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We propose a fractional-order WINDMI system, as a generalization of an integer-order system
developed by Sprott (2003). The considered synchronization scheme consists of identical master
and slave fractional-order WINDMI systems coupled by linear state error variables. Based on the
stability theory of nonlinear fractional-order systems, linear state error feedback control technique
is applied to achieve chaos synchronization, and a linear control law is derived analytically to
achieve synchronization of the chaotic fractional-order WINDMI system. Numerical simulations
validate the main results of this work.

1. Introduction

The solar-wind-driven magnetosphere-ionosphere is a complex driven-damped dynamical
system which exhibits a variety of dynamical states that include low-level steady plasma
convection, episodic releases of geotail stored plasma energy into the ionosphere known
broadly as substorms, and states of continuous strong unloading [1]. In 1998, Horton and
Doxas [2] firstly proposed the WINDMI system, a six-dimensional nonlinear dynamics
model, which was derived for the basic energy components of the night-side magnetotail
coupled to the ionosphere by the region-1 currents. Smith et al. [3] explored the dynamical
range of theWINDMImodel. Horton et al. [1] introduced reductions to derive a newminimal
three-dimensional WINDMI model. Sprott [4] further simplified the integer-order WINDMI
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Figure 1: Phase portrait of system (1.1) versus a = 0.7 and b = 2.5.

model as follows:

dx

dt
= y,

dy

dt
= z,

dz

dt
= −az − y + b − ex,

(1.1)

where x, y, and z are variables and a, b are positive constants. System (1.1) has a chaotic
attractor when the usual parameters are a = 0.7 and b = 2.5, as shown in Figure 1 (see [4]).

Fractional calculus, a generalization of differentiation and integration to an arbitrary
order, is an old mathematical topic with over 300-year-old history [5]. Fractional-order
differential equations can be used to describe many systems in interdisciplinary fields,
but it was not used in science and engineering for many years because there exist many
difficulties, such as the absence of impactful solution methods and numerical simulation
schemes for fractional differential equations. However, during the past several years, with
the development of computer simulation technology [6, 7], fractional calculus has been
realizing the utility and applicability to various branches of science and engineering, such
as fractional viscoelastic fluids [8], fractional diffusion processes [9, 10], fractional-order
viscoelastic material models [11], fractional-order HIV Model [12, 13], and fractional-order
controllers [14–16]. Undoubtedly, fractional calculus will be applied into more and more
areas of classical and modern analysis.

Chaos synchronization plays a very important role in the theory and applications.
Synchronization of fractional-order chaotic systems was first presented by Deng and Li
[17]. As an active research area, chaos synchronization with fractional calculus has received
increasing attention in recent years due to its potentials in both theory and applications
[18–25]. On the other hand, as compared with sliding mode control, standard PID feedback
control, and so on, the advantage of linear state error feedback control is that it is linear and
easier to implement for chaos synchronization.

The remainder of this paper is organized as follows. In Section 2, the WINDMI system
is generalized from integer to noninteger order. Then, chaos synchronization via linear
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feedback control is studied in Section 3. Numerical simulations are presented in Section 4,
and finally conclusions in Section 5 close the paper.

2. System Description

There are several definitions of fractional derivatives. In this paper, we will adopt the
Riemann-Liouville fractional derivative definition as follows.

Definition 2.1 (see [26]). The qth-order fractional derivative of function f(t) with respect to t
and the terminal value 0 is given by

dqf(t)
dtq

=
1

Γ
(
m − q

)
dm

dtm

∫ t

0

f(τ)

(t − τ)q−m+1
dτ, (2.1)

where Γ(·) is a Gamma function, m is an integer and satisfies m − 1 < q < m ∈ Z+.

The integer derivative of a function has relationship with only its nearby points while
the fractional derivative takes into account nonlocal characteristics like “infinite memory”
[26, 27]. As a result, a model described with fractional derivative possesses memory, which
may help to have a better understanding to the importance of assembling large substorm
databases with a large range of event sizes. Here, we introduce fractional calculus into system
(1.1). The new system is described with fractional derivative as follows:

dq1x

dtq1
= y,

dq2y

dtq2
= z,

dq3z

dtq3
= −az − y + b − ex,

(2.2)

in which x, y, and z are variables and a, b are positive constants; q = (q1, q2, q3) is subject to
0 < q1, q2, q3 < 1. If q = (1, 1, 1), system (2.2) degenerates into system (1.1).

In order to observe the synchronization behavior in two identical fractional-order
WINDMI systems, we set a drive-response configuration with a drive system given by the
fractional-order WINDMI systems (with three state variables denoted by the subscript m)
and with a response system (with three variables denoted by the subscript s) as follows.

The drive system is described by

dq1xm

dtq1
= ym,

dq2ym

dtq2
= zm,

dq3zm
dtq3

= −azm − ym + b − exm,

(2.3)
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and the response system is given by

dq1xs

dtq1
= ys + u1,

dq2ys

dtq2
= zs + u2,

dq3zs
dtq3

= −azs − ys + b − exs ,

(2.4)

where u1 and u2 are the linear state error feedback controllers. Then, the rest of our task is to
design suitable linear controllers that can synchronize systems (2.3) and (2.4).

3. Synchronization Scheme

Matignon [28] defined the internal and external stability properties of linear fractional-order
differential systems of finite dimension and derived the necessary and sufficient conditions.

Theorem 3.1 (see [28]). Consider that the following n-dimensional linear fractional-order autono-
mous system:

dqx

dtq
= Ax, x(0) = x0, (3.1)

with 0 < q < 1, x ∈ Rn, and A ∈ Rn×n, is asymptotically stable if and only if | arg(λ)| > qπ/2 is
satisfied for all eigenvalues λ of matrix A. Also system (3.1) is stable if and only if | arg(λ)| ≥ qπ/2
is satisfied for all eigenvalues λ of matrix A.

Theorem 3.2 (see [29]). Consider the following autonomous n-dimensional nonlinear fractional
differential equation:

dqX(t)
dtq

= F(X(t)), X(0) = X0 = (x10,x20, . . . ,xn0)T , m − 1 < q < m ∈ Z+. (3.2)

Letting X̂= (x̂1, x̂2, . . . , x̂n)
T be an equilibrium of system (3.2), that is, dqX̂/dtq = F(X) = 0, and

letting A = (∂F/∂X)|X=X̂ be the Jacobian matrix at the point X̂, then the point X̂ is asymptotically
stable when | arg(eig(A))| > qmπ/2, where qm = max1≤i≤n{qi}.

From Theorem 3.2, the following corollary holds.

Corollary 3.3. Letting X̂ = (x̂1, x̂2, . . . , x̂n)
T be an equilibrium of system (3.2), that is, dqX̂/dtq =

F(X̂) = 0, and letting A = (∂F/∂X)|X=X̂ be the Jacobian matrix at the point X̂, then the point X̂ is
locally asymptotically stable if A is an upper or lower triangular matrix and all eigenvalues of A are
negative real numbers.
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Theorem 3.4. The drive system (2.3) and the response system (2.4) will approach global
synchronization for any initial condition with the following control law:

u1 = c1(xs − xm) −
(
ys − ym

)
, u2 = c2

(
ys − ym

) − (zs − zm), (3.3)

where c1 < 0 and c2 < 0.

Proof. Set the synchronization error variables as follows:

e1 = xs − xm,

e2 = ys − ym,

e3 = zs − zm.

(3.4)

By subtracting (2.3) from (2.4) and using (3.4), the synchronization error system can be
obtained as follows:

dq1e1
dtq1

= e2 + u1,

dq2e2
dtq2

= e3 + u2,

dq3e3
dtq3

= −ae3 − e2 + exm(1 − ee1),

(3.5)

where a > 0, xm is the state variable of system (2.3), u1 and u2 are linear state error feedback
controllers.

When u1 = c1(xs − xm) − (ys − ym) and u2 = c2(ys − ym) − (zs − zm), system (3.5) can
be rewritten as

dq1e1
dtq1

= c1e1,

dq2e2
dtq2

= c2e2,

dq3e3
dtq3

= −ae3 − e2 + exm(1 − ee1).

(3.6)

System (3.6) has only one equilibrium point at E0 = (0, 0, 0). Its Jacobian matrix
evaluated at equilibrium point E0 is given by

J(E0) =

⎛

⎝
c1 0 0
0 c2 0

−exm+e1 −1 −a

⎞

⎠ =

⎛

⎝
c1 0 0
0 c2 0

−exm −1 −a

⎞

⎠. (3.7)

Obviously, (3.7) is a lower triangular matrix, and xm is a state variable of drive system
(2.3). Thus, from Corollary 3.3, one can get that xm has no effect on the stability of system
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(a) Drive system (2.3)
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(b) Response system (2.4)

Figure 2: Chaotic attractors of drive system (2.3) and response system (2.4) versus q1 = 0.77, q2 =
0.98, q3 = 0.8, a = 0.8, b = 6.4, c1 = −1, and c2 = −1.

(3.6), and if c1 < 0 and c2 < 0, then system (3.6) is asymptotically stable; that is, the drive
system (2.3) and the response system (2.4) are synchronized finally.

The theorem is proved.

Evidently, the advantage of the linear feedback controllers proposed in Theorem 3.4
is that they are robust, linear, and have lower dimensions than that of the states; morever,
they are easier to be designed and implemented for chaos synchronization than standard PID
feedback controllers, sliding mode controllers, nonlinear feedback controllers, and so on.

4. Numerical Simulations

4.1. Discretization Scheme

Based on the Adams-Bashforth-Moulton predictor-corrector scheme [6, 30], we can build the
numerical calculation formula for the proposed synchronization scheme as follows.
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Letting (x,y, z) and (x̂, ŷ, ẑ) represent (xm,ym, zm) and (xs,ys, zs), respectively. Setting
h = T/N, tn = nh, n = 0, 1, . . . ,N ∈ Z+, the drive system (2.3) and the response system (2.4)
can be discretized as

xn+1 = x0 +
hq1

Γ
(
q1 + 2

)y
p

n+1 +
hq1

Γ
(
q1 + 2

)
n∑

j=0

α1,j,n+1yj ,

yn+1 = y0 +
hq2

Γ
(
q2 + 2

)z
p

n+1 +
hq2

Γ
(
q2 + 2

)
n∑

j=0

α2,j,n+1zj ,

zn+1 = z0 +
hq3

Γ
(
q3 + 2

)
(
−exp

n+1 − y
p

n+1 − az
p

n+1 + b
)
+

hq3

Γ
(
q3 + 2

)
n∑

j=0

α3,j,n+1
(−exj − yj − azj + b

)
,

x̂n+1 = x̂0 +
hq1

Γ
(
q1 + 2

)
(
y
p

n+1 + c1
(
x̂
p

n+1 − x
p

n+1

))
+

hq1

Γ
(
q1 + 2

)
n∑

j=0

α1,j,n+1
(
yj + c1

(
x̂j − xj

))
,

ŷn+1 = ŷ0 +
hq2

Γ
(
q2 + 2

)
(
z
p

n+1 + c2
(
ŷ
p

n+1 − y
p

n+1

))
+

hq2

Γ
(
q2 + 2

)
n∑

j=0

α2,j,n+1
(
zj + c2

(
ŷj − yj

))
,

ẑn+1 = ẑ0 +
hq3

Γ
(
q3 + 2

)
(
−ex̂p

n+1 − ŷ
p

n+1 − aẑ
p

n+1 + b
)
+

hq3

Γ
(
q3 + 2

)
n∑

j=0

α3,j,n+1

(
−ex̂j − ŷj − aẑj + b

)
,

(4.1)

where

x
p

n+1 = x0 +
1

Γ
(
q1
)

n∑

j=0

β1,j,n+1yj ,

y
p

n+1 = y0 +
1

Γ
(
q2
)

n∑

j=0

β2,j,n+1zj ,

z
p

n+1 = z0 +
1

Γ
(
q3
)

n∑

j=0

β3,j,n+1
(−exj − yj − azj + b

)
,

x̂
p

n+1 = x̂0 +
1

Γ
(
q1
)

n∑

j=0

β1,j,n+1
(
yj + c1

(
x̂j − xj

))
,

ŷ
p

n+1 = ŷ0 +
1

Γ
(
q2
)

n∑

j=0

β2,j,n+1
(
zj + c2

(
ŷj − yj

))
,

ẑ
p

n+1 = ẑ0 +
1

Γ
(
q3
)

n∑

j=0

β3,j,n+1
(
−ex̂j − ŷj − aẑj + b

)
,



8 Mathematical Problems in Engineering

−25

−20

−15

−10

−5

0

5

e1
e2
e3

0 10 20 30 40 50 60 70 80

t

(a) Synchronization errors between drive system
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Figure 3: Synchronization errors between drive system (2.3) and response system (2.4) versus q1 =
0.77, q2 = 0.98, q3 = 0.8, a = 0.8, b = 6.4, c1 = −1, and c2 = −1.

αi,j,n+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nqi+1 − (
n − qi

)
(n + 1)qi , j = 0,

(
n − j + 2

)qi+1 +
(
n − j

)qi+1 − 2
(
n − j + 1

)qi+1 , 1 ≤ j ≤ n, i = 1, 2, 3,

1, j = n + 1,

βi,j,n+1 =
hqi

qi

((
n − j + 1

)qi − (
n − j

)qi), 0 ≤ j ≤ n, i = 1, 2, 3.

(4.2)
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4.2. Numerical Results

Based on the above mentioned discretization scheme, the drive system (2.3) and the response
system (2.4) are integrated numerically with the fractional orders q1 = 0.77, q2 = 0.98, q3 =
0.8 and using the initial values xm(0) = 0, ym(0) = 0.8, zm(0) = 0, xs(0) = 4, ys(0) = 4.8,
and zs(0) = 4. Let a = 0.8, b = 6.4, c1 = −1, c2 = −1; the chaotic attractor of the drive system
(2.3) is shown in Figure 2(a), and the chaotic attractor of the response system (2.4) is shown
in Figure 2(b). From Figures 3(a)–3(d), it is clear that the synchronization is achieved for all
these values.

5. Conclusion

In this paper, we introduce fractional-order calculus into the WINDMI system. Chaos
synchronization of identical master and slave fractional-order WINDMI systems is studied
by utilizing linear state error feedback control technique. Based on the stability theory of
nonlinear fractional-order systems, linear feedback control law for chaos synchronization has
been investigated. Numerical simulations are given to verify the effectiveness of the proposed
synchronization scheme.
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