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Skyline query computes all the “best” elements which are not dominated by any other elements
and thus is very important for decision-making applications. Recently, it is generalized to skyband
query and a k-skyband query returns those elements dominated by no more than k, of other
elements. To incorporate the skyband operator into the stream engine for monitoring skybands
over sliding windows, space usage estimation for skyband operator becomes a critical issue in the
query optimizer. In this paper, we firstly introduce the skyband sketch as the cost model. Based
on the cost model, we propose an approach for estimating the space usage of skyband operator
over sliding windows of data streams under the assumptions of statistical independence across
dimensions, no duplicate values over each dimension, and dimension domains totally ordered.
Experiments verify that our approaches can estimate the space usage effectively over arbitrarily
distributed data. To the best of our knowledge, this is the first work that attempts to address the
issue and proposes effective approaches to solve it.

1. Introduction

Skyline queries [1] are very important for multicriteria decision-making applications, as the
queries can return all the “best” elements which are not dominated by any other element.
However, skyline queries may eliminate elements which are valuable but dominated by few
other elements, for dimensions commonly can not cover all user’s consideration. Therefore,
Papadias et al. [2] generalized the skyline to skyband, and a k-skyband query returns all the
elements which are dominated by no more than k of other elements.

By using the common hotel example in the literature, assuming that each hotel has the
information of its distance from the beach and its price, and that one prefers the hotels which
are cheap and close to the beach, Figure 1 demonstrates the difference between the skyline
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Figure 1: Skyline versus 1-skyband.

(the 0-skyband) and the 1-skyband. Three hotels, that is, a, d, and f , are returned by the
skyline query, but additional four hotels, that is, b, c, e, and j, are returned by the 1-skyband
query because they are dominated by only one of other elements. Buchta [3] proposed
that the expected number of the skyline elements in a d-dimensional space which contains
n elements is Θ((lnn)d−1/(d − 1)!); therefore, low-dimensional skyline queries commonly
return a small number of skyline elements to the user, and some valuable elements may be
eliminated, the reason is that each element has a high probability of being dominated by
other elements in a low-dimensional space. Skyband queries may return the elements which
are valuable but dominated by few other elements to the user, hence, are widely used by
decision-making applications in low-dimensional spaces.

Recently, the database research community witnessed a paradigm shift to continuous
queries, and much attention has been put on sliding-window skyline queries [4, 5] in the
stream environment. However, the issue of space usage estimation, which is very important
for extending the query optimizer’s cost model to accommodate skyline queries in the stream
engine, is still left untouched. In this paper, we propose some effective approaches to estimate
the space usage of sliding-window skyband queries. Since the skyline query is a special case
of skyband queries, our proposed approaches can be naturally applied to sliding-window
skyline queries as well.

Monitoring sliding-window skybands needs to extract all skyband elements from the
live elements in the window and continuously report skyband changes as the window slides.
In this paper, we first introduce the skyband sketch as the cost model and present effective
policies for the sketch maintenance. As such, the skyband sketch has the quality of good
space efficiency because it only stores the skyband elements along with the potential-skyband
elements which do not belong to the skyband currently and are not guaranteed to be excluded
from the skyband in their remaining lifespan. Next, under the assumption of statistical
independence across dimensions, which is commonly used by query optimizers, and that no
duplicate values exist over each dimension and domains are all totally ordered, we propose
an approach for estimating the space usage of monitoring skybands over sliding windows.
Experimental study verifies that our approaches can estimate the space usage effectively over
arbitrarily distributed data. To the best of our knowledge, this is the first work that attempts
to address the issue of space estimation and proposes effective approaches to solve it.
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The rest of this paper is organized as follows. Section 2 summarizes the related
work; Section 3 introduces some preliminary knowledge; Section 4 details our approaches
for estimating the space usage; experimental results are given in Section 5 and followed by
our conclusions in Section 6.

2. Related Work

Many algorithms have been proposed for computing static skylines, including the non-index-
based algorithms [1, 6, 7] and the index-based algorithms [8–10], where the index-based
algorithms uniformly outperform the non-index-based algorithms. Skyline computation
under some certain conditions also received much attention, including skyline computation
with partially ordered domains [11] and low-cardinality domains [12], subspace skyline
computation [13, 14], skyline cube maintenance [15–19], and skyline computation in the
distributed environment [14, 20–23]. Some skyline variations have also been proposed,
including the k-dominant skyline [24], the top-k subspace skyline [25], the reverse skyline
[26], the k most representative skyline [27], the probabilistic skyline [28], and the skyband
[2].

Under the assumptions of statistical independence across dimensions, no duplicate
values over each dimension, and dimension domains being all totally ordered, the problem
of estimating the number of the skyline elements, that is, the skyline cardinality, has been
addressed in the works [3, 29, 30]. Chaudhuri et al. [31] relaxed the assumption of no
duplicate values over each dimension by allowing two possible values (e.g., 0 and 1).

As stated before, continuous skyline queries over sliding windows in data streams
[4, 5] have important applications such as environment monitoring and trends sensing. To
accommodate skyline operator in the stream processing engine, the issue of space usage
estimation needs to be solved. Motivated by this ambition, under the similar assumptions,
we propose robust approaches to estimate the number of the skyband and potential-skyband
elements over continuously distributed data.

3. Preliminaries

In this section, we present some preliminary results that will be used in the next section. In
addition, we also describe a data structure called the skyband sketch. Theorem 3.1 characterizes
the number of the elements in a finite set which just satisfy k of the m properties. It is
based on the generalized form of the Inclusion-Exclusion Principle [32]. Similarly, Theorem 3.2
characterizes the number of the elements in a finite set which satisfy no more than k of the m
properties; the theorem will be used for our theoretical analysis of the space usage in the next
section.

Theorem 3.1. Suppose that S is a finite set, P1,P2, . . . ,Pm are m properties, and S1,S2, . . . ,Sm
are m subsets of S, where Si consists of all those elements in S with property Pi. Let Δ(m, k) be the
number of the elements in S which just satisfy k of them properties, it can be characterized as

Δ(m, k) =
m∑

i=k

(−1)i−k
(
i

k

)
T(i), (3.1)
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where T(i) (0 ≤ i ≤ m) is characterized as follows:

T(0) = |S|,

T(1) =
m∑

i=1

|Si|,

T(2) =
∑

1≤i1<i2≤m
|Si1 ∩ Si2 |,

T(3) =
∑

1≤i1<i2<i3≤m
|Si1 ∩ Si2 ∩ Si3 |,

...

T(m) = |S1 ∩ S2 ∩ · · · ∩ Sm|.

(3.2)

Theorem 3.2. Suppose that S is a finite set, P1,P2, . . . ,Pm arem properties, and S1,S2, . . . ,Sm are
m subsets of S, where Si consists of all the elements in S which satisfy Pi; the number of the elements
in S which satisfy no more than k of them properties, that is, Γ(m, k), can be characterized as

Γ(m, k) = T(0) +
m∑

i=k+1

(−1)i−k
(
i − 1

k

)
T(i), (3.3)

where T(i) (0 ≤ i ≤ m) is the same as that in Theorem 3.1.

Proof. By Theorem 3.1, Γ(m, k) can be characterized as

Γ(m, k) =
k∑

j=0

Δ
(
m, j
)
=

k∑

j=0

m∑

i=j
(−1)i−j

(
i

j

)
T(i)

=
k∑

i=0

i∑

j=0
(−1)i−j

(
i

j

)
T(i) +

m∑

i=k+1

k∑

j=0
(−1)i−j

(
i

j

)
T(i)

= T(0) +
m∑

i=k+1

(−1)i−k
(
i − 1

k

)
T(i).

(3.4)

We have thus proved the theorem.

In a d-dimensional space, for simplicity and without loss of generality, an element ξ•
is said to dominate another element ξ◦ if it is smaller than or equal to ξ◦ over each dimension
and strictly smaller than ξ◦ over at least one dimension and is noted as ξ• � ξ◦. In a sliding-
window, if no more than k of other live elements can dominate an element, the element is
a k-skyband element; if an element is not a k-skyband element and no more than k of the
succeeding elements can dominate it, the element is a potential-k-skyband element.

Now we are able to describe a data structure called the skyband sketch for keeping the
k-skyband elements or the potential-k-skyband elements. The skyband sketch is a memory
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Expires Deleted Deleted

Skyband elements Potential-skyband elements

Arriving elements

Figure 2: The architecture of the skyband sketch.

resident synopsis. The potential-skyband elements are the elements which do not belong
to the skyband currently but are not guaranteed to be excluded from the skyband in their
remaining lifespan. Hence the skyband sketch has the quality of good space efficiency for
monitoring skybands over sliding-windows. The space usage in this paper is measured by
the numbers of the skyband and the potential-skyband elements stored by the sketch.

Figure 2 shows the architecture of the skyband sketch; the sketch changes occur only
when a new element arrives or a current skyband element expires. When a new element
arrives, if no more than k skyband elements can dominate it, it is probably a skyband
element; otherwise, it is a potential-skyband element. If the new element appears to be a
skyband element, all the skyband elements which are dominated by more than k succeeding
skyband elements and all the potential-skyband elements which are dominated by more than
k succeeding skyband and potential-skyband elements should be deleted because they will
be dominated by the succeeding k elements during their remaining lifespan; in addition, the
skyband elements which are dominated by no more than k succeeding skyband elements but
are dominated by more than k live skyband elements will appear to be potential-skyband
elements. If the new element appears to be a potential-skyband element, all potential-
skyband elements which are dominated by more than k succeeding skyband and potential-
skyband elements should be deleted. When a skyband element expires, all the potential-
skyband elements which are dominated by no more than k skyband and potential-skybad
elements will appear to be skyband elements. In this paper, since we focus on the problem
of space usage estimation, we leave out the detailed implementation issues of the skyband
algorithm.

4. Space Usage Estimation

In this section, we present our robust approaches for estimating the space usage of sliding-
window skybands under the assumption of statistical independence across dimensions based
on the preliminary results in the previous section.

4.1. Distribution-Constrained Data

Here, we give our theoretical analysis for the space usage of sliding-window skybands
over data which is distribution constrained, that is, there are no duplicate values over each
dimension. By mapping the problem of evaluating the number of the elements in a finite set
which satisfy no more than k of the m properties to the problem of evaluating the probability
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Figure 3: Continued.
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Figure 3: Space performance of monitoring skylines over sliding windows in the stream environment in a
4-dimensional space where the data over each dimension is continuously distributed.

that no more than k of other m elements can dominate an element, Lemma 4.1 gives the
probability that at most k of other m elements in a d-dimensional space can dominate an
element. Based on Lemma 4.1, Theorem 4.2 gives the expected number of the k-skyband
elements in a sliding window which contains n d-dimensional live elements.

Lemma 4.1. Suppose that ξ0, ξ1, ξ2, . . . , ξm are m + 1 elements in a d-dimensional space, under
assumptions of statistical independence across dimensions, no duplicate values over each dimension,
and data domains being all totally ordered; let Dk(m,d) be the fact that no more than k of other m
elements can dominate ξ0, then the probability ofDk(m,d), that is, P{Dk(m,d)}, can be characterized
as

P{Dk(m,d)} = 1 +
m∑

i=k+1

(−1)i−k

(i + 1)d

(
i − 1

k

)(
m

i

)
. (4.1)

Proof. We mapS,Pi, andSi in Theorem 3.2 to the full probability space, ξi � ξ0, and P{ξi � ξ0},
respectively; T(i) is mapped to T◦(i), which can be characterized as

T◦(0) = 1,

T◦(1) =
m∑

i=1

P{ξi � ξ0},

T◦(2) =
∑

1≤i1<i2≤m
P{ξi1 � ξ0 ∧ ξi2 � ξ0},

T◦(3) =
∑

1≤i1<i2<i3≤m
P{ξi1 � ξ0 ∧ ξi2 � ξ0 ∧ ξi3 � ξ0},

...

T◦(m) = P{ξ1 � ξ0 ∧ ξ2 � ξ0 ∧ · · · ∧ ξm � ξ0}.

(4.2)
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Figure 4: Continued.
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Figure 4: Space performance of monitoring skylines over sliding windows in the stream environment in a
8-dimensional space where the data over each dimension is continuously distributed.

Under assumptions of statistical independence across dimensions, no duplicate values
over each dimension, and domains being all totally-ordered, an element has a 1/(i + 1)d

probability of being dominated by all other i elements; therefore, T◦(i) can be further
characterized as

T◦(i) = 1

(i + 1)d

(
m

i

)
. (4.3)

By Theorem 3.2, P{Dk(m,d)} can be characterized as

P{Dk(m,d)} = T◦(0) +
m∑

i=k+1

(−1)i−k
(
i − 1

k

)
T◦(i)

= 1 +
m∑

i=k+1

(−1)i−k

(i + 1)d

(
i − 1

k

)(
m

i

)
.

(4.4)

We have thus proved the lemma.

Theorem 4.2. Suppose that there are n d-dimensional live elements in a sliding window, under
assumptions of statistical independence across dimensions, no duplicate values over each dimension,
and dimension domains being all totally-ordered, the expected number of the k-skyband elements, that
is, Ψk(n, d), can be directly characterized as

Ψk(n, d) = n +
n−1∑

i=k+1

(−1)i−k

(i + 1)d−1

(
i − 1

k

)(
n

i + 1

)
(4.5)
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and can be recursively characterized as

Ψk(n, d) = Ψk(n − 1, d) +
Ψk(n, d − 1)

n
(4.6)

with initial conditions Ψk(n, 1) = k + 1 where n ≥ k + 1 and Ψk(k + 1, d) = k + 1 where d ≥ 1.

Proof. By Lemma 4.1, Ψk(n, d) can be characterized as

Ψk(n, d) = n · P{Dk(n − 1, d)}

= n + n ·
n−1∑

i=k+1

(−1)i−k

(i + 1)d

(
i − 1

k

)(
n − 1

i

)

= n +
n−1∑

i=k+1

(−1)i−k

(i + 1)d−1

(
i − 1

k

)(
n

i + 1

)
.

(4.7)

Ψk(n, d) can further be recursively characterized as

Ψk(n, d) = n +
n−1∑

i=k+1

(−1)i−k

(i + 1)d−1

(
i − 1

k

)(
n

i + 1

)

= n +
n−2∑

i=k+1

(−1)i−k

(i + 1)d−1

(
i − 1

k

)(
n − 1

i + 1

)

+
n−1∑

i=k+1

(−1)i−k

(i + 1)d−1

(
i − 1

k

)(
n − 1

i

)

= (n − 1) +
n−2∑

i=k+1

(−1)i−k

(i + 1)d−1

(
i − 1

k

)(
n − 1

i + 1

)

+
n

n
+

1
n
·
n−1∑

i=k+1

(−1)i−k

(i + 1)d−2

(
i − 1

k

)(
n

i + 1

)

= Ψk(n − 1, d) +
Ψk(n, d − 1)

n

(4.8)

with initial conditions

Ψk(n, 1) = k + 1 (n ≥ k + 1),

Ψk(k + 1, d) = k + 1 (d ≥ 1).
(4.9)

We have thus proved the theorem.

Theorem 4.3 shows that there exists inherent correlation between the expected number
of the skyband elements in case of monitoring a (d+1)-dimensional k-skyband over a sliding
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window which contains n elements Ψk(n, d + 1) and the expected number of the elements
stored by the skyband sketch in case of monitoring a d-dimensional k-skyband over a sliding
window which contains n elements Φk(n, d), that is, Ψk(n, d + 1) = Φk(n, d). In addition, the
expected number of the potential-skyband elements in case of monitoring a d-dimensional k-
skyband over a sliding window which contains n elements Ωk(n, d) equals Φk(n, d)−Ψk(n, d).
Therefore, by a minor revision, Theorem 4.2 can also be used to characterize the expected
number of the potential-skyband elements.

Theorem 4.3. Under assumptions of statistical independence across dimensions, no duplicate values
over each dimension, and domains being all totally-ordered, the expected number of the skyband
elements in case of monitoring a (d+1)-dimensional k-skyband over a sliding window which contains
n live elements, that is,Ψk(n, d+1), equals the expected number of the elements stored by the skyband
sketch in case of monitoring a d-dimensional k-skyband over a sliding window which contains n live
elements, that is, Φk(n, d).

Proof. By Lemma 4.1, Φk(n, d) can be characterized as

Φk(n, d) = k + 1 +
n∑

j=k+2

P
{
Dk

(
j − 1, d

)}

= n +
n∑

j=k+2

j−1∑

i=k+1

(−1)i−k

(i + 1)d

(
i − 1

k

)(
j − 1

i

)

= n +
n−1∑

i=k+1

n∑

j=i+1

(−1)i−k

(i + 1)d

(
i − 1

k

)(
j − 1

i

)

= n +
n−1∑

i=k+1

⎛

⎝ (−1)i−k

(i + 1)d

(
i − 1

k

)
n−1∑

j=i

(
j

i

)⎞

⎠

= n +
n−1∑

i=k+1

(−1)i−k

(i + 1)d

(
i − 1

k

)(
n

i + 1

)

= Ψk(n, d + 1).

(4.10)

To see why the theorem holds, suppose ξ1, ξ2, . . . , ξn are the n live elements in the sliding
window, which are ascendingly ordered by the element sequence number, and ξi1 , ξi2 , . . . , ξim ,
where 1 ≤ i1 < i2 < · · · < im ≤ n, are the m elements stored by the skyband sketch for
monitoring a d-dimensional k-skyband over the sliding window. We map each of the live
element ξi = 〈xi1, xi2, . . . , xid〉 into a (d + 1)-dimensional elements ξ◦i = 〈xi1, xi2, . . . , xid, 1/ηi〉,
where ηi is the sequence number of the element, then ξ◦i1 , ξ

◦
i2
, . . . , ξ◦im are just the k-skyband

elements in the (d + 1)-dimensional space.

4.2. A Dynamic Programming Algorithm

In this subsection, based on the theoretical analysis proposed in the above subsection, we
propose an efficient dynamic programming algorithm to estimate the space usage. Since there
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Input: n: the number of the elements
d: the number of the dimensions
k: the k-skyband

Output: the expected skyband cardinality
begin

if n ≤ k + 1 then return n;
if d = 1 then return k + 1;
for i = 1 to d do α[i]← k + 1;
ξ ← 0;
for i = k + 2 to n do

ξ ← (ξ + 1) mod 2;
if ξ = 1 then
β[1]← k + 1;
for j = 2 to d do β[j]← β[j − 1]/i + α[j];

else
α[1]← k + 1;
for j = 2 to d do α[j]← α[j − 1]/i + β[j];

end
end
if ξ = 0 then return α[d] else return β[d];

end

Algorithm 1: Expected skyband cardinality: Ψk(n, d).

exist inherent correlations among the expected number of the skyband elements, the expected
number of the potential-skyband elements, and the expected number of the elements stored
by the skyband sketch, we only consider how to estimate the number of the skyband
elements.

Estimating the number of the skyband elements using (4.5) is infeasible in most
cases because combination numbers are used to characterize the expected number of the
skyband elements; for example, the number of the different ways of selecting 50 elements
from 100 different elements can not be stored by a 64-bit integer. Based on (4.6), we can
design a recursive algorithm to estimate the number of the skyband elements, which will not
encounter integer overflow. The recursive algorithm can be characterized by a binary tree
with the depth of max(n − k, d), where n, k, and d are the same as those in Theorem 4.2.
Therefore, estimating the number of the skyband elements using the recursive algorithm has
the computational complexity of Θ(2max(n−k,d)), which is unacceptable in most cases. Actually,
there exists a large amount of duplicate computations in the binary tree; therefore, if duplicate
computations can be eliminated, the computational complexity can be reduced. Algorithm 1
is a nonrecursive algorithm for estimating the number of the skyband elements, which is
based on (4.6), and all the duplicate computations are eliminated. The algorithm is a dynamic
programming algorithm [33], because although the algorithm is based on a recurrence, it is
non-recursive, and each step of the algorithm gives an exact answer for the corresponding
subproblem.

Algorithm 1 functions as follows. First, two vectors α and βwith size d are created, and
the values of α[1 · · ·d] are initialized to Ψk(k + 1, 1 · · ·d), respectively. According to the initial
conditions, we have Ψk(k + 1, 1 · · ·d) = k + 1, hence all the values of α[1 · · ·d] are initialized
to k + 1. Then, we evaluate Ψk(k + 2, 1 · · ·d) and store the values to β[1 · · ·d], respectively.
According to the initial conditions, we have Ψk(k + 2, 1) = k + 1, hence β[1] is set to k + 1.
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According to the recurrence, we have Ψk(k + 2, 2) = Ψk(k + 2, 1)/(k + 2) + Ψk(k + 1, 2), that
is, β[2] = β[1]/(k + 2) + α[2], hence we can evaluate Ψk(k + 2, 2) and store the value to β[2].
By the same principle, we may evaluate Ψk(k + 2, 3 · · ·d) sequentially and store the values
to β[3 . . . d]. We may continue to evaluate Ψk(k + 3, 1 · · ·d) using the values in β[1 · · ·d] and
store the values of Ψk(k + 3, 1 · · ·d) to α[1 . . . d], respectively, until we evaluate Ψk(n, 1 · · ·d)
and store the values to α[1 · · ·d] or β[1 · · ·d]. At last, the value of α[d] or β[d] is returned as
the value of Ψk(n, d). It is apparent that the algorithm is space and time efficient, because the
space complexity and the time complexity are Θ(d) and Θ((n − k)d), respectively.

5. Experiments

In this section, we verify our theoretical results on space usage estimation of the k-skyband
operator monitoring skybands over sliding windows in the stream environment by extensive
experiments. The algorithms have been implemented by the C++ programming language
and run on a 2.0 GHz Intel CPU with 2 GB of memory, and the data over each dimension
is generated by the (GNU Scientific Library GSL: http://www.gnu.org/software/gsl). We
test the space performance in a lower dimensional (4-dimensional) and a higher dimensional
(8-dimensional) space, respectively. According to the probability theory, if the data over a
dimension is continuously distributed, the probability that there are duplicate values over
the dimension is zero. Therefore, for each space, we generate a dataset; the data over the
first dimension is normally distributed with σ = 500, and the data over other dimensions is
normally distributed with σ = 100. At the same time, the sliding-window size increases from
500 to 1000 stepped by 50; for each step, we compute the maximal, average, and minimal
skyband sketch size, number of the skyband elements, and number of the potential-skyband
elements during the moving of the sliding window over one million elements. Since there is
no previous work that evaluates the space usage over continuous data, thus we compare our
corresponding theoretical results with the experimental results.

Figures 3 and 4 show the comparisons between experimental results and the
theoretical results for 4-dimension space and 8-dimension space. We can see that the
experimental results are almost the same as we expected in the theories. What is more is
that the maximal values are not twice as much as the minimal value and they are all close to
the theoretical results. For the given parament r (r-skyband) and d, both of the actual space
usage and the estimated space usage increase with the window size, as more objects need
to be evaluated. At the same time, the skyband cardinality also increases when the value of
parament r increases. The comparison between 4-dimension space and 8-dimension space, as
Figures 3(a) and 4(e) show, illustrates that the skyband sketch size in high-dimension space
is much more than that in low-dimension space, when the window size and the parament r
are given. This is because less elements are likely to be dominated by other objects in high-
dimension space compared with in low-dimension space. As there are sufficient skylines for
users to make a decision in the higher-dimensional space, skybands query shows its efficiency
in low-dimensional space.

6. Conclusions and Discussions

Skyband query is of great importance for multi-criteria decision-making applications. To
support skyband query in the stream engine, the problem of effective space usage estimation
must be solved, which is important for extending the query optimizers cost model. In this
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paper, under the assumption of statistically independent [34, 35] across dimensions, no
duplicate values over each dimension, and dimension domains being all totally ordered, we
propose effective methods to address this issue; since the skyline query is just a special case of
skyband queries, it is obvious that our approaches apply to sliding-window skyline queries
either. We also put forward a dynamic programming algorithm to estimate the space usage,
which is space and time efficient. In addition, if only the distribution function is given, we can
also use the similar approach to evaluate the skyband cardinality over a space, where there
are duplicate values over some dimensions. Finally, we carried out extensive experiments
which verified that our proposed approaches can estimate the space usage accurately, hence,
can be used to extend the optimizer’s cost model for incorporating the skyband operator.
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