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The model predictive control (MPC) subject to control and state constraint is studied. Given a
terminal cost, a terminal region is obtained through iterative estimation by using support vector
machine (SVM). It is proved that the obtained terminal region is the largest terminal region
when the terminal cost is given. The relationships between terminal cost and terminal region and
between terminal cost and total cost are discussed, respectively. Based on these relationships, a
simple method to get a suitable terminal cost is proposed and it can be adjusted according to our
need. Finally, some experiment results are presented.

1. Introduction

Model predictive control also known as receding horizon control has become quite popular
recently. The key advantage is its ability to handle control and state constraints. It was pointed
out in [1] that what MPC solves is the standard optimal control (SOC) problem except that
it uses the finite-horizon optimization (some paper used quasi-infinite horizon optimization,
such as [2, 3]) to replace the infinite-horizon optimization of SOC and the control is computed
online.

Generally, to say that an MPC is good or bad, it is contrasted with SOC from two
aspects: the domain of attraction and the total cost (the wasted performance index from initial
time to infinity). If an MPC has a larger domain of attraction and for any initial state point
the total cost is fewer than those of another MPC, it is considered as a better MPC. In MPC,
there are three factors playing important roles in its performances on the two aspects as just
mentioned: the prediction horizon, the terminal region, and the terminal cost. As known to
all, lengthening the prediction horizon, the domain of attraction will be enlarged and the
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total cost will decrease, but the computation burden of online optimization will increase.
Recently, many attentions have concentrated on the latter two factors: (I) how to get a large
terminal region? (II) and how to get a suitable terminal cost? Here, only some typical papers
are listed. Chen and Allgöwer [2] presented a terminal cost by using SOC method based on
the linearized model of system and took an ellipsoidal set in which the state can be drived to
the equilibrium point by linear feedback control as the terminal region. Cannon et al. [4] used
a polytopic set to replace the ellipsoidal set. De Doná et al. [5] took the stabilizable region
of using saturated control as the terminal region. Ong et al. [6] got a very large stabilizable
region and a terminal cost of using linear feedback control via support vector machine. Limon
et al. [7] proved that, forMPCwithout terminal state constraint in its on-line optimization, the
terminal region will be enlarged by weighting the terminal cost. Most of these papers have
a common shortage; the terminal region is computed under a precondition; some explicit
controller was given in advance, like linear feedback controller and saturated controller. So,
the computed terminal region is somewhat conservative, in other words, it is not the largest
one.

In this paper, a novel method is proposed to get a terminal state region. Given a
terminal cost, a set sequence is obtained by using one-step set contraction iteratively. It is
proved that, when the iteration time goes to infinity, this set sequence will converge to the
maximal terminal region. In this sequence, each set is estimated by using support vector
machine (SVM, see [7, 8] for details). Next, the relationships between terminal cost and
terminal region and between terminal cost and total cost are discussed, respectively. Then,
a simple method to get a suitable terminal cost according to our need is given. Finally, some
experiment results are presented.

2. The Relationship between SOC and MPC

As mentioned, MPC is an approximation to SOC, and SOC is the counterpoint to evaluate
MPC. Here, the study onMPC begins with the comprehension of SOC. Consider the discrete-
time system as follows:

xk+1 = f(xk, uk), (2.1)

where xk ∈ Rn, uk ∈ Rm are the state and the input of the system at sampling time t = k,
respectively. xk+1 ∈ Rn is the successor state and the mapping f : Rn+m �→ Rn with f(0, 0) = 0
is known. The system is subject to constraints on both state and control action, and they are
given by xk ∈ X, uk ∈ U,whereX is a closed set andU a compact set, both of them containing
the origin. The control objective is usually to steer the state to the origin.

The optimization problem P∞(x0) of SOC at the initial state x0 can be stated as follows:

min
u(i,x0)∈U

J∞(u, x0) =
∞∑

i=0

q(x(i, x0), u(i, x0)),

s.t. x(i + 1, x0) = f(x(i, x0), u(i, x0)),

x(i + 1, x0) ∈ X, u(i, x0) ∈ U,

(2.2)

where x(0, x0) = x0, q(x, u) is the stage cost and its form is chosen as q(x, u) = xTQx + uTRu
in which Q,R are positive definites.
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It is well known that the stability is guaranteed if P∞(x0) has feasible solution. Here,
assume that the solution of P∞(x0) is known if it has the following. J∗∞(x0) is defined
as the solution, u∗

∞(i, x0), i = 1, 2, . . . ,∞, the optimal control trajectory and x∗
∞(i, x0), the

corresponding state trajectory. As is well known, J∗∞(x0) is the total cost of using u∗
∞(i, x0)

to drive x0 to 0.
But solving P∞(x0) is not an easy job, especially when f is nonlinear. To avoid this

problem, the infinite-horizon optimization of SOC can be approximated by the finite-horizon
optimization of MPC (As mentioned, quasi-infinite horizon optimization was used in [2, 3].
For convenience, we consider it to belong to the frame of finite-horizon optimization).

Similarly, the optimization problem PN(x0) of MPC at the initial state x0 can be
stated as

min
u(i,x0)∈U

JN(u, x0) =
N−1∑

i=0

q(x(i, x0), u(i, x0)) + F(x(N,x0)),

s.t. x(i + 1, x0) = f(x(i, x0), u(i, x0)),

x(i + 1, x0) ∈ X, u(i, x0) ∈ U, x(N,x0) ∈ Xf,

(2.3)

whereN is prediction horizon, Xf is terminal region, and F is terminal cost satisfying F(0) =
0 and F(x) ≥ α(‖x‖), (the mapping α : R+ �→ R+ satisfying α(0) = 0 is continuous and strictly
increasing, where R+ = {x ∈ R | x > 0}).

There exist many optimization algorithms to compute the solution of PN(x0). Let
J∗N(x0) be the solution, u∗

N(x0)={u∗
N(0, x0), . . . , u∗

N(N−1, x0)}, x∗N(x0)={x∗
N(0, x0), . . . , x∗

N(N−
1, x0)} be the optimal control trajectory and corresponding predicted state trajectory of
PN(x0), respectively.

At sampling time t = 0, u∗
N(0, x0) is inputted to the system. At the next sampling time

t = 1, x1 = f(x0, u
∗
N(0, x0)) is outputted, and the control input u∗

N(0, x1) can be computed by
solving the optimization problem PN(x1). By repeating this procedure, two trajectories can
be obtained: uRH(x0)={u∗

N(0, x0), u∗
N(0, x1), . . .}, xRH(x0)={x0, x1, . . .}. Here, for convenience,

they are called as the receding horizon control trajectory and the receding horizon state
trajectory of MPC with PN(x0), respectively.

The introduction ofXf and F in (2.3) is to guarantee the closed loop stability of system.

Lemma 2.1. Define ΓN := {x0 ∈ X | x∗
N(N,x0) ∈ Xf}. For any x0 ∈ ΓN if Xf and F satisfy two

conditions as follows:
(C1) F being a Lyapunov function, more strictly, for any x ∈ Xf , there exists

F(x) ≥ min
u∈U

{
q(x, u) + F

(
f(x, u)

)}
, (2.4)

(C2) Xf being an invariant set. In other words, one has f(x, u) ∈ Xf. Here, u is the control
in (C1).

It is guaranteed that, x will be led to 0 by using uRH(x0). ΓN is called the domain of
attraction.

The proof can be found in [1].
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Obviously, the optimal choice of F(x(N,x0)) is J∞(x(N,x0)). The total cost with this
choice is J∞(x0), namely it is the least one. But, as mentioned, J∞ can not be obtained
generally, so other ways should be found to get F. Certainly, the closer it approaches to J∞,
the better it is. When F is given, Xf can be found to satisfy the conditions (C1) and (C2).
There are many Xf satisfying the conditions and different Xf will be obtained by different
methods. But, to make the domain of attraction the largest, it is wished that the largest Xf

can be obtained. Here, defineXf,max as the largest terminal region when F is given, and in the
next section, a novel method to get Xf,max will be proposed.

3. Maximizing the Terminal Region for MPC

Until now, there exist many methods to construct Xf . As mentioned, these methods have a
common basic idea: some controller like linear feedback controller or saturation controller
is given in advance, then a stabilizable domain of using this controller is computed and
works as the terminal region of MPC. It is obvious that this kind of construction is somewhat
conservative and the Xf computed by using this method does not approximate to Xf,max to
the largest extent.

In this paper, a novel method is proposed in which Xf is constructed directly from
conditions (C1) and (C2).

3.1. Approximating the Largest Terminal Region Asymptotically

Define Xf as

Xf :=
{
x ∈ X | F(x) ≥ F∗

Xf
(x)

}
, (3.1)

where F∗
Xf
(x) = minFXf (x) is the solution of the following optimization problem:

min
u∈U

FXf (x) = q(x, u) + F
(
f(x, u)

)
,

s.t. f(x, u) ∈ Xf.

(3.2)

Obviously, for an x ∈ X, it cannot be decided whether x belongs to Xf from
(3.1) and (3.2) when Xf is unknown. The difficulty is that the state constraint in the
optimization (3.2) uses the Xf itself. To avoid it, the method of asymptotic approximation
is adopted. Firstly, an initial set X0

f which can be obtained by the following discriminant is
given:

X0
f :=

{
x ∈ X | F(x) ≥ F∗

X0
f

(x)
}
, (3.3)
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Figure 1: The approximation of Xf,max.

where F∗
X0

f

(x) is the solution of

min
u∈U

FX0
f
(x) = q(x, u) + F

(
f(x, u)

)
,

s.t. f(x, u) ∈ X.

(3.4)

Then, using X0
f instead of X in the state constraint in optimization of (3.4), X1

f can be

obtained. One by one, X2
fX

3
f , . . . will be obtained. The whole procedure can be pictured as in

Figure 1.
In Figure 1, X1

f is defined as

X1
f :=

{
x ∈ X0

f | F(x) ≥ F∗
X1

f

(x)
}
, (3.5)

where F∗
X1

f

(x) is the solution of

min
u∈U

FX1
f
(x) = q(x, u) + F

(
f(x, u)

)
,

s.t. f(x, u) ∈ X0
f .

(3.6)

Similarly, Xj

f can be defined as?

X
j

f
:=

{
x ∈ X

j−1
f

| F(x) ≥ F∗
X

j

f

(x)
}
, (3.7)

and F∗
X

j

f

(x) is the solution of

min
u∈U

F
X

j

f
(x) = q(x, u) + F

(
f(x, u)

)
,

s.t. f(x, u) ∈ X
j−1
f

.

(3.8)
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Obviously, as Figure 1 shows, there exists X0
f ⊇ X1

f ⊇ · · · ⊇ X
j

f ⊇ Xf . As j increases,

X
j

f
will converge to a set denoted by X+∞

f
. But, whether is X+∞

f
the terminal region we want?

Theorem 3.1 provides the answer to this question.

Theorem 3.1. For Xj

f
defined in (3.7), when j goes to infinity, Xj

f
will converge to Xf,max, namely,

as j → +∞, one has Xj

f → Xf,max.

This theorem is proved by contradiction.

Proof. (A) Assume that there exists Xspo which satisfies Xspo ⊃ Xf,max and X
j

f
→ Xspo, as j →

+∞ then for any x ∈ Xspo, we have F(x) ≥ minu∈U{q(x, u) + F(f(x, u))} and f(x, u) ∈ Xspo.
Obviously this is contradicted with Xf,max being the largest one satisfying (C1) and (C2).

(B) Similarly, assume that there exists Xspo which satisfies Xspo ⊂ Xf,max and X
j

f
→

Xspo, as j → +∞, then there exists N with 0 ≤ N < +∞ satisfying XN
f

⊇ Xf,max and

Xf,max \ XN+1
f /=Φ, where Φ denotes the empty set. Choose any x ∈ Xf,max \ XN+1

f
,

it is obviouse that, x satisfies F(x) ≥ minu∈U{q(x, u) + F(f(x, u))} and f(x, u) ∈
Xf,max ⊆ XN

f
. On the other hand, we know that x ∈ XN

f
, so x meets the conditions

in the definition of XN+1
f

and we have x ∈ XN+1
f

. This is contradicted with x ∈
Xf,max \XN+1

f
.

Remark 3.2. Generally, in the computation ofXf,max, it is impossible to keep computation until
j → +∞. So, when the iteration goes to j = N, if XN

f is equal to XN−1
f in principle, XN

f can be
taken as the terminal region we want.

Remark 3.3. The terminal region computed through the method in Remark 3.2 is not Xf,max

itself, but its enclosing set. Then, the corresponding domain of attraction may include some
points which should not be in the real domain of attraction. To avoid this problem, the
outspread skill from smaller region to larger one can be used to turn¡?ehlt?¿ the contraction
skill from larger region to smaller one in this paper. The concrete algorithm is not presented
here, just the general idea is stated; giving a known subset of Xf,max, denoted by Xf,0 in
advance and using Xf,0 to serve as the state constraint in (3.4), then a larger region Xf,1 will
be computed. By the same procedure as presented in Section 3.1, a terminal region which is a
subset of Xf,max will be gotten.

To obtain X
j

f is not an easy job. The only tool is statistical learning method. Here, the
SVM is used.

3.2. Support Vector Machine

SVM (see [8, 9]) is the youngest part of statistical learning theory. It is an effective approach
for pattern recognition. In SVM approach, the main aim of an SVM classifier is obtaining a
function, which determines the decision boundary or hyperplane. This hyperplane optimally
separates two classes of input data points.

Take the example of separating X into A and X \ A. For each xi ∈ A, an additional
variable yi = +1 is introduced. Similarly, for each xi ∈ X \ A, yi = −1 is introduced. Define
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I+ := {i : yi = +1}, I− := {i : yi = −1}. SVM is used to find a separating hyperplane O(x) :=
w · φ(xi) + b = 0, between A and X \A. Then, we obtain an estimated set of A, Â = {x ∈ X |
O(x) ≥ 0}. O(x) can be obtained by solving the following problem:

min
α

1
2

∑

i

∑

j

αiαjyiyj ker
(
xi, xj

) −
∑

i

αi,

s.t.
∑

i

αiyi = 0,

0 ≤ αi ≤ C, ∀i ∈ I+, αi ≥ 0, ∀i ∈ I−,

(3.9)

where ker denotes the kernel function.
In this paper, the following Gaussian kernel is used:

ker(x, xi) = exp

(
−‖x − xi‖2

2σ2

)
, (3.10)

with σ being the positive Gaussian kernel width.
There are many software packages of SVM available on internet. They can be

downloaded and used directly. By using SVM, the support vectors are extracted from {xi}
and their relevant weights are exported. Denote Ps as the number of support vectors and Xs

as the support vectors set, the optimal hyperplane is described as follows:

O(x) =
Ps∑

i=1

wi · ker(xi, x) + b, (3.11)

where xi ∈ Xs is a support vector, and wi = αiyi satifying
∑Ps

i=1 wi = 0 is the relevant weight.

3.3. Estimating the Largest Terminal Region

In SVM classifier, the training data is inputted and the hyperplane will be outputted. To us,
the training of data is the only job.

Take the separation of X0
f from X as an example. Firstly, choose arbitrary points

xi ∈ X, i = 1, 2, . . . ,Np (Np is the number of training points) then decide the value of yi

corresponding to xi by using the following procedure
If F(xi) ≥ F∗

X0
f

(xi),

yi = +1; else yi = −1
endif.
When all the yi for all the xi are gotten, they can be packed to constitute the training

data. Then, by inputting the training data into SVM classifier, an optimal hyperplaneO0(x) =
0 and an estimated set of X0

f , X̂
0
f = {x ∈ X | O0(x) ≥ 0} will be obtained.

When X̂0
f is known, the training data for separating X1

f from X0
f can be known by the

similar procedure. By inputting them into SVM classifier, a hyperplane O1(x) = 0 and an
estimated set of X1

f
, X̂1

f
= {x ∈ X | O1(x) ≥ 0}will be gotten.
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Repeatedly, a hyperplane series Oj(x) = 0, j = 1, 2, . . . will be obtained. When j = N if
it is satisfied that, for xi ∈ Xsup,N−1, i = 1, 2, . . . ,Nsup,N−1, there exists

Nsup,N−1∑

i=1

∥∥∥ON(xi) −ON−1(xi)
∥∥∥ ≤ εNsup,N−1, (3.12)

it is deemed that X̂N
f

is equal to X̂N−1
f

in principle and X̂N
f

is taken as the final estimation
of Xf,max. Where Xsup,N−1 is the support vectors set at j = N − 1, Nsup,N−1 is the number of
support vectors and ε is a tunable threshold. The smaller it is, the higher the precision of X̂N

f

approximating to Xf,max is.

Remark 3.4. Here, we used the information that, in SVM classifier, the hyperplanes are
decided just on the support vectors.

4. Choosing an Appropriate Terminal Cost

In the previous chapter, a method to maximize the terminal region was proposed, but the
method has a premise: the terminal cost is given in advance. In this chapter, how to get a
terminal cost will be shown. Before this, some properties of terminal cost will be analyzed.

4.1. Weighting Terminal Cost, the Domain of Attraction Will Be Enlarged

From conditions (C1) and (C2), it is known that the terminal region is based on the choice
of the terminal cost. We want to know what the relationship between them is and this
relationship will give us what messages when we choose terminal cost. Theorem 4.1 will give
us the answer.

Denote Xf,max, Xλ,max as the terminal regions of PN(x0) and PN,λ(x0) with a weighted
terminal cost λF, λ ≥ 1, respectively. Limon et al. [7] proved that the terminal region will be
enlarged by weighting the terminal cost for MPC without terminal constraint in its on-line
optimization. Here, we will show that, this property will also hold water in our case.

Theorem 4.1. Consider F andXf,max satisfying conditions (C1) and (C2). When a weighted terminal
cost λF, λ ≥ 1 is used, the corresponding terminal region Xλ,max is larger than Xf,max, namely,
Xf,max ⊆ Xλ,max.

Proof. For any x0 ∈ Xf,max, the conditions of (C1) and (C2) are equivalent to the fact that there
exists a control trajectory u = {u0, u1, u2, . . .} to make the following inequalities stand up:

F(xi) ≥ q(xi, ui) + F(xi+1), i = 0, 1, 2, . . . , (4.1)

where xi+1 = f(xi, ui).
It is obvious that, when the terminal cost is λF, these inequalities also stand up using

the same control trajectory

λF(xi) ≥ q(xi, ui) + λF(xi+1). (4.2)

So, we can see that x0 ∈ Xλ,max, namely, Xf,max ⊆ Xλ,max.
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Remark 4.2. When the prediction horizon is given, the larger the terminal region is, the larger
the domain of attraction is. So Theorem 4.1 shows that, giving the prediction horizon, by
weighting terminal cost, the domain of attraction will be enlarged.

4.2. Weighting Terminal Cost, the Total Cost Will Increase

It is known from the last section that, when the terminal cost is weighted, the terminal region
is enlarged. So, can we weight the terminal cost arbitrarily? The answer is no. This section
will tell us the reason the total cost will be increased by weighting the terminal cost.

Let J∗
N,λ

(x0) be the solution of PN,λ(x0), u∗
N,λ

(x0) = {u∗
N,λ

(0, x0), . . . , u∗
N,λ

(N,x0)},
x∗
N,λ

(x0) = {x∗
N,λ

(0, x0), . . . , x∗
N,λ

(N,x0)} be the optimal control trajectory and corresponding
state trajectory, respectively, and let uRH,λ(x0) = {u∗

N(0, x0), u∗
N(0, x1,λ), . . .}, xRH,λ(x0) =

{x0, x1,λ, x2,λ, . . .} be the receding horizon control trajectory and receding horizon state
trajectory of usingMPCwith PN,λ(x0), respectively. Define JRH,λ(x0), JRH(x0) as the total costs
of using MPC with PN,λ(x0) and with PN(x0), respectively.

For convenience, consider an assumption.

Assumption 1. For any x0 ∈ ΓN , where ΓN is the domain of attraction of MPC with PN(x0),
the terminal state by solving PN,λ(x0) belongs to Xf,max, that is to say x∗

N,λ(N,x0) ∈ Xf,max.

Remark 4.3. Assumption 1 means, for any x0 ∈ ΓN , that the solution of PN,λ(x0) with Xλ,max

as its terminal region is equal to that with Xf,max as its terminal region. A few points in ΓN
may not satisfy this assumption, for convenience, their influence is neglected. Under this
assumption, it is obviouse that J∗N,λ(x0) ≥ J∗N(x0) and the following lemma holds water.

Lemma 4.4. For any x0 ∈ ΓN , there exists

(
J∗N−1,λ − J∗N−1

)(
x∗
N(1, x0)

) ≥
(
J∗N−1,λ − J∗N−1

)(
x∗
N,λ(1, x0)

)
. (4.3)

Proof. From the view of optimality, J∗N(x0) can be expressed as

J∗N(x0) = q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1

(
x∗
N(1, x0)

)
. (4.4)

Considering Assumption 1 and by optimality, there exists

J∗N(x0) ≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1

(
x∗
N,λ(1, x0)

)
. (4.5)

Similarly, J∗N,λ(x0) can be expressed as

J∗N,λ(x0) = q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1,λ

(
x∗
N,λ(1, x0)

)
. (4.6)

And by optimality, there exists

J∗N,λ(x0) ≤ q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1,λ

(
x∗
N(1, x0)

)
. (4.7)
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Obviously, the result of subtracting J∗N(x0) from the right hand of (4.7) is bigger than
the result of subtracting the right hand of (4.5) from J∗

N,λ
(x0), in other words,

(
q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1,λ

(
x∗
N(1, x0)

)) − J∗N(x0)

≥ J∗N,λ(x0) −
(
q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1

(
x∗
N,λ(1, x0)

))
.

(4.8)

Finally, the following result can be obtained:
(
J∗N−1,λ − J∗N−1

)(
x∗
N(1, x0)

) ≥
(
J∗N−1,λ − J∗N−1

)(
x∗
N,λ(1, x0)

)
. (4.9)

Define FK as a kind of K functions satisfying the following: for any F1, F2 ∈ FK, and
x1, x2 ∈ X, there exists the following: if F1(x1) ≥ F1(x2), the inequality F2(x1) ≥ F2(x2) stands
up.

To continue discussion, another assumption is needed.

Assumption 2. All of the positive cost functions used in this paper like J∗N−1, J
∗
N , J∗

N−1,λ, and
J∗
N,λ

and the results of the addition or subtraction between them like J∗
N−1,λ − J∗N−1, J

∗
N−1,λ + J∗N

belong to FK.

Based on Assumption 2 and Lemma 4.4, it is known that, for any x0 ∈ ΓN and FK,
there exists

FK
(
x∗
N(1, x0)

) ≥ FK
(
x∗
N,λ(1, x0)

)
. (4.10)

Then, by using (4.10) and Assumptions 1 and 2, another lemma which is a key for our
study on this issue can be gotten.

Lemma 4.5. Under Assumptions 1 and 2, for any x0 ∈ ΓN and any positive cost function Ftra ∈ FK
satisfying Ftra ≤ J∗N−1, there exists

q
(
x0, u

∗
N(0, x0)

)
+ Ftra(x1) ≤ q

(
x0, u

∗
N,λ(0, x0)

)
+ Ftra(x1,λ). (4.11)

Proof. Here, x1 means x∗
N(1, x0) and x1,λ means x∗

N,λ(1, x0). From Assumption 2, it is known
that (J∗N−1 − Ftra) ∈ FK, so there exists

q
(
x0, u

∗
N(0, x0)

)
+ Ftra(x1)

= q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1(x1) −

(
J∗N−1 − Ftra

)
(x1)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1(x1,λ) −

(
J∗N−1 − Ftra

)
(x1,λ)

= q
(
x0, u

∗
N,λ(0, x0)

)
+ Ftra(x1,λ).

(4.12)

Here, we used the fact that J∗N(x0) ≤ J∗N,λ(x0) and (J∗N−1 −Ftra)(x1) ≥ (J∗N−1 −Ftra)(x1,λ).
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Then, the reason why we cannot weight the terminal cost arbitrarily can be presented.

Theorem 4.6. Under Assumptions 1 and 2, for any x0 ∈ ΓN , the following inequality stands up:

JRH(x0) ≤ JRH,λ(x0). (4.13)

Proof. It is obvious that J∗N meets the condition in Lemma 4.5 because of J∗N ≤ J∗N−1. Choose
Ftra = J∗N in Lemma 4.5. There exists

q
(
x0, u

∗
N(0, x0)

)
+ J∗N(x1) ≤ q

(
x0, u

∗
N,λ(0, x0)

)
+ J∗N(x1,λ). (4.14)

Similarly, for any x ∈ ΓN , the following result can be obtained:

q
(
x, u∗

N(0, x)
)
+ J∗N

(
x∗
N(1, x)

)

≤ q
(
x, u∗

N(0, x)
)
+ J∗N−1

(
x∗
N(1, x)

)
= J∗N(x) ≤ J∗N−1(x).

(4.15)

So, choose

Ftra(x) = q
(
x, u∗

N(0, x)
)
+ J∗N

(
x∗
N(1, x)

)
. (4.16)

By using x1, x1,λ to replace x, respectively, there exists

q
(
x0, u

∗
N(0, x0)

)
+ q

(
x1, u

∗
N(0, x1)

)
+ J∗N(x2)

= q
(
x0, u

∗
N(0, x0)

)
+ Ftra(x1)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ Ftra(x1,λ)

= q
(
x0, u

∗
N,λ(0, x0)

)
+ q

(
x1,λ, u

∗
N(0, x1,λ)

)
+ J∗N

(
x∗
N(1, x1,λ)

)
.

(4.17)

From Assumption 1, it is known that, for x0 ∈ ΓN , there exists x1,λ ∈ ΓN . Replacing x0

with x1,λ in (4.14), the following inequality can be gotten:

q
(
x1,λ, u

∗
N(0, x1,λ)

)
+ J∗N

(
x∗
N(1, x1,λ)

) ≤ q
(
x1,λ, u

∗
N,λ(0, x1,λ)

)
+ J∗N(x2,λ). (4.18)

So, there exists

q
(
x0, u

∗
N(0, x0)

)
+ q

(
x1, u

∗
N(0, x1)

)
+ J∗N(x2)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ q

(
x1,λ, u

∗
N,λ(0, x1,λ)

)
+ J∗N(x2,λ)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ q

(
x1,λ, u

∗
N,λ(0, x1,λ)

)
+ J∗N,λ((x2,λ)).

(4.19)



12 Mathematical Problems in Engineering

Repeating this procedure, there exists

q
(
x0, u

∗
N(0, x0)

)
+ · · · + q

(
xj , u

∗
N

(
0, xj

))
+ J∗N

(
xj+1

)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ · · · + q

(
xj,λ, u

∗
N,λ

(
0, xj,λ

))
+ J∗N,λ

((
xj+1,λ

))
.

(4.20)

Let j → +∞, the final result can be obtained as follows:

JRH(x0) ≤ JRH,λ(x0). (4.21)

Theorem 4.6 shows that, weighting the terminal cost, the total cost will be increased.
So, when choosing a terminal cost, people should not only take into account the need of
enlarging the terminal region.

4.3. Getting an Appropriate Terminal Cost

It was pointed out from Theorems 4.1 and 4.6 that the terminal cost is a double-edged sword.
On its choice, two factors, the terminal region and the total cost, must be considered. With
different emphasis, different terminal cost should be chosen.

Here, a simple method to get a terminal cost is presented, whose basic idea is getting
an initial terminal cost in advance then adjusting it according to our need.

As mentioned, a good terminal cost should approximate to J∗∞ as close as possible.
People can only achieve it in a small neighborhood around the origin by using SOC method,
see [2] for continuous-time system.

Consider the linearization of the system (2.1) at the origin

xk+1 = Axk + Buk, (4.22)

with A = (∂f/∂x)(0, 0) and B = (∂f/∂u)(0, 0).
Here, assume that (4.22) is stabilizable, then a terminal cost which serves as an initial

candidate can be found through the following procedure.

Step 1. Solving the Riccati equation to get a preparatory G0,

G0 = ATG0A −
(
ATG0B

)(
BTG0B + R

)−1(
BTG0A

)
+Q. (4.23)

Step 2. Getting a locally stabilizing linear state feedback gain K,

K = −
(
BTG0B + R

)−1(
BTG0A

)
. (4.24)
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Step 3. Computing GK by solving the following Riccati equation:

(αAK)TGK(αAK) −GK = −QK, (4.25)

where AK = A + BK, QK = Q +KTRK, and α ∈ [1,+∞) is an adjustable parameter satisfying
α|λmax(AK)| < 1.

Then, F(x) = xTGKx can serve as an initial terminal cost. According to our need and
the properties of terminal cost, the initial one can be adjusted to get an appropriate one,
F(x) = xT (λGK)x, λ > 0. For example, if a larger terminal region is wanted and the total cost
is not cared, λ can be set to be a larger number; otherwise, if a lower total cost is demanded
and the domain of attraction already covers the operating region of system, a small one can
be used.

5. Simulation Experiment

The model is an approximate discrete-time realization from a continuous-time system used
in [2] as follows:

[
x1(k + 1)

x2(k + 1)

]
=

[
1 T

T 1

][
x1(k)

x2(k)

]
+

[
Tμ

Tμ

]
uk +

[
T
(
1 − μ

)
0

0 −4T(1 − μ
)

][
x1(k)

x2(k)

]
uk, (5.1)

where μ = 0.5, T = 0.1 s, and the state constraint and control constraint are X = {x | ‖x‖1 ≤ 4},
U = {u | |u| ≤ 2}, respectively.

The stage cost is chosen as q(x, u) = xTQx + uTRu with Q = 0.5I and R = 1. By
using SOC method, the locally linear feedback gain is adopted as K = −[2.0107 2.0107] and
|λmax(AK)| = 0.9000 is obtained. Then, choose α = 1.11 and get the terminal cost as F(x) =
xTGx with G = [1107.356 857.231; 857.231 1107.356].

To estimate each X
j

f , 4000 training points are generated. Set ε = 1, when j = 15, there
exists

Nsup,14∑

i=1

∥∥∥O15(xi) −O14(xi)
∥∥∥ ≤ εNsup,14, (5.2)

where xi ∈ Xsup,14, Xsup,14 is the support vectors set at j = 14, and Nsup,14 is the number of
support vectors. Then, it is deemed that X̂15

f
is equal to X̂14

f
in principle and X̂15

f
can be taken

as the final estimation ofXf,max. Figure 2 shows the approximation process ofXf,max. The blue
line is the hyperplane at j = 1, the black dot line is that at j = 15, and the red lines between
them are those at j = 2, 3, . . . , 14. Let the prediction horizon be N = 3. Figure 3 shows the
closed-loop trajectories of some points chosen from the domain of attraction arbitrarily.

When the terminal cost is enlarged to F(x) = xT (10G)x, a new terminal region larger
than the old one can be obtained. Figure 4 shows it. The red line is the new hyperplane and
the black dot line is the old one.

For convenience, let (A) denote the MPC using xTGx as its terminal cost and (B) the
MPC using xT (10G)x. For some points chosen from Γ3 of (A) arbitrarily, Figure 5 shows their
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Figure 2: The approximation process of terminal region.

−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4

x
2

x1

Figure 3: The closed-loop trajectories of points in Γ3.

Table 1: Comparison of the total costs.

Initial points
[ 2
−1
] [

1
−2
] [ −1

2

] [ −1
1

]

(A) 34.7915 18.2460 16.4528 7.9936
(B) 37.0120 20.6714 23.2854 23.8467

closed-loop trajectories of using (A) and (B), respectively, where red lines denote the results
of using (A), and blue dash-dotted lines denote the results of using (B). Table 1 shows the
comparison of the total costs. Obviously, for the same point, the total cost of using (A) is
smaller than that of using (B).
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Figure 4: Comparison of the terminal regions.
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Figure 5: Comparison of the closed-loop trajectories.

6. Conclusion

This paper discussed the relationships between terminal cost and terminal region and
between terminal cost and total cost, respectively. It showed that, by enlarging the terminal
cost, terminal region will be enlarged, but the total cost will be increased too. A simple
method to get a suitable terminal cost was proposed, it can be adjusted according to our
need. For example, to get a larger terminal region, it can be weighted; to reduce the total
cost, it can be unweighted. When a terminal cost was given, a novel method was proposed
to receive a maximal terminal region by using SVM. With the same prediction horizon, its
corresponding domain of attraction is the largest one.
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