
response dominated by this mode to be suppressed after a reasonably short time. Equation
(2.11) becomes

MG(s) =

(
2

s2 + 2ς1ω1s +ω2
1

)

+
π

2ω1s

(
1 − e−(πs/ω1)

)
+
[
− 2
ω1s

tan−1
(

2ω1

s

)
to 0
]
. (3.1)

As presented, it is a fifth-order system in s. To obtain a more mathematically tractable function
that contains the major components and can be transformed into one input/output ordinary
differential equation, MG(s) is further simplified by neglecting the inverse tangent term.
This simplification is reasonable, especially for the high frequencies of interest, since the
inverse tangent term is considered minor as it comes from the integral from 0 to 2 in the
Euler-Maclaurin integral of (2.7). Figure 1 shows a comparison of the magnitude of the
frequency response (s = jω) of the inverse tangent term and the first two terms of (3.1).
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For higher frequencies, f � f1, the inverse tangent term is small enough to be neglected. The
system in (3.1) is reduced to a third-order system in s. Defining an impulse response function
H(s) =MG(s), (3.1) can be written as

2ω1s
3H(s) + 4ζ1ω

2
1s

2H(s) + 2ω3
1sH(s)

= 4ω1s + π
(
s2 +ω2

1

)
− π
(
s2 +ω2

1

)
e−(πs/ω1) + 2ζ1ω1sπ

(
1 − e−(πs/ω1)

)
.

(3.2)

Applying the inverse Laplace s → t gives a third-order differential equation for the impulse
response function h(t). Using primes to denote time derivatives,

2ω1h
′′′(t) + 4ζ1ω

2
1h
′′(t) + 2ω3

1h
′(t) = πω2

1δ(t) + 4ω1δ
′(t) + πδ′′(t) − πω2

1δ

(
t − π

ω1

)

− πδ′′
(
t − π

ω1

)
+ 2ζ1ω1πδ

′(t) − 2ζ1ω1πδ
′
(
t − π

ω1

)
.

(3.3)

For the one input/output differential equation that may be used to model the string
dynamics, consider output y(t), input u(t), and input with delay u(t) = u(t−π/ω1). Equation
(3.3) becomes

2ω1y
′′′(t) + 4ζ1ω

2
1y
′′(t) + 2ω3

1y
′(t) = πω2

1u(t) + 4ω1u
′(t) + πu′′(t) − πω2

1u(t) − πu
′′(t)

+ 2ζ1ω1πu
′(t) − 2ζ1ω1πu

′(t).
(3.4)

Using constants β0, α0, β1, and α1, the following three state variables are considered

x1 = y, x2 = y′ − β0u − α0u, x3 = x′2 − β1u − α1u. (3.5)

The states are substituted into (3.4) to replace all state derivatives greater than one and
the coefficients of all of like u type terms are collected and set equal to zero. The resulting
parameters are determined as

β0 =
π

2ω1
, α0 = − π

2ω1
, β1 = 2, α1 = 0. (3.6)

Thus the states become

x1 = y,

x2 = y′ − π

2ω1
u +

π

2ω1
u,

x3 = y′′ − π

2ω1
u′ +

π

2ω1
u′ − 2u.

(3.7)
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From (3.5) and (3.7), the state equations are given by

dx1

dt
= x2 +

π

2ω1
u − π

2ω1
u,

dx2

dt
= x3 + 2u,

dx3

dt
= −ω2

1x2 − 2ζ1ω1x3 − 4ζ1ω1u.

(3.8)

In matrix-vector form, the finite third-order state space representation of the infinite modal
dimension string developed from the application of the Euler-Maclaurin sum formula is
given by

xm =

⎡

⎢⎢
⎣

x1

x2

x3

⎤

⎥⎥
⎦,

dxm
dt

= Amxm + Bmum,

Am =

⎡

⎢⎢
⎣

0 1 0

0 0 1

0 −ω2
1 −2ζ1ω1

⎤

⎥⎥
⎦, Bm =

⎡

⎢⎢
⎣

π

2ω1
− π

2ω1
2 0

−4ζ1ω1 0

⎤

⎥⎥
⎦, um =

[
u

u

]

.

(3.9)

4. Comparison with Multimodal Plate Model

The system plant for a simply supported rectangular plate (a by b) is given by the infinite
dimensional system with output y and disturbance fd collocated at the center of the plate

xp=

[
qnN×1

q̇nN×1

]

,
dxp
dt

=Apxp + Bpfd, y=Cpxp, Ap2N×2N =

[
0N×N IN×N

−ω2
nN×N −2ςnωnN×N

]

,

ωn −→ ωij = ω11

[
(i/a)2 +

(
j/b
)2

(1/a)2 + (1/b)2

]

, Bp 2N×1 =

⎡

⎢
⎣

0N×1

−2 sin
(
iπ

2

)
sin
(
jπ

2

)

N×1

⎤

⎥
⎦,

Cp =
[

sin
(
iπ

2

)
sin
(
jπ

2

)

1×N
01×N

]
,

(4.1)

where qn and q̇n are modal space vectors, Ap is the 2N × 2N plant state matrix composed
of four N ×N submatrices, Bp is the 2N × 1 plant input matrix for a simply supported plate
composed of two N × 1 vectors, Cp is the 1 × 2N output matrix, and fd is the disturbance
input scalar. The plate natural frequencies are ωn (with fundamental ω1 = ω11 in (4.1)) and ζn
is the modal damping factor considered equal for each mode greater than the fundamental.
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Figure 2: Comparison of steady state time response to random SPHS disturbance input of EM finite state
space string model with the multimodal plate model.

In reality, N → ∞ and the plant is an infinite dimensional system. Many modes will be used
in simulations to show the utility of using the three-state model.

The disturbance input fd(t) used in the study is a broadband input generated with
a multifrequency Schroeder-phased harmonic sequence (SPHS) [14] modified with random
amplitudes to provide a simulated near broadband spectrum.

fd(t) =
Nk∑

k=1

Ak sin
(
kωot + φk

)
, φk = φk−1 − 2π

k−1∑

j=1

A2
j

∑Nk

k=1 A
2
k

, (4.2)

where ωo = 2π(15 Hz), Nk = 200 to provide an input from 15 Hz to 3000 Hz, and 0 ≤ Ak ≤ 1
via a uniformly distributed random number generator. This disturbance is random-like in
time and periodic every 0.067 second due to the 15 Hz fundamental frequency. It provides a
good model for a broadband multifrequency disturbance.

Figure 2 gives a comparison of the time response of the finite Euler-Maclaurin (EM)
string model of (3.9) and the multimodal plate model of (4.1). The purpose of this figure
is to compare the steady state behavior for the broadband random input. The plate model
used for the comparison has an aspect ratio of 1.63, higher-order mode damping ratio of 0.01,
and approximately 200 modes up to 2000 Hz. Both models are for a fundamental frequency
of 10 Hz and a fundamental damping ratio of 1. The critically damped fundamental mode
is used to suppress its transient effect in a short period of time and allow the response to
be mostly steady state in a reasonable amount of time. Without this large damping, the
fundamental mode’s transient response would still be dominant at the time used to show
response at the time presented in the figure. Both the peak magnitude and the average
magnitude compare quite well with rms values within 15%. The average time between peaks
and valleys is also close and both models show some high-frequency oscillations. The phase
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Figure 3: Comparison of the magnitude of the transfer function for the EM finite state space string model
with the multimodal plate model, ς1 = 0.01 and ςn>1 = 0.01, for two frequency ranges: (a) 0–200 Hz and (b)
200–2000 Hz.

is a little different but this generally has no significance in the steady state. Overall, Figure 2
indicates that the EM string model is a reasonable approximation for a multimodal plate.

Separating out the fundamental string mode in (2.3) allows the EM string model to
retain this important feature for other aspects of plate dynamics. Figure 3 gives a comparison
of the magnitude of the transfer function for the EM finite state space string model of (3.9)
with the multimodal plate model of (4.1). The damping factors are ζ1 = 0.01 and ζn>1 = 0.01.
Figure 4 gives a similar comparison for damping factors of ζ1 = 0.01 and ζn>1 = 0.05. There
is a very good match at the 10 Hz fundamental and for the drop off trend throughout the
low- to high-frequency range. The primary difference between EM string and multimodal
plate models is that the plate model provides the high-frequency oscillations relative to a
common drop off trend for very small higher-order mode damping factors. This is expected
because by design, the EM sum is applied to a lossless string system. The larger higher modal
damping for Figure 4 shows how the two models are very close in the average drop off sense.
Figure 5 gives a comparison of the transient response for the EM string and multimodal plate
models to a 10 millisecond rectangular impulse shock. The damping factors are ζ1 = 0.01 and
ζn>1 = 0.01. Since the fundamental dominates such a response, the amplitudes and decay rates
are comparable after the first peak. The only significant difference is that the EM string model
gives a somewhat higher first peak while the plate model gives a slightly larger amplitude for
the next three peaks and valleys. As indicated by the steady state response comparison shown
in Figure 2 for the SPHS input, the basic transfer function comparison of Figures 3 and 4, and
the similar transient response comparison of Figure 5, the EM finite string model derived for
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Figure 4: Comparison of the magnitude of the transfer function for the EM finite state space string model
with the multimodal plate model, ς1 = 0.01 and ςn>1 = 0.05, for two frequency ranges: (a) 0–200 Hz and (b)
200–2000 Hz.

a lossless string with damping introduced for the fundamental system mode appears to be a
reasonable finite state space model for a multimodal plate system.

5. Inverse Dynamics Application for Estimating a Disturbance Input

The states of the multimodal plate are too numerous to be estimated. As an alternative, the
three EM model states are estimated with a Leunenberger observer [15] given by

dx̂m
dt

= Amx̂m + L
(
y − Cmx̂m

)
, (5.1)

where x̂m are the estimated states, y = Cpxp the output measurement of the actual plate, and
L is a 3 × 1 observer matrix to be determined. The actual and model output vectors are given
by

Cp =
[
sin
(πn

2

)

1×N
01×N

]
, Cm =

[
1 0 0

]
. (5.2)

Combining (3.9)–(5.1) gives the state space for the combined plate, observer system

⎡

⎢⎢
⎣

dxp
dt
dx̂m
dt

⎤

⎥⎥
⎦

2N+3×1

=

[
Ap 2N×2N 02N×3

LCp 3×2N Am − LCm 3×3

]

2N+3×2N+3

[
xp

x̂m

]

+

[
Bp

0

]

fd. (5.3)
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For a specific simulated disturbance input fd, (5.3) is used to obtain the state estimate x̂m
for the finite third-order Euler-Maclaurin model. The finite Euler-Maclaurin model of (3.9)
is used to determine the model based vector disturbance estimate ûm. Solving (3.9) for ûm,
substituting dx̂m/dt from (5.1), and simplifying give

ûm = B−1
m L
(
Cpxp − Cmx̂m

)
, (5.4)

where the generalized inverse of vector Bm is B−1
m = (BTmBm)

−1BTm.
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In (3.3), the presence of the delta function δ(t) and delay δ(t − π/ω1) implies that the
disturbance estimate is the sum of the two elements of ûm and according to the definition in
(3.9), it is given by

f̂d(t) = u(t) + u(t) = u(t) + u
(
t − π

ω1

)
. (5.5)

The estimated disturbance from (5.5) is compared to the actual disturbance applied to the
system. This estimate is not directly measured but computed from an output measurement on
the actual system and a finite dimension state space model obtained from the Euler-Maclaurin
sum formula for the infinite series of terms in the system Green function. Simulations for the
SPHS input will be used to show the accuracy of the procedure.

The Leuenberger matrix L = [L1 L2 L3] is determined by looking at the eigenvalues
of the model observer matrix Am − LCm

|λI − (Am − LCm)| =

∣∣∣∣∣∣∣∣

λ + L1 −1 0

L2 λ −1

L3 ω2
1 λ

∣∣∣∣∣∣∣∣

= λ3 + L1λ
2 +
(
L2 +ω2

1

)
λ +
(
L3 +ω2

1L1

)
= 0. (5.6)

The desirable values of λ are defined as λ1 = −α and λ2,3 = −α ± iω1. The Leuenberger matrix
components required to provide these desirable values are

L1 = 3α, L2 = 3α2, L3 = α3 − 2αω2
1. (5.7)

The basic procedure is to use plant model of (4.1) in the system equation (5.3) for
design simulations to determine the best observer parameter α for a particular fundamental
natural frequency f1 and damping factors ζn. In an actual situation for a plate with any
boundary conditions or geometry, f1 may be estimated with a finite element method and ζn
may be estimated with a standard damping measurement. The disturbance estimate is then
made by using the actual measured plant output y in place of Cpxp in (5.4). The Cmx̂m term
in (5.4) is still determined by integrating the system model equation (5.3) while using the
plant model of (4.1). For the case of f1 = 10 Hz and ζn>1 = 0.05, design simulations provide
a best value of α = 320. Figure 6 gives a comparison of the actual SPHS disturbance input
of (4.2) and the estimated disturbance from (5.5). A fundamental damping factor of ζ1 = 1
is used to provide a steady state condition at the time range given in the figure. Although
phase is off, the distance between peaks and valleys and the amplitude of the oscillations,
both of which are the important features in the steady state, are reasonably close for the
actual and the estimated inputs. Figure 7 gives a comparison of the actual output Cpxp and
the estimated output Cmx̂m. The main difference is the existence of the small oscillations for
the actual output.

6. Conclusions

A finite state space model has been shown to provide a reasonably accurate alternative to
a multimodal model for a plate. The finite state space model retains the plate fundamental
mode along with a finite part for the higher-order modes. This allows the model to be used
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Figure 7: Comparison of the actual output Cpxp and the estimated output Cmxm.

for a variety of situations. The paper uses the steady state response to a broadband random-
like input, the transient response to a shock-like input, and the steady state estimation of a
broadband random-like disturbance to show the usefulness of the finite state space model.
The finite state space model is derived from the dynamics of an elastic string fixed at each end.
Starting with a partial differential equation description of the string dynamics, the infinite
series form of the string Green function is transformed to an approximate closed form expres-
sion by applying the Euler-Maclaurin sum formula with remainder. A state space system
consisting of three state variables is derived from the Euler-Maclaurin sum result. The finite
state space description is applied directly to plate dynamic response analysis and is used in an
inverse problem of estimating a disturbance input by applying a state observer based on the
finite state space model. Comparative results indicate that the string-based finite state model
can be a reasonable way to analyze the multimodal dynamics of a plate for several situations.
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