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In order to assist designer in color planning during product development, a novel synthesized
evaluation method is presented to evaluate color-combination schemes of multi-working modes
products (MMPs). The proposed evaluation method considers color-combination images in
different working modes as evaluating attributes, to which the corresponding weights are assigned
for synthesized evaluation. Then a mathematical model is developed to search for optimal color-
combination schemes of MMP based on the proposed evaluation method and two powerful
search techniques known as Evolution Algorithms (EAs) and Swarm Intelligence (SI). In the
experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA) and
Difference Evolution (DE), and one SI algorithm, namely, Particle Swarm Optimization (PSO), on
searching for color-combination schemes of MMP problem. All of the algorithms are evaluated
against a test scenario, namely, an Arm-type aerial work platform, which has two working modes.
The results show that the DE obtains the superior solution than the other two algorithms for
color-combination scheme searching problem in terms of optimization accuracy and computation
robustness. Simulation results demonstrate that the proposed method is feasible and efficient.

1. Introduction

Color plays an important part in determining the appeal of a product to its potential
customers. With the replacement of different colors, the individuals’ requirements of different
customer groups can be satisfied. More and more companies have realized that color
planning is essential to the success of a new product. However, it is difficult to effectively
determine how people perceive and evaluate color-combination image in various products.
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Thus most product-color planning issues are still based on the personal experience and
estimation. Thus the effective product-color planning methods are needed to be executed
in order to assist product designers to implement their color planning strategies.

In the past few decades, many techniques have been applied to product-color planning
problem. Lai et al. presented an approach of user-oriented design for transforming users’
perception into product elements design using Quantitative Theory Type I and neural
networks [1]. Tsai et al. proposed a rapid conceptual design approach, which creates color-
rendered forms and combines parameter-based features with fuzzy neural network theorems
and gray theory to predict their image evaluation [2]. Lin presented a design method for
product form and color by using neural networks, fuzzy logic, and tabu search [3]. Shen et
al. proposed a linguistic-based evaluation model specified in terms of the CIE color system for
evaluating the harmony characteristics of images comprising multiple colors in the interior
design field [4]. Ma et al. applied fuzzy analytic hierarchy process and image compositing
technique to construct the design decision-making support system provided for choosing the
optimum product-color [5]. Tokumaru et al. proposed a system to automatically compose
color schemes which are in harmony with a color input in the system and correspondent
to user’s image [6]. Tsai et al. presented a color design system which enables the designer
to evaluate color image or to search for required color combinations using gray theory and
genetic algorithm [7–9]. Zhang developed a product-color intelligent design system based on
G. Birkhoff aesthetics model MS theory, psychophysical field theory, as well as genetic and
immunity theory [10]. Wang developed a computer-aided color design system composed of
color selection, color harmony, color scheme, and color assistant database, which is based on
the cooperation CAXA [11].

All of the studies above focus on color-combination images for simple products.
However, for many products under different working conditions or modes, the ratio, shape
and space location of their color areas will be accordingly changed, as shown in Figure 1. With
the change of product mode and color area, the images of customers for these multi-working
modes product (MMP) will be changed as well. Therefore, above image evaluating methods
in the literatures for product-color-combination cannot apply to MMP because of the color
areas changing issue.

In order to provide assistance to designers in color planning for MMP, a novel
synthesized evaluation model, which is an evaluation principle of the computer-aided
product-color planning system, is created in this paper to evaluate color-combination image
for MMP. This method considers each color-combination image under different working
modes as evaluation attribute, to which the corresponding weight is assigned for synthesized
evaluation.

In the past few decades, nature-inspired computation has attracted significant
attention. Among them, the most successful are Evolutionary Algorithms (EAs) and Swarm
Intelligence (SI). Evolutionary algorithms are search methods that take their inspiration
from natural selection and survival of the fittest in the biological world. Swarm intelligence
is an innovative computational way inspired by the collective behavior of social systems.
Due to their simplicity and flexibility, various EAs and SI methods have been developed to
solve many real-world engineering problems [12–14]. In existing studies of color planning,
one type of EAs methods, namely, the Genetic algorithm (GA), has been employed to the
searching of optimal color scheme [7–10]. Although GA illustrated marked performance in
solving the color planning problem in these studies, the comparative studies between GA
and other EA or SI techniques are desired to find more efficient and effective color planning
algorithms.



Mathematical Problems in Engineering 3

Figure 1: Multi-working modes products.

This paper investigates the applicability of the following three different nature-
inspired algorithms in the color planning for MMP: two Evolutionary algorithms, namely,
the Genetic Algorithm (GA) and the Difference Evolution (DE), and one Swarm Intelligence
algorithm, namely, the Particle Swarm Optimization (PSO). All of the algorithms are
evaluated against a test scenario, namely, an arm-type aerial work platform, which has
two working modes. The simulation results, which are focusing on minimizing the specific
objective function that represents the mathematical model of the color planning problem for
MMP, are reported in this paper to show the performance comparison of the three nature-
inspired algorithms.

The rest of this paper is organized as follows. In Section 2, we will give the briefly
reviews of GA, DE, and PSO algorithms. The implementation methods and procedures are
described in Section 3, including the Experimental sample construction, the questionnaire
investigation, the synthesized evaluation method, and the search model for MMP color
planning based on Evolutional Algorithms and Swarm Intelligence. In Section 4, the
comparative study is performed for the three nature-inspired algorithms on solving the MMP
color planning problem. Finally, Section 5 outlines the conclusions.

2. Description of the Algorithms

This paper employs Genetic Algorithm, Difference Evolution, and Particle Swarm Optimiza-
tion to search for the color-combination schemes that will closely satisfy the requirements
of the multi-working modes products. These three population-based algorithms, which are
conceptually simple and easy to implement, have considerable potential for solving complex
real-world optimization problems.
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Set t:= 0;
INITIALIZE. Randomize an initial population P(t);
WHILE (the termination conditions are not met)

Select P(t + 1) from P(t) using roulette wheel selection;
Crossover P(t + 1) using intermediate recombination;
Mutate P(t + 1);
Set t := t + 1;

ENDWHILE

Algorithm 1: Pseudocode of the GA algorithm.

2.1. Genetic Algorithm

The discovery of genetic algorithms (GAs) was dated to the 1960s by Holland and
further described by Goldberg [15]. GA is population-based optimization method that
employs the mechanics of natural selection, namely, mutation, recombination (or crossover),
reproduction, and selection. The mutation process perturbs a candidate solution randomly;
the recombination process mixes the current solutions to generate the new ones; the
reproduction process replicates the most successful solutions found in the population; the
selection process purges poor solution from the population. GA has been successfully
adopted in many complex optimization problems and shows its merits over traditional
optimization methods, especially when the system under study has multiple local optimum
solutions.

GA evolves a population of candidate solutions; each of which is usually coded as
a binary string called a chromosome. The fitness of each chromosome is then evaluated
using an objective function after the chromosome has been decoded. Upon completion of the
evaluation, a biased roulette wheel is used to randomly select pairs of better chromosomes
to undergo such genetic operations as crossover and mutation that mimic nature. Should
the newly produced chromosomes turn out to be stronger than the weaker ones from the
previous generation, they will replace these weaker chromosomes. This evolution process
continues until the stopping criteria are reached. Just like in nature, the best individuals
survive and are able to transmit their genes to the next generations.

A real-coded GA uses a vector of floating-point numbers instead of binary codes
for implementing chromosome encoding. The crossover operator of a real-coded GA is
constructed by borrowing the concept of linear combination of vectors from the area of
convex set theory. The random mutation operator proposed for real-coded GA operates on
the gene by introducing into it a perturbation in the feature’s domain. In this paper, the real-
coded GA is implemented to solve the color planning problem. The pseudocode for the GA
is listed in Algorithm 1.

2.2. Differential Evolution

Differential evolution is a population-based parameter optimization technique originally
proposed by Price [16]. In DE model, new individuals are generated by mutation and DE’s
crossover, which cunningly uses the variance within the population to guide the choice of
new search points.
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DE/rand/1/exp scheme is recommended to be the first choice when trying to apply
differential evolution to any given problem [16]. This particular version is adopted in our
work, which is briefly described as follows. For a minimization problem, DE starts to work
with a population of N candidate solutions, that is, −→xti, i = 1, 2, . . . ,N, where i indexes the
population and t is the current generation.

For the mutation operation, a perturbed vector −→vti is generated according to

−→vti = −→xtr1 + F
(−→xtr2 − −→xtr3

)
(2.1)

with random indexes r1, r2, r3 ∈ {1, 2, . . . ,N} and a scaling factor F ∈ [0, 2].
For the crossover operation, the perturbed vector −→vti = [vi1, vi2, . . . , viD] and target

vector −→xti = [xi1, xi2, . . . , xiD] both are used to generate a trial vector −→xti
′
= [x′

i1, x
′
i2, . . . , x

′
iD]:

x′
ij =

⎧
⎨
⎩
vij, if rand b

(
j
) ≤ CR or j = rand r(i),

xij, if rand b
(
j
) ≥ CR and j /= rand r(i),

(2.2)

where j ∈ [1, D], rand b ∈ [0, 1] is the jth evaluation of a uniform random number generator,
CR ∈ [0, 1] is the crossover constant. Rand r(i) ∈ [1, 2, . . . , D] is a randomly chosen index
which ensures that −→xt

′

i gets at least one parameter from −→vti.
For selection operation, a greedy scheme is performed:

−→xt+1
i =

⎧
⎨
⎩
−→xt′i , if Φ

(−→xt′i
)
< Φ

(−→xti
)
,

−→xti, otherwise,
(2.3)

where Φ(·) represents a fitness function.

2.3. Particle Swarm Optimization

The canonical PSO is a population-based technique, similar in some respects to evolutionary
algorithms except that potential solutions (particles) move rather than evolve through the
search space. The rules (or particle dynamics) that govern this movement are inspired by
models of swarming and flocking [17]. Each particle has a position and a velocity, and
experiences linear spring-like attractions towards the following two attractors.

(i) Its previous best position.

(ii) Best position of its neighbors.

In mathematical terms, the ith particle is represented as xi = (xi1, xi2, . . . , xiD) in the
D-dimensional space, where xid ∈ [ld, ud], d ∈ [1, D], and ld, ud are the lower and upper
bounds for the dth dimension, respectively. The rate of velocity for particle i is represented as
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vi = (vi1, vi2, . . . , viD) and is clamped to a maximum velocity Vmax which is specified by the
user. In each time step t, the particles are manipulated according to the following equations:

vid(t) = χ
(
vid(t − 1) + R1c1

(
pid − xid(t − 1)

)
+ R2c2

(
pgd − xid(t − 1)

))
,

xid(t) = xid(t − 1) + vid(t),
(2.4)

where R1 and R2 are random values between 0 and 1, c1 and c2 are learning rates, which
control how far a particle will move in a single iteration, pid is the best position found so far
of the ith particle, pgd is the best position of any particles in its neighborhood, and χ is called
constriction factor, given by

χ =
2∣∣∣2 − ϕ −
√
ϕ2 − 4ϕ

∣∣∣
, (2.5)

where ϕ = c1 + c2, ϕ > 4.

3. Implementation Methods and Procedures

The effectiveness and feasibility of the proposed color planning method is demonstrated
by taking the case of a multi-working modes product, namely, the arm-type aerial work
platform, for illustration purposes. Arm-type aerial work platform shortens or extends its
arm according to working height. As shown in Figure 2, in the off-working mode, jib 2 and
jib 3 contract into jib 1; while in the working mode, jib 2 and 3 extend out to meet the operating
requirements. This paper considers two commonly used working modes of GTBZ-30, namely,
off-working mode and 15 m height working mode (working mode for short).

In Figure 2, two arbitrary colors are assigned to the primary components of the aerial
work platform by adjusting the RGB parameter values at random. Color-1 (R1,G1,B1) is
assigned to rotary table, jib 1, and working platform, and color-2 (R2,G2,B2) is assigned to
chassis, jib 2, and jib 3.

3.1. Constructing Experimental Samples

125 color samples for testing are generated by regularly adjusting the constituent RGB
parameters with a fixed equigap of 64 units within the range of 0–255 (see Figure 3). These
125 color samples are successively rendered on the 3D model in order to perform the
questionnaire investigation in Section 3.2 (an example of single color rendered aerial work
platform model is shown as in Figure 4).

3.2. Questionnaire Investigation

Reference [18] applied principle component analysis to reduce the 30 image words to a few
factors. Generally, 30 pairs of opposite image words, which are listed in Table 1, can be used
to describe the color images of the aerial work platform. In this work, by means of principal
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Working platform

Jib 1

Jib 2

Jib 3

Rotary
table
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(a) Off-working mode of aerial work platform

Jib 2

Jib 3

(b) Working mode of aerial work
platform

Figure 2: 3D model of arm-type aerial work platform.

Table 1: 30 pairs of opposite image words for describing the color images of the aerial work platform.

Male-Female Simple-Complex Young-Mature Bright-Dark Rough-Detailed
Cool-Warm Particular-Popular Expanded-Shrunken Beautiful-Ugly Light-Heavy
Soft-Hard Ponderous-Deft Favorite-Bothersome Pleasant-Sad Firm-Fragile
Fast-Slow Dynamic-Static Fashionable-Traditional Clean-Dirty Valued-Cheap
Lively-Solemn Strict-Loose Luxury-Unadorned Excited-Quiet Elegant-Vulgar
Faint-Striking Emotional-Rational Harmonious-Disharmonious Relaxed-Tense Strong-Weak

component analysis, two selected image word pairs, namely, Faint-Striking (F-S) and Light
-Heavy (L-H), are employed.

125 product-color samples are used for questionnaire investigation and each sample
is presented against a white background expect for sample 125. 120 students (74 males and
46 females) following design-related courses are invited to fill out questionnaires by giving
their personal preferences that ranked from 0 to 1. For F-S, 0 denotes an entirely faint image
perception, 0.5 denotes a neutral image perception, and 1 denotes an entirely striking image
perception. The average image evaluation values obtained of 125 color samples versus two
image pairs are shown in Table 2.

3.3. Synthesized Color-Combination Image Evaluation Method for MMP

As mentioned above, customers’ subjective images can be changed with the variation of
product working modes. In this paper, color area factors are introduced into evaluation of
color-combination images. The color-combination images generated in different working
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Table 2: The average value of 125 color samples versus two image pairs.

Code Score Code Score Code Score Code Score Code Score
F-S L-H F-S L-H F-S L-H F-S L-H F-S L-H

1 0.74 1 26 0.78 0.15 51 0.62 0.84 76 0.02 0.01 101 0.93 0.65
2 0.07 0.98 27 0.57 0.19 52 0.45 0.83 77 0.07 0.04 102 0.68 0.62
3 0.48 0.92 28 0.32 0.20 53 0.52 0.80 78 0.11 0.09 103 0.67 0.60
4 0.85 0.84 29 0.47 0.23 54 0.74 0.72 79 0.29 0.13 104 0.87 0.51
5 0.91 0.54 30 0.88 0.24 55 0.41 0.43 80 0.54 0.19 105 0.95 0.20
6 0.71 0.51 31 0.33 0.77 56 0.41 0.40 81 0.32 0.36 106 0.56 0.18
7 0.66 0.86 32 0.29 0.71 57 0.37 0.82 82 0.26 0.33 107 0.41 0.21
8 0.08 0.87 33 0.28 0.72 58 0.34 0.85 83 0.10 0.28 108 0.48 0.32
9 0.02 0.90 34 0.27 0.74 59 0.39 0.87 84 0.12 0.23 109 0.63 0.33
10 0.86 0.89 35 0.34 0.53 60 0.86 0.88 85 0.12 0.11 110 0.90 0.36
11 0.73 0.83 36 0.40 0.48 61 0.32 0.78 86 0.24 0.26 111 0.75 0.26
12 0.59 0.81 37 0.14 0.80 62 0.17 0.77 87 0.13 0.25 112 0.57 0.22
13 0.12 0.78 38 0.07 0.85 63 0.30 0.75 88 0.18 0.28 113 0.18 0.21
14 0.27 0.75 39 0.82 0.87 64 0.08 0.72 89 0.43 0.37 114 0.08 0.17
15 0.58 0.55 40 0.76 0.84 65 0.15 0.30 90 0.58 0.39 115 0.15 0.15
16 0.47 0.52 41 0.06 0.97 66 0.04 0.26 91 0.82 0.70 116 0.04 0.03
17 0.48 0.69 42 0.33 0.95 67 0.03 0.48 92 0.64 0.68 117 0.06 0.07
18 0.37 0.72 43 0.17 0.92 68 0.07 0.51 93 0.31 0.38 118 0.17 0.12
19 0.46 0.76 44 0.78 0.88 69 0.30 0.52 94 0.34 0.28 119 0.36 0.15
20 0.51 0.79 45 0.68 0.50 70 0.42 0.56 95 0.55 0.19 120 0.47 0.16
21 0.92 0.26 46 0.96 0.54 71 0.51 0.27 96 0.92 0.21 121 0.64 0.17
22 0.65 0.23 47 0.80 0.82 72 0.29 0.25 97 0.73 0.70 122 0.36 0.11
23 0.38 0.23 48 0.69 0.85 73 0.21 0.22 98 0.43 0.72 123 0.14 0.07
24 0.61 0.22 49 0.52 0.91 74 0.12 0.12 99 0.59 0.75 124 0.04 0.04
25 0.97 0.21 50 0.03 0.94 75 0.28 0.10 100 0.84 0.74 125 0.90 0

modes are considered as evaluating attributes, to which the corresponding weights are
assigned. The product-color-combination image can be synthetically evaluated by

Φ =
n∑
i=1

wiϕi, (3.1)

where Φ is synthesized image evaluating value of product-color-combination, i is product
working mode, ϕi is color-combination image evaluating value of product in working mode
i, wi is weighting value of product in working mode i, and

∑n
i=1 wi = 1.

According to [19], gray relational generating operation is used to calculate the image
evaluating value for unspecified colors which are excluded from the 125 basic color samples
listed in Figure 3. Then the gray clustering operation in [19] is adopted to evaluate color-
combination image evaluating value ϕi. The case study in this paper takes visible area of
the aerial work platform in Figure 2 as a standard, and defines the area ratio of two colors
as P . PO = (POA, POB) = (0.8, 0.2) and PW = (PWA, PWB) = (0.7, 0.3). Then the threshold
values of the weighting factor functions are ΔTOA = 3 × 0.8 = 2.4,ΔTOB = 3 × 0.2 = 0.6,
ΔTWA = 3 × 0.7 = 2.1, and ΔTWB = 3 × 0.3 = 0.9. The diagrams of the weight functions are
illustrated in Figure 5.
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Figure 3: 125 basic color samples and corresponding RGB values.

Number 100

R: 0
G: 0
B: 192

Figure 4: One example of single color rendered aerial work platform model.

3.4. Search Model for MMP Color Planning

As described in Section 3.3, the output of the proposed MMP color evaluation model can be
supplied to the fitness function of the optimization algorithms when searching for the color-
combination schemes to satisfy the required product image. Accordingly, the fitness function
is defined as

Fitness =
m∑
θ=1

Wθ

∣∣∣∣∣
n∑
i=1

wiϕi − ϕT
∣∣∣∣∣, (3.2)

where θ is image index,Wθ is weight of image, i is working mode index,wi is weighting value
of product in working mode i, ϕi is color-combination image evaluating value of product
in working mode i, ϕT is the required target image value of product-color-combination,
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Figure 5: The diagrams of the weighting factor functions.

Wθ, ϕi, ϕT , wi ∈ [0, 1],
∑m

θ=1 Wθ = 1, and
∑n

i=1 wi = 1. Based on (3.2), the lower the fitness
value is, the more closely the color-combination scheme fits the required color-combination
image goal. However, designers have little experience or information in most of color design
projects. Thus, the linguistic qualitative indicator ϕi can be considered as a fuzzy valve;
accordingly, (3.2) can be expanded as

Fitness =
m∑
θ=1

Wθ

∣∣∣∣∣
n∑
i=1

wiϕ̃i − ϕT
∣∣∣∣∣, (3.3)
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Figure 6: The flowchart of GA-, DE-, and PSO-based color-combination scheme searching algorithm.

Table 3: The statistical results of DE and GA run 100 trails.

GA DE PSO

Fitness
Best 0.0501 0.0497 0.0501

Worst 0.0872 0.0581 0.0872
Average 0.056 0.0519 0.056

Standard Deviation 0.0079 0.0020 0.0109

where ϕ̃i is fuzzy image evaluation value of product-color-combination. The flowchart of the
EI- and SI-based color-combination searching scheme is shown in Figure 6.

4. Experimental Results

In this section, GA, DE, and PSO algorithms are employed to deal with the searching for
color-combination schemes of the aerial work platform issue.

The coefficients in the fitness function in this experiment are set as follows: θ is equal
to F-S and L-H, accordingly i is the Off-working mode and the Working mode, respectively,
EF-S = (0.85, 0.9, 0.95), λ = 0.01, EL-H = (0.75, 0.8, 0.85), λ = 0.01; WF-S = 0.5, WL-S = 0.5,
WO = 0.5, and WF = 0.5.

The initialized population size and the maximum generation for each algorithm are
100 and 200, respectively. For GA, it uses one-point crossover and Gaussian mutation with
the crossover rate pc = 0.9 and mutation rate pm = 1/6 (i.e., 1/number of variable). For DE,
CR = 0.5, and F = 0.7. For PSO, the learning rates c 1 and c 2 were both 2.05 and the constriction
factor χ = 0.729. The statistical results from 100 runs for EF-S = 0.9, EL-H = 0.8 are shown in
Table 3.

From the results, the best, worst, and average fitness values obtained by DE in the 100
runs are better than those of GA and PSO. The standard deviation obtained by DE is smaller
than those ofGA and PSO. That is, DE is more robust than GA and PSO in solving the MMP
color planning problem.
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Figure 7: Top 10 optimal results of GA and corresponding fitness values.
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Figure 8: Top 10 optimal results of DE and corresponding fitness values.

To clearly illustrate the obtained color-combination schemes, Figures 7–9 show the top
10 optimal color-combination schemes with the fitness values obtained by GA, DE, and PSO,
respectively.

To further analyze the performance obtained by GA, DE, and PSO, 40 subjects (20
males and 20 females) are invited to sort these 30 color-combination schemes from Figures
7–9 according to how they fit the target image. The rank result is also shown in Table 4.
From Table 4, most schemes from DE are ranked ahead of GA and PSO (especially the top
2 schemes are all obtained by DE). Thus, the results of DE are closer to people’s image
preference than GA and PSO.
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C1
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Figure 9: Top 10 optimal results of PSO and corresponding fitness values.

Table 4: The rank list of 30 schemes from GA, DE, and PSO.

Rank Scheme Fitness Rank Scheme Fitness Rank Scheme Fitness
1 B6 0.0502 11 C7 0.0508 21 C10 0.0512
2 B7 0.0502 12 A6 0.0505 22 B5 0.0502
3 A3 0.0503 13 C5 0.0507 23 C2 0.0505
4 B9 0.0503 14 C9 0.0511 24 C8 0.0509
5 B8 0.0503 15 B2 0.0500 25 B1 0.0497
6 A5 0.0504 16 B4 0.0501 26 A2 0.0503
7 C3 0.0505 17 A7 0.0505 27 A1 0.0501
8 A8 0.0506 18 A4 0.0503 28 B10 0.0504
9 C6 0.0507 19 C4 0.0507 29 C1 0.0504
10 B3 0.0500 20 A9 0.0507 30 A10 0.0507

Generally, the lower the fitness value is, the more closely the color-combination scheme
fits the required color-combination image goal. However, from Figures 7–9 and Table 4, we
can see that there are some differences between the rank of fitness values and the rank
of designers and customers. That is, the solutions with better fitness are not necessarily
preferable in the view of designers and customers. On one hand, due to different people
that have different evaluation criteria, it is difficult to construct a fitness function that can
accurately describe and evaluate people’s feeling of specific color-combination schemes.
Therefore, the aim of this study is to find out potentially better color-combination schemes,
and to offer them to the designers or customers for selection.

5. Conclusions

In order to exactly grasp image preferences of consumers to product-color-combination
images and assist designers in color planning, this study has proposed a product-color
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planning method for MMP based on evolutionary and swarm-intelligence-based methods.
A synthesized evaluation method is created in this paper to evaluate color-combination
images for MMP, which considers color-combination images under different working modes
as evaluating attributes. This paper then investigates the application of three EA- and SI-
based algorithms, namely, the GA, DE, and PSO algorithms, to tackle the MMP color planning
problem. A case study of the two-colored aerial work platform is provided to demonstrate
the effectiveness of proposed MMP color planning method. The simulation results show that
the DE can find potentially better color-combination schemes than the other two algorithms.
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