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We present a numerical technique based on the coupling of boundary and finite element methods
for the steady Oseen equations in an unbounded plane domain. The present paper deals with the
implementation of the coupled program in the two-dimensional case. Computational results are
given for a particular problemwhich can be seen as a good test case for the accuracy of the method.

1. Introduction

The coupling of boundary and finite element methods has recently been shown to
be a very effective tool for solving a certain class of physical problems with infinite
(or even large) domains, for which the traditional numerical analysis techniques are
unsuitable (cf. [1–13]). In particular, Sequeira considered the theoretical aspect of the
coupled boundary and finite element methods for solving the steady exterior Stokes
problem in its continuous and approximate forms in [4] and provided a computer
implementation of the coupled boundary and finite element methods for solving the
steady exterior Stokes problem in [5]; He and Mattheij have studied the theoretical
aspect of the coupled boundary and finite element methods for solving the steady
exterior Oseen problem in its continuous and approximate forms in [6]; further-
more, He has studied the posedness and convergence of the coupled boundary and
finite element methods for solving the nonsteady exterior Oseen coupled problem in
[7].



2 Mathematical Problems in Engineering

On this subject we have studied in detail the numerical solutions of the two-
dimensional exterior Oseen equations for a steady-state incompressible viscous flow.
Essentially, the coupling method involves the choice of an artificial smooth boundary
separating an interior inhomogeneous region from an exterior homogeneous region. An
integral equation over this interface, representing the solution in the exterior region in terms
of a single-layer potential, is incorporated into a variational formulation in the primitive
variables velocity-pressure for the interior region. This allows a discretization along the
artificial boundary together with a typical discretization by finite elements to be employed.
This paper is concerned with the implementation of these coupled boundary and finite
element methods for the steady Oseen problem in a completely general form and without
using the standard finite element software.

One of the difficulties encountered in assessing the performance of the algorithm
for the approximate solution of the exterior Oseen equations is that of finding a suitable
analytical solution with which a comparison may be made. The flow, due to an infinitely
long circular cylinder, rotating uniformly about its axis in an infinite mass of viscous
incompressible fluid, is one such solution in the two-dimensional case.

The major aim of the present work is the development of a computational program for
our coupled boundary element-finite element methods. In this sense the study of the previous
example may serve as a test case of the applicability of this technique to more complicated
models. A series of numerical results demonstrates the accuracy of the method.

2. The Continuous Coupled Problem

Let Ω0 be a simply-connected bounded domain in R2 assumed to have a smooth boundary Γ
and let Ω denote the complement of Ω0 ∪ Γ. The steady-state Oseen system of equations,
governing the flow of a viscous incompressible fluid in an unbounded domain, may be
reduced into the form (see [6])

−νΔu + (w0 · ∇)u +∇p = f in Ω,

divu = 0 in Ω,

u = u0 on Γ,

u(x) −→ 0 as x −→ ∞,

(O − S)

where u is the velocity, p is the pressure, f represents the density of body forces with a
compact support in Ω, ν > 0 is the dynamic viscosity of the flow, and w0 = (w0, 0) is a
constant vector. The boundary condition satisfies

∫
Γu0 · nds = 0, n being the unit outward

normal to Γ.
One of the main difficulties in solving (O − S) is to deal with an infinite domain. Now,

we introduce an artificial smooth boundary Γ1 separating an exterior homogeneous regionΩ2
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from an interior inhomogeneous regionΩ1 which contains the support of f inΩ. So, problem
(O − S) is decomposed into two joined problems:

−νΔu + (w0 · ∇)u +∇p = f in Ω1,

divu = 0 in Ω1,

u = u0 on Γ,

(O − S1)

−νΔu + (w0 · ∇)u +∇p = 0 in Ω2,

divu = 0 in Ω2,

u(x) −→ 0 as x −→ ∞,

(O − S2)

and a coupling condition on the interface Γ1

u− = u+, λ− = λ+, (O − S3)

where

(
u−, p−

)
= lim

x→ Γ1

(
u(x), p(x)

)|Ω1 ,
(
u+, p+

)
= lim

x→Γ1

(
u(x), p(x)

)|Ω2 ,

λ− = σ
(
u−, p−

) · n|Γ1 , λ+ = σ
(
u+, p+

) · n|Γ1 ,

σ
(
u, p

)
=
(−δijp + 2νεij

)
2×2, εij =

1
2

(
∂ui
∂xj

+
∂uj

∂xi

)

, i, j = 1, 2.

(2.1)

Then an appropriate coupling technique between boundary element and finite element may
be used to solve (O − S).

Since the numerical analysis of this coupling procedure has already been developed,
for the sake of brevity, only its essential features will be presented here. For additional
mathematical details, the reader is referred to work [6]. Here we use the notations given
in [6].

Let us introduce the Hilbert spaces

W =
{
v ∈ H1(Ω1)2; v = 0 on Γ

}
,

M = L2
0(Ω1) =

{

q ∈ L2(Ω1);
∫

Ω1

q(x)dx = 0

}

,

T = H−1/2
0 (Γ1)2,H

−1/2
0 (Γ1) =

{

t ∈ H−1/2(Γ1);
∫

Γ1
t ds = 0

}

,

(2.2)

with the standard norms.
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We recall the mixed variational formulation of our problem described in [6]. It consists
in finding (u, p, λ) ∈ H1(Ω1)

2 × T ×M such that

a(u, v) + a1(w0, u, v) +
〈
γ0v, λ

〉 − (p,divv) = (f, v) ∀v ∈W,

2b
(
λ, μ

)
+
〈
γ0u, μ

〉 − 2
〈
G
(
γ0u
)
, μ
〉
= 0 ∀μ ∈ T,

(
q,divu

)
= 0 ∀q ∈M,

(Q)

with the conditions: 〈n, λ〉 = 0 and u = u0 on Γ, where the supplementary unknown

λ = σ
(
u, p

) · n|Γ1 (2.3)

appearing as the density of the single-layer potential, which represents the solution in the
exterior domain, is identified with the local stress force of the flow; here n denotes the unit
outward (from Ω2) normal to Γ1.

We have

Skμ(x) =
∫

Γ1
Uk

(
x − y) · μ(y)dsy ∀μ ∈ H−1/2(Γ1)2,

Gkv0(x) =
∫

Γ1
v0
(
y
) · σ(Uk, Pk)

(
x − y) · n(y)dsy

+
∫

Γ1

(
v0
(
y
) ·Uk

(
x − y))(w0 · n

(
y
))
dsy ∀v0 ∈ H1/2(Γ1)2,

a(u, v) = 2ν
2∑

i,j=1

∫

Ω1

εij(u)εij(v)dx,

a1(u, v,w) =
∫

Ω1

(u · ∇)v ·wdx,

b
(
λ, μ

)
=
〈
Sλ, μ

〉
,

〈
G
(
γ0u
)
, μ
〉
=

2∑

k=1

〈
Gk

(
γ0u
)
, μk

〉
,

(2.4)

where 〈·, ·〉 denotes the duality pairing between H1/2(Γ1)
2 and H−1/2(Γ1)

2 or between
H1/2(Γ1) and H−1/2(Γ1), and γ0 is the trace operator of the zero-order such that γ0u = u|Γ1 .
Here (Uk, Pk) is a 2nd order tensor which satisfies

νΔUk(x) − (w0 · ∇)Uk(x) − ∇Pk(x) = δ(x)ek,
divUk(x) = 0, k = 1, 2,

(2.5)



Mathematical Problems in Engineering 5

where ek represents the coordinate axis, and δ(x) is Dirac delta function. Recalling [7, 8], we
know that

Uki =

(

δkiΔ − ∂2

∂xk∂xi

)

Φ(x), Pk(x) =
xk

2π |x|2
,

Φ(x) = − 1
2πw0

∫x1

0

{
log

(
τ2 + x2

2

)1/2
+ exp

{
−w0

2ν
τ

}
H

( |w0|
ν

(
τ2 + x2

2

)1/2)}
dτ,

(2.6)

where

H(t) = − log
t

4

∞∑

m=0

(t/4)2m

(m!)2
− γ +

∞∑

m=1

(t/4)2m

(m!)2

[
1 +

1
2
+ · · · + 1

m
− γ
]

(2.7)

is essentially the zero-order Hankel function of the first kind. Here

γ = Euler′s constant = 0.5772157. (2.8)

Remark 2.1. It is worth noting that the pressure p ∈ L2(Ω1) in (Qh), arising from the solution
of our problem in the bounded subdomain Ω1, is determined up to an additive constant
and therefore λ ∈ T is unique up to an additive vector cn proportional to the normal to Γ1.
However, by appropriately assembling the two problems inΩ1 andΩ2, the involved constant
must be determined. To overcome this difficulty in practical terms, the strategy adopted was
to impose an extra coupling condition

∫

Γ1
λ · nds = 0. (2.9)

We must point out, in contrast to other methods, when the Oseen problem is
formulated in this manner, the stress force distribution, which is normally a quantity of
interest in such calculations, is determined directly, and the accurate results are shown in
Section 6.

3. The Approximate Coupled Problem

For the numerical approximation of our problem, we construct and study a finite element
method based on the mixed variational formulation developed in Section 3. It involves
Lagrangian finite elements which are conforming both in velocity and pressure but where
the incompressibility condition is poorly approximated.

For simplicity we restrict here the discussion to the case where Ω1 has polygonal
boundaries, but the results can be easily extended to a general curved domain, by introducing
an approximate boundary Γh ∪ Γ1h. For further details we also refer to [4, 5].

From now on, h will be a real positive parameter tending to 0. We introduce three
finite-dimensional spaces Xh, Sh, andMh such that

Xh ⊂ H1(Ω1); Sh ⊂ H−1/2(Γ1); Mh ⊂ H1(Ω1). (3.1)
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We define

Wh = X2
h ∩W, Th =

(
Sh ∩H1/2

0 (Γ1)
)2 ⊂ T. (3.2)

In addition, we introduce the subspaceW0h ofWh given by

W0h =
{
vh ∈Wh;

(
qh,divvh

)
= 0 ∀qh ∈Mh

}
. (3.3)

With these spaces, problem (Q) is approximated by the following.

find
(
uh, λh, ph

) ∈Wh × Th ×Mh

such that a(uh, vh) + a1(w0, uh, vh) +
〈
γ0vh, λh

〉 − (ph,divvh
)
=
(
f, vh

)
,

2b
(
λh, μh

)
+
〈
γ0uh, μh

〉 − 2
〈
G
(
γ0uh

)
, μh

〉
= 0,

(
qh,divuh

)
= 0,

(Qh)

for all (vh, μh, qh) ∈ Wh × Th ×Mh, with the conditions: 〈n, λh〉 = 0 and uh = u0h on Γh, where
u0h is an approximation of u0 on Γ.

We now construct finite dimensional spacesXh, Sh, andMh such that the assumptions
(H1)–(H5) given in [6] are satisfied. Let Ω1 be a polygonal domain and {τh} be a uniformly
regular family of triangulations of Ω1 made of triangles K with no more than one side on
∂Ω1, whose diameters hK are bounded by h. We suppose that the family {τh} parameterized
by the mesh size h is affine of class C0, and uniformly regular as h tends to zero, in the sense
of [14], namely

αh ≤ hK ≤ βρK, ∀K ∈ τh, (3.4)

where α and β are two positive constants and

ρK = sup{diameter of B; B is a circle contained in K}. (3.5)

We choose the following finite element spaces (refer to [4, 5]):

Xh =
{
ωh ∈ C0

(
Ω1

)
; ωh|K ∈ P2, ∀K ∈ τh

}
⊂ H1(Ω1),

Sh =
{
νh ∈ C0(Γ1); νh|si ∈ P1, ∀1 ≤ i ≤ n

}
⊂ H1/2(Γ1),

Mh =
{
qh ∈ C0

(
Ω1

)
∩M; qh|K ∈ P1, ∀K ∈ τh

}
⊂ H1(Ω1) ∩M,

(3.6)

where Pl is the polynomial in two real variables of degree ≤ l and si, 1 ≤ i ≤ n (|si| ≤ h) are
the straightline segments of the interfacial boundary Γ1.
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Recalling [6], there hold the following optimal error estimates:

‖u − uh‖1,Ω1
+ ‖λ − λh‖−1/2,Γ1 +

∥
∥p − ph

∥
∥
0,Ω1

≤ ch, (3.7)

where c is a positive constant.

4. Linear System

Here some statements are borrowed from Sequeira [5] with some changes. Let us recall the
regular triangulation τh of Ω1 made up of triangles K with no more than one side located on
∂Ω1 and the finite element spaces defined by (3.6).Xh andMh being spaces of the continuous
functions which are quadratic and affine in each K ∈ τh, respectively, it is natural to choose,
as degrees of freedom, for a function ωh ∈ Xh its values at the vertices and midpoints of
the triangulation τh and for Mh its values at the vertices of τh, with the constraint of the
interelement continuity. On the other hand, Th = S2

h
∩ T is the space of continuous and

piecewise linear functions μh on Γ1 with
∫
Γ1
μh ds = 0. We can construct its basis as follows:

let us denote by Ai−1Ai = Γi (1 ≤ i ≤ n) the n straightline segments of the boundary Γ1 (of
equal length h, to simplify ), and by {πi} (1 ≤ i ≤ n) the set of continuous functions on Γ1,
such that πi(Ai) = 1, π1(Aj) = 0 (j /= i) and

∫
Γ1
πi ds = 1; more precisely, with a parametric

representation of each Γi (for x ∈ Γi, Ai−1x = τAi−1Ai, τ ∈ [0, 1]), we define

πi(x(τ)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ

h
on Γi,

1 − τ
h

on Γi+1,

0 elsewhere.

(4.1)

Then Sh is generated by the set of n − 1 functions {ti}, continuous on Γ1 and piecewise affine,
satisfying

ti = πi − πi+1, 1 ≤ i ≤ n − 1. (4.2)

Now, if N = Nv +Nm denotes the total number of nodal points (vertices Nv and midsides
Nm) of τh, the solution of the approximate problem (Qh) reduces to the solution of a linear
system of order 3Nv + 2Nm + 2(n − 1) + 1. It takes the following matrix form:

Mx = b, (4.3)

with

x =
(
uh, ph, λh

)′
, b =

(
f, 0, 0

)′
, (4.4)
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and where the arising matrix M may be written symbolically in a partioned form, exhibiting
its natural block structure

M =

⎡

⎢
⎢
⎣

A B C

B′ 0 0

C′ 0 D

⎤

⎥
⎥
⎦ or M =

[
A C

C′ D

]

, (4.5)

with

A =

[
A B

B′ 0

]

, C =

[
C

0

]

, D = D. (4.6)

Here A is a sparse submatrix of finite element type and its coefficients, dealing only with the
velocity and the pressure, are evaluated by numerical quadratures in each finite element.D is
produced by the boundary element treatment of the infinite subdomain: it is a full, symmetric
submatrix and the singularities of its integrals are removed by exact calculation. It contains
one supplementary row and column due to the discretization of the coupling condition (2.9).
Finally, the rectangular submatrices C and C′ of the coupling coefficients only involve the
degrees of freedom on the interfacial boundary nodes connecting to the finite element mesh,
and are also sparse.

To summarize, the computational structure of the coupled system is very different and
this leads to some difficulties on solving it. As can be expected, the finite element system is
typically large but sparse and the boundary element system is small but dense. It is therefore
of interest to design solution methods that exploit these attributes to maximum advantage.

Before proceeding, let us give a short look at the numerical effort needed to derive
the boundary interface nodal coefficients to be assembled. As with finite elements, a global
numbering system is used for these nodes.

We start with the boundary element terms in order to obtain submatrixD. They are of
the following form:

Dik =
∫∫

Γ1
Uki

(
x − y)λhi(x)μhk

(
y
)
dsxdsy, i, k = 1, 2. (4.7)

Taking into account the above definition of the finite element space Th and the construction
of its basis functions (4.1)-(4.2), it is easy to see that, putting i, j = 1, . . . , n − 1

D =

⎡

⎣

[
d1
ij

] [
d2
ij

]

[
d2
ij

] [
d3
ij

]

⎤

⎦, (4.8)
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we must actually calculate

d
1
ij =

∫∫

Γ1
U11

(
x − y)πi(x)πj

(
y
)
dsxdsy,

d
2
ij =

∫∫

Γ1
U12

(
x − y)πi(x)πj

(
y
)
dsxdsy,

d
3
ij =

∫∫

Γ1
U22

(
x − y)πi(x)πj

(
y
)
dsxdsy,

(4.9)

and use the relations

dkij = d
k

ij − d
k

i,j+1 − d
k

i+1,j + d
k

i+1,j+1, k = 1, 2, 3. (4.10)

To write the above coefficient d
k

ij , we need to add the contribution from two adjoining

elements Γi1 and Γi+11 , Γj1, and Γj+11 . We define

αij =
∫

Γi1

∫

Γj1

K
(
x − y)πi(x)πj

(
y
)
dsxdsy,

βij =
∫

Γi1

∫

Γj+11

K
(
x − y)πi(x)πj

(
y
)
dsxdsy,

γij =
∫

Γi+11

∫

Γj+11

K
(
x − y)πi(x)πj

(
y
)
dsxdsy,

(4.11)

which become, in terms of parameters σ, τ ∈ [0, 1] of the straightline segments,

αij =
∫∫1

0
στK

(
x(σ) − y(τ))dσ dτ,

βij =
∫∫1

0
σ(1 − τ)K(x(σ) − y(τ))dσ dτ,

γij =
∫∫1

0
(1 − σ)(1 − τ)K(x(σ) − y(τ))dσ dτ,

(4.12)

where K(x) = U11(x), U12(x), andU22(x).
Computing these integrals and using the relationship

dij = αij + βij + βji + γij , (4.13)

it is a simple matter to derive the full matrix D (refer to [5] for the more details).
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Let us now examine the coupling terms

〈vh, λh〉 =
∫

Γ1
vhλhds,

〈
G
(
γ0uh

)
, μh

〉
=

2∑

i,j,k=1

∫∫

Γ1
σij(Uk, Pk)

(
x − y)nj(x)uhi(x)μhk

(
y
)
dsxdsy,

(4.14)

where vh = (vh1, vh2), μh = (μh1, μh2). According to (4.1)-(4.2), we can write

∫

Γ1
vhitjds =

∫

Γ1
vhiπjds −

∫

Γ1
vhiπj+1ds

=
∫

Γj1

vhiπjds +
∫

Γj+11

vhiπjds −
∫

Γj+11

vhiπj+1ds

−
∫

Γj+21

vhiπj+1ds i = 1, 2, j = 1, . . . , n − 1.

(4.15)

5. Resolution of the Matrix System

As it has been noted previously, once the elemental matrix calculations have taken into
consideration all the internal and boundary interfacial nodes, ensuring compatibly between
the finite and boundary element meshes, the coupled analysis is carried out as in the standard
finite element process. Of course, the global assembly and solution procedure we have used
do not ignore the large zero blocks that arise, in order to increase the computational efficiency
of this method.

We recall that problem (Qh) produces a global system of linear equations which can
be represented in a condensed matrix notation as

Mx = b (5.1)

and, more explicitly, in terms of the block structure of matrix M

[
A C

C′ D

][
X

Y

]

=

[
b

0

]

, (5.2)

where the solution vector is such that X represents the velocity and pressure at all nodes and
Y represents the interface unknown λh.

A is a nonsingular matrix; (5.2) can be expressed as

X = A−1(b − CY ), (5.3)
(
D − C′A−1C

)
Y = −C′A−1b. (5.4)
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Table 1: Representative parameters of four basic meshes.

Meshes NL N NE NO NVP NT
3 × 6 3 6 36 84 192 202
4 × 8 4 8 64 144 328 342
5 × 10 5 10 100 220 500 518
6 × 12 6 12 144 312 708 730
Here,NL: number of Fe-layers;N: number of points on each Fe-layer;NE: number of elements;NO: number of nodal points;
NVP: number of degrees of freedom associated with the velocity and pressure; NT: total number of degrees of freedom.

Hence, we need to compute A−1b and A−1C by solving the matrix equations

Ab = b, AC = C. (5.5)

Then we solve the equation

(
D − C′C

)
Y = −C′b, (5.6)

by a Gaussian elimination algorithm with partial pivoting and obtain from (5.3) that

X = b − CY. (5.7)

6. Numerical Tests

The performance of the numerical model described above has been tested on the traditional
example of the Oseen flow past a rotating infinitely long circular cylinder of the radiusR. This
numerical example is an extension of the performance of the numerical model describing the
traditional example of the Stokes flow past a rotating infinitely long circular cylinder of the
radius R; see Sequeira [5]. For a specific application, an exact solution of equations (O − S)
may be sought as follows: assuming, to simplify, that the stream function ψ associated with
the flow only depends on the distance to the origin (taken in the axis of the cylinder in an
(x1, x2)-cartesian plane normal to it), we write

ψ = log r, with r =
√
x2
1 + x

2
2; (6.1)

the velocity distribution is then

u = rotψ =
(
x2
r2
,−x1
r2

)
(6.2)

and the boundary condition

u =
(
x2
R2
,− x1
R2

)
at r = R (6.3)
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Table 2: Relative error of numerical solution on four basic meshes (ν = 1).

Meshes size ‖u − uh‖L2/‖u‖L2 ‖∇(u − uh)‖L2/‖∇u‖L2 ‖p − ph‖L2/‖p‖L2 ‖λ − λh‖L2/‖λ‖L2

3 × 6 h 0.0524273 0.0664172 0.1427025 0.3090692
4 × 8 3/4h 0.0342385 0.0547278 0.1177296 0.2275821
5 × 10 3/5h 0.0243689 0.0474219 0.0998918 0.1813625
6 × 12 1/2h 0.0184596 0.0427631 0.0876485 0.1488314

Table 3: Relative error of numerical solution on four basic meshes (ν = 0.5).

Meshes size ‖u − uh‖L2/‖u‖L2 ‖∇(u − uh)‖L2/‖∇u‖L2 ‖p − ph‖L2/‖p‖L2 ‖λ − λh‖L2/‖λ‖L2

3 × 6 h 0.0535782 0.0662608 0.1495650 0.3102600
4 × 8 3/4h 0.0358974 0.0580217 0.1277890 0.2304795
5 × 10 3/5h 0.0262548 0.0516052 0.1121745 0.1904752
6 × 12 1/2h 0.0241313 0.0457448 0.0876485 0.1675414

for a cylinder of the radius R. And we takew0 = (1, 0). Then the relation between the pressure
in the fluid and the external force acting on the cylinder is, in this case, given by

(
∂u1
∂x1

,
∂u2
∂x1

)
+∇p = f, (6.4)

since Δu = 0. Then, we may write

p = −x2
r2

+

⎧
⎨

⎩

R2 − r, for R < r ≤ R2,

0, for r ≥ R2

(6.5)

corresponding to

f =

⎧
⎪⎨

⎪⎩

− (x1, x2)
r

, for R < r ≤ R2,

0, for r ≥ R2.
(6.6)

The interfacial boundary introduced in the fluid region is a circle of radius R2. The bounded
domain Ω1 is then a circular annulus limited by R and R2.

From the expressions (6.2) and (6.5) for u and p, we can derive the local stress force of
the flow at the interfacial boundary

λ =

(
x1x2

R3
2

+ 2ν
x2

R3
2

,
x2
2

R3
2

− 2ν
x1

R3
2

)

. (6.7)

Computations were carried out with R = 1 and R2 = 2 in four basic meshes of
decreasing size h, 3/4h, 3/5h, and 1/2h (see Table 1), consisting of concentric layers of finite
elements, and the finest finite and boundary element mesh is shown in Table 1.

In Tables 2 and 3, we give a summary of computational results for ν = 1 and ν = 0.5,
respectively.
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From Tables 2 and 3, one may observe that for the finer meshes we can obtain the
better accuracy for the approximate velocity uh, pressure ph, and local stress force λh of the
fluid flow. Hence, the algorithm is actually well behaved for the velocity, the pressure, and the
local stress force of the fluid flow. This is confirmed by the accuracy of the obtained results.
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