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Through a suitable ad hoc assumption, a nonlinear PDE governing a three-dimensional weak,
irrotational, steady vector field is reduced to a system of two nonlinear ODEs: the first of
which corresponds to the two-dimensional case, while the second involves also the third field
component. By using several analytical tools as well as linear approximations based on the
weakness of the field, the first equation is transformed to an Abel differential equation which is
solved parametrically. Thus, we obtain the two components of the field as explicit functions of a
parameter. The derived solution is applied to the two-dimensional small perturbation frictionless
flow past solid surfaces with either sinusoidal or parabolic geometry, where the plane velocities
are evaluated over the body’s surface in the case of a subsonic flow.

1. Introduction

First-order PDEs, which mostly appear in fluid mechanics, describe the motion of ideal as
well as of real fluids [1–3] and govern even the electrostatic plasma oscillation [4]. As is
well known, there is no complete general theory concerning the derivation of exact analytical
solutions for such equations. However, general solutions can be obtained for the quasilinear
forms by means of the subsidiary Lagrange equations ([1, Section 2.6.a], Appendix A).
We also mention Charpit’s method for the general nonlinear case that yields to complete
and general solutions [1, Section 2.6.b]. These solutions involve arbitrary functions of
specific expressions of the dependent and independent variables. Furthermore, appropriate
transformations of the dependent and (or) independent variables [1, Section 2.1], combined
in several cases with the introduction of auxiliary functions (like stream functions), can
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occasionally linearize the original equation or more generally reduce it to a solvable form,
like a quasilinear one, or even to a nonlinear ODE.

In our previous work [5], four simplified forms of the full two-dimensional nonlinear
steady small perturbation equation in fluid mechanics [6]were treated analytically. As far as
the three of the considered cases are concerned, closed form solutions have been derived for
the two dependent variables of the equation, which represent the dimensionless velocities
u, v of a perturbed frictionless flow past a solid body surface, while in the fourth case,
a parametric solution was obtained with regard to these velocity resultants. We note that
the components u, v are parallel to the x1, x2 axes of the Cartesian plane, respectively (see
Figure 1 in Section 4, where a wavy surface is represented), with x1 being the direction of
the uniform velocity of the steady flow. The extracted closed form solutions provide v as a
specific expression of u, as well as an equation for u involving an unknown arbitrary function.
The analytical method was based on the introduction of a convenient ad hoc assumption,
originally due to Pai [7], by means of which the original (simplified) equations, as well as
the irrotanional relation, take a quasilinear form integrated by the Lagrange method. Thus,
the above-mentioned solution (including the unknown function) for u is obtained, together
with an ordinary differential equation, which, after a further analytical treatment, provides
the exact or approximate (depending on the case) solutions v(u). However, it should be
mentioned that only in the first, more simplified case [5, Equation (9)] of the general equation,
the unknown function can be defined by the use of the boundary condition of the problem,
resulting in a transcendental equation for u (or v). Furthermore, no investigation has been
performed in [5] with regard to the effectiveness of the obtained formulas (the expressions
extracted in the application [5, Section 5] concerning the above-mentioned simplified case
and the parametric solutions derived for one of the other examined cases [5, Equation (8)])
to evaluate the perturbed flow field.

In the present work (Section 2), we firstly treat a steady three-dimensional PDE
concerning a general weak irrotational vector field. By taking into account the three
irrotationality conditions and using the ad hoc assumption introduced in [5], the Lagrange
method (see Appendix A) finally results in a system of two nonlinear ODEs for the two
unknown functions introduced by the ad hoc assumption. These functions represent the field’s
components u2, u3, while the first component u1 = u stands for the independent variable. In
Section 3, we proceed into the integration of the first ODE, which corresponds to the plane
problem (u1, u2) (the second involves also u3). The herein developedmethodology consists of
a functional transformation of the dependent variable, in combination with an appropriate split
of the resulting equation by using an arbitrary function, which eventually is eliminated. By
this technique, we finally derive an Abel equation, which admits a parametric solution. Thus,
we obtain the field’s components u1(= u) and u2 as explicit expressions of a parameter τ . In
several steps of the analysis developed in Section 3, the established, in Appendix C (linear),
approximations based on the weakness of the field (u1 � 1) have been used. Additionally,
some limitations imposed by the analysis (see Cases P-1, P-2 in Appendix D) affect the
domain of the physical parameter(s) of the problem, for which the extracted solution is valid.

Then in Section 4 we apply the obtained parametric solution in the plane case of the
full small perturbation equation, simplified forms of which were investigated in [5]. Here,
by combining the extracted parametric formulae with the boundary condition concerning
the flow tangential to the solid surface, a transcendental equation is derived, involving τ , ξ1,
ξ2, where ξ1, ξ2 represent the plane coordinates on the body’s surface. Then, for a given pair
(ξ1, ξ2), the solution of this equation yields τ(ξ1, ξ2), and hence the “surface” perturbed flow
velocity field (u1, u2), can be evaluated (the perturbed velocity components u1, u2 refer to the
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x1, x2 cartesian plane). Moreover, by expanding in Taylor series and taking into account the
small perturbation, the perturbed velocities can be approximately obtainedwithin a thin zone
over the surface. In addition, under the mentioned limitations, we deduce that the obtained
results hold true for subsonic flows as well.

Finally, by means of the extracted formulas, graphic representations of the perturbed
field versus x1(= ξ1) are obtained, concerning a sinusoidal as well as a parabolic boundary,
and the results are compared to the solution of the linearized equation.

2. The Analytical Procedure

2.1. Transformation of the Governing Equations

Consider an irrotational field u = (u1, u2, u3) satisfying the following PDE:

(
A

ij

0 +A
ij
κuκ +A

ij

κλ
uκuλ

)
ui,j +

(
A33

0 +A33
3 u3

)
u3,3 = 0, i, j, κ, λ = 1, 2, (2.1)

where summation convention has been adopted and

A
ij

κλ
= A

ij

λκ
, i, j, κ, λ = 1, 2,

ui,j =
∂ui

∂xj
, u3,3 =

∂u3

∂x3
, i, j = 1, 2,

(2.2)

with (x1, x2, x3) being the Cartesian space coordinates. Equation (2.1) is assumed dimension-
less and properly scaled, while the coefficientsA (with the respective upper and subindexes)
represent constants or functions of one or more parameters. In this paper, we investigate the
case where

Aii
12 = A

ij
κκ = 0, i /= j, i, j, κ = 1, 2, (2.3a)

as well as the case where

Aii
2 = A

ij

0 = A
ij

1 = 0, i /= j, i, j = 1, 2. (2.3b)

However, the proposed solution can also be applied to cases where the coefficients involved
in (2.3a) and (2.3b) are sufficiently small, so that the respective terms of (2.1) can be neglected
in comparison with the others. Moreover, the field is supposed to be weak in the x1 x2 plane,
that is,

ui � 1, i = 1, 2. (2.4)

In fact the approximations (see Appendix C), used in certain steps of the analytical procedure,
are based on the weakness of the field under consideration.
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As a first step, we make the ad hoc assumption that the components u2 and u3 are
functions of the component u1, namely,

ui = fi(u1), i = 1, 2, 3, (2.5)

and thus by substituting (2.5), (2.1) (taking into account (2.3a) and (2.3b)) becomes

R1(u)u,1 + R2(u)u,2 + R3(u)u,3 = 0, (2.6)

where u1 has been replaced by u and

R1(u) = A11
0 +A11

1 u +A11
11u

2 +A11
22f

2
2 +
(
A21

2 f2 + 2A21
12uf2

)
f ′
2, (2.7a)

R2(u) = A12
2 f2 + 2A12

12uf2 +
(
A22

0 +A22
1 u +A22

11u
2 +A22

22f
2
2

)
f ′
2, (2.7b)

R3(u) =
(
A33

0 +A33
3 f3
)
f ′
3. (2.7c)

Here, the prime “ ′ ” denotes differentiation with respect to u(f ′
i(u), i = 2, 3).

On the other hand, the irrotational condition of the field is written in the form

∇ × u = εkji
∂ui

∂xj
ek = 0, i, j, k = 1, 2, 3, (2.8)

where εkji is the well-known Levi-Civita tensor and ek represent the unit vectors
corresponding to xk, k = 1, 2, 3, respectively. By substituting the assumption (2.5) into (2.8),
we arrive at the following three equations (u1 is replaced by u):

f ′
3u,2 − f ′

2u,3 = 0, (2.9a)

u,3 − f ′
3u,2 = 0, (2.9b)

f ′
2u,1 − u,2 = 0. (2.9c)

With respect to the physical relevance of (2.1), as well as of the constraints imposed
above, we note the following. No “mixed” nonlinear terms involving the plane components
u1, u2 together with u3 are included in (2.1). Furthermore the restrictions (2.3a) and (2.3b)
focus on cases where specific nonlinear terms are involved into the governing equation.
More precisely, the procedure developed in this paper confronts nonlinear equations where
the partial derivatives of the field components appear in products together with specific
combinations of these components, of the first and the second degree. Indeed by (2.3a)
and (2.3b), it is obvious that two groups of nonlinear terms are formed with respect to the
variations of the plane components u1, u2, along their own axes (ui,i) and the other axis (ui,j ,
i /= j). This can be clearly observed in the two-dimensional steady small perturbation equation
of fluid mechanics, treated in Section 4 (4.1) as an application of the present analysis.

All the above notations, as well as the ad hoc assumption (2.5), outline a normalized
structure as regards the behavior of the field in phase space, due to a regulated physical
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setup. In fact the small perturbation (4.1) is representative of the imposed restrictions, since
the origin of the field (the perturbed velocities due to slight “geometric perturbations” of
the body’s surface) combined with the orientation of the uniform flow (with reference to the
body—see Figure 1 in Section 4) can give rise to the specific nonlinear form of the governing
equations (2.1), (2.3a), and (2.3b), as well as to the “weakness” and the ad hoc assumptions,
(2.4) and (2.5), respectively.

2.2. Construction of Intermediate Integrals

Now, by integrating the correspondent to (2.6), (2.9a), (2.9b), and (2.9c) subsidiary Lagrange
equations (see Appendix A), we, respectively, obtain the following general solutions:

(2.6) =⇒ u = G

[
x1 − R1(u)

R2(u)
x2, x2 − R2(u)

R3(u)
x3

]
, (2.10)

(2.9a) =⇒ u = G1

(
x1, x2 +

f ′
3

f ′
2
x3

)
, (2.11a)

(2.9b) =⇒ u = G2
(
x2, x1 + f ′

3x3
)
, (2.11b)

(2.9c) −→ u = G3
(
x3, x1 + f ′

2x2
)
, (2.11c)

where G, G1, G2, and G3 are arbitrary functions possessing continuous partial derivatives
with respect to their arguments.

2.3. Reduction to a System of Nonlinear ODEs

In view of (2.10), (2.11a),(2.11b), and (2.11c), we construct a first set of relations by equating
identically the functions G, G1, G2, and G3 as well as their arguments. Thus, excluding the
cases where in the extracted equations:

x1 = 0, x2 = 0, x3 = 0,

x1 = x2, x2 = x3, x1 = x3,
(2.12)

we eventually obtain the following systems.

Case 1 (G2 ≡ G3). We have

f ′
2 = 1 − x1

x2
, f ′

3 = 1 − x1

x3
. (2.13)

Case 2 (G ≡ G1). We have

R1

R2
=

x1

x2
− 1 − f ′

3

f ′
2

x3

x2
,

R2

R3
=

x2

x3
− x1

x3
. (2.14)
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Case 3 (G ≡ G2). We have

R1

R2
=

x1

x2
− 1,

R2

R3
=

x2

x3
− x1

x3
− f ′

3. (2.15)

Case 4 (G ≡ G3).

Subcase 1 (G ≡ G3). We have

R1

R2
=

x1

x2
− x3

x2
,

R2

R3
=

x2

x3
− x1

x3
− f ′

2
x2

x3
. (2.16)

Subcase 2 (G ≡ G3). We have

R1

R2
= −f ′

2,
R2

R3
=

x2

x3
− 1. (2.17)

Subcases 1 and 2 are, respectively, derived by equating the arguments of G and G3

in two possible combinations. Then, in order to obtain a system of equations not containing
explicitly x1, x2, and x3, we find that Cases 1, 3 and Subcase 2 are compatible to each other.
Thus by combining their respective equations, we derive the following ODEs:

R2(u)f ′
2(u) + R1(u) = 0, (2.18)

R3(u)f ′
3(u) − R3(u)f ′

2(u) + R1(u) + R2(u) = 0. (2.19)

Taking into account (2.7a), (2.7b), and (2.7c), we note that (2.18) contains only f2 and f ′
2,

and thus it constitutes the main equation, the manipulation of which is presented in the next
section.

Therefore, the ordinary differential equations (2.18) and (2.19) represent the reduced
forms of the partial differential equations (2.6), (2.9a), (2.9b), and (2.9c), via assumption (2.5).
Then by substituting (2.7a), (2.7b) and replacing f2 with y and u with x, (2.18) becomes

y
′2
x + ρ22(x)y2y

′2
x + ρ11(x)yy′

x + ρ20(x)y2 = ω(x), (2.20)

where y′
x denotes the derivative of y(x) with respect to x and

ρ22(x) =
α

P(x)
, ρ11(x) =

A2 +A3x

P(x)
, ρ20(x) =

β

P(x)
, ω(x) =

P1(x)
P(x)

, (2.21)

with

α = A22
22, β = A11

22, (2.22a)

P(x) = A22
0 +A22

1 x +A22
11x

2, P1(x) = −A11
0 −A11

1 x −A11
11x

2. (2.22b)
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We note that A2 and A3 as well as all the other coefficients appearing in the next sessions are
listed in Appendix E. Henceforth, the prime will denote differentiation with respect to the
corresponding suffix.

3. Integration of (2.20)

3.1. Transformation of (2.20)

Introducing transformation

y(x) = h[ξ(x)]f(x), (3.1)

the left hand side of (2.20) results in a nonlinear expression involving h, h′
ξ, ξ

′
x, f , and f ′

x.
Thus, by taking into account this expression and setting

f(x) = exp
(
−κ(x)

2

)
, κ(x) =

∫
ρ11(x)dx, (3.2)

ξ(x) =
∫
ρ1/23 (x)dx, ρ3(x) =

ρ211
4

− ρ20, (3.3)

with ρ11, ρ20 as in (2.21), (2.20) takes the form

h
′2
ξ + ρ22f

2h2h
′2
ξ − ρ22ρ11f

2ρ−1/23 h3h′
ξ +

1
4
ρ22ρ

2
11f

2ρ−13 h4 − h2 =
ω

f2ρ3
. (3.4)

Then, by substituting

h2(ξ) = s(ξ), (3.5)

(3.4) becomes

s
′2
ξ

s
+ ρ22f

2s′2ξ −
(
2ρ22ρ11f2ρ−1/23 ss′ξ − ρ22ρ

2
11f

2ρ−13 s2 + 4s +
4ω
f2ρ3

)
= 0. (3.6)

In addition, by substitution of (2.21) and (2.22b) into (3.3), we obtain

ρ3(x) =
P2(x)
4P 2(x)

, P2(x) = A4 +A5x +A6x
2, (3.7)

with P(x) as in (2.22b).
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3.2. The Split of (3.6)

We now split (3.6) into the following system of equations:

s
′2
ξ

s
+ ρ22f

2s′2ξ = F(ξ), (3.8a)

2ρ22ρ11f2ρ−1/23 ss′ξ − ρ22ρ
2
11f

2ρ−13 s2 + 4s +
4ω
f2ρ3

= F(ξ), (3.8b)

where F(ξ) is an unknown arbitrary function. Furthermore, after dividing (3.8b) by f2 and
setting

F(ξ) =
4ω(x)

f2(x)ρ3(x)
G(ξ), x = x(ξ), (3.9)

(3.8b) will be written as

2ρ22(x)ρ11(x)ρ
−1/2
3 (x)ss′ξ

= ρ22(x)ρ211(x)ρ
−1
3 (x)s2 − 4

f2(x)
s +

4ω(x)
f4(x)ρ3(x)

[
G(ξ) − 1

]
, x = x(ξ),

(3.10)

where G(ξ) represents now the unknown arbitrary function. We see that (3.10) is an Abel
equation of the second kind, and thus by following the analysis presented in [8, Chapter 1,
Section 3.4] and taking into account (3.2) and (3.3), it is reduced to a simpler Abel equation,
namely,

z z′t − z =
ω(x)

f(x)ρ3(x)

[
G(ξ) − 1

]
, x = x[ξ(t)], ξ = ξ(t) (3.11)

with

s(ξ) =
z[t(ξ)]
f[x(ξ)]

, t(ξ) = −2
∫

ρ1/23 (x)dξ
ρ22(x)ρ11(x)f(x)

, (3.12)

now, by differentiating s, given by (3.12), with respect to ξ and using (3.2), (3.3) (we consider
the appropriate domains where ξ(x) is invertible and hence x′

ξ = ξ′x
−1) as well as the

expression of t provided by (3.12), we obtain s′
ξ
, substitution of which into the left-hand side

of (3.8a) results in

[
1

f(x)z(t)
+ ρ22(x)

][
z′t −

ρ22(x)ρ211(x)f(x)
4ρ3(x)

z(t)

]2
=

ρ222(x)ρ
2
11(x)ω(x)

ρ23(x)
G(ξ), (3.13)

where (3.9) has been substituted for F(ξ).
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Equations (3.11) and (3.13) form a new system equivalent to that of (3.8a), (3.8b),
obtained by splitting (3.6). The elimination of the arbitrary function G yields a nonlinear
ODE, which represents the reduced form of (3.6). More precisely, after some algebra we
extract

(
3z +

1
ρ22f

)
z′t −

ρ3

ρ222ρ
2
11f

(
1
fz

+ ρ22

)
z

′2
t =

ρ22ρ
2
11f

8ρ3
z2 +

(
2 +

ρ211
8ρ3

)
z − 2ω

ρ3f
. (3.14)

Furthermore, as far as the z
′2
t -term is concerned, combination of (3.12) with (3.1) and (3.5)

yields z(t) = y2(x)/f(x), x = x[ξ(t)]. By differentiating with respect to t and taking into
account certain relations obtained above, as well as that x, y, and y′

x represent u, u2 = f2(u)
and f ′

2(u), respectively, we conclude that z′t is equal to (α + βu)(u2f
′
2 + γu2

2 + δuu2
2), where

α, β, γ, δ represent expressions of the equation’s coefficients. Therefore, when the plane field’s
components, as well as the variation of u2 with respect to u, are very small compared with
the unit (e.g., if they denote perturbed components in a small perturbation theory), we can
perfectly consider

z′t � 1, (3.15)

and hence we can neglect the z
′2
t term in the left-hand side of (3.14) in comparison with

the others, as it is of O[max{u4
2, u

2
2f

′2
2 }]. We should note here that in our previous work [5],

after following a different analysis concerning two simplified forms of the full equation, an
analogous to (3.15), but weaker approximation, has been applied, since the neglected term
was ofO(u4

2/(4u
2)), yielding less accurate results compared to the obtained herein solution of

(3.14) especially when u takes smaller values than u2. Moreover by means of (3.3) and (3.12),
we have

t(x) = t[ξ(x)] = −2
∫

ρ3(x)dx
ρ22(x)ρ11(x)f(x)

. (3.16)

Thus, by writing

z(x) = z
[
t(x)
]
, (3.17)

neglecting the z
′2
t term and multiplying with t

′
x, then by using (3.16), (3.14) becomes

[
3z +

1
ρ22(x)f(x)

]
z′x = −ρ11(x)

4
z2 − 16ρ3(x) + ρ211(x)

4ρ22(x)ρ11(x)f(x)
z +

4ω(x)
ρ22(x)ρ11(x)f2(x)

. (3.18)

The above equation is also an Abel equation of the second kind and thus we proceed as
in [8, Chapter 1, Section 3.4]. More precisely, by using the formulas (D.10a), (D.10b) (see
Appendix D), after some algebra, we arrive at

qq′r − q = − 2
3α

F00 + F01x +O(x2)

M0 +M1x +O(x2)
, (3.19)
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where

r(x) =
∫
F10 + F11x +O(x2)

Q0 +Q1x +O(x2)
dx (3.20)

and α being as in (2.22a). Now, by applying (C.4) (Appendix C) to both rational functions in
the right-hand sides of (3.19) and (3.20), we obtain

qq′r − q = B2 + B3x, (3.21)

r(x) =
∫
(B0 + B1x)dx = B0x +O

(
x2
)
. (3.22)

Finally, substitution of x = r/B0 into (3.21) yields

qq′r − q = B2 + B3r. (3.23)

Moreover, by the followed procedure (see [8]), we have that

z(x) =
q[r(x)]

E
− P(x)
3αf(x)

(3.24)

with P(x) as in (2.22b) and E given by (D.10b) (see Appendix D). Finally, the Abel equation
(3.23) is solved parametrically (Appendix B, formulas (B.7)) as

r =
C

B3
τΓ−1/2(τ)e−I(τ)/2 − B2

B3
, q = CΓ−1/2(τ)e−I(τ)/2, (3.25)

where

Γ(τ) = τ2 + τ − B3, I(τ) =
∫

dτ

Γ(τ)
. (3.26)

In the above relations τ represents the parameter while C is an arbitrary constant. Now, by
substituting

Γ−1/2(τ)e−I(τ)/2 = Ω(τ) (3.27)

and taking into account (3.22), the above parametric solution takes the form

x = B4 + B5CτΩ(τ), q = CΩ(τ). (3.28)

All the coefficients appearing through the analysis are listed in Appendix E.
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3.3. The Parametric Solution for the Field’s Components u1, u2

By combining (3.1), (3.5), (3.12), (3.17), and (3.24), we obtain

y2(x) =
q[r(x)]f(x)

E
− P(x)

3α
. (3.29)

Approximating linearly P(x), namely,

P(x) = A22
0 +A22

1 x +O
(
x2
)

(3.30)

and substituting q from (3.28), as well as f and E from (D.10a), (D.10b) (Appendix D), then
(3.29) yields

3αy2 =

[
B6 + Cτ Ω(B7 + B8/τ) + C2τ2Ω2(B9 + B10/τ) + C3τ3Ω3(B11 + B12/τ) + B13C

4τ4Ω4]

(c0 + c1Cτ Ω + c2C2τ2Ω2)
.

(3.31)

Furthermore, by solving the first part of (3.28) for CτΩ(τ), we have

CτΩ(τ) = b0 + b1x. (3.32)

Now, approximating linearly the powers of CτΩ(τ) involved into (3.31), that is

C2τ2Ω2 = b20 + 2b0b1x +O
(
x2
)
,

C3τ3Ω3 = b30 + 3b20b1x +O
(
x2
)
,

C4τ4Ω4 = b40 + 4b30b1x +O
(
x2
)

(3.33)

and substituting (3.32) and (3.33) into (3.31), then by replacing x with u = u1 and y with
u2 = f2(u) and taking also into account (3.28), we conclude that

u(x1, x2, x3) = ϕ1(τ) = B4 + B5CτΩ(τ), (3.34a)

u2
2(x1, x2, x3) = ϕ2

2(τ, u) =
1
3α

b2 + b3u + (b4 + b5u)(1/τ)
c3 + c4u

, (3.34b)

with Ω as in (3.27) and α given by (2.22a). Equations (3.34a), (3.34b) constitute the
approximate analytical parametric solution of the problem for u1, u2. As far as the component
u3 is concerned, combination of (2.18) and (2.19) results in

R3f
′
2 + R2

(
f ′
2 − 1

) − R3f
′
3 = 0, u3 = f3(u). (3.35)
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The above equation can be simplified a little if we neglect the last term in the left-hand side
(it is of the form (a + bf3)f

′2
3 ) by considering f ′

3 � 1. Anyhow we will not investigate (3.35)
in this work.

Moreover, in order to evaluate the constant C involved into the parametric solution
(3.34a), (3.34b), we need a boundary condition, that is, to locate to a point x0 = (x10, x20, x30)
where the field components u0 = u(x0), u20 = u2(x0) are known. Then, by solving (3.34b)
for τ , we extract the corresponding value of the parameter τ0 = τ(x0), and finally, by using
(3.34a), we arrive at

C =
u0 − B4

B5τ0Ω(τ0)
. (3.36)

In the next section we apply the derived solution in the two-dimensional case of a flow
past bodies with specific boundaries.

4. Parametric Solution for a 2-D Flow

As an application of the parametric solution obtained above for the plane case of (2.1), we
consider the full nonlinear PDE governing the two-dimensional (u3 = 0, x3 = 0) steady small
perturbation frictionless flow past a solid body surface [6], namely,

[
1 −M2 − (γ + 1

)
M2u1 − 1

2
(
γ + 1

)
M2u2

1 −
1
2
(
γ − 1

)
M2u2

2

]
u1,1

+
[
1 − (γ − 1

)
M2u1 − 1

2
(
γ − 1

)
M2u2

1 −
1
2
(
γ + 1

)
M2u2

2

]
u2,2

−M2(u2 + u1u2)(u1,2 + u2,1) = 0,

(4.1)

where M is the correspondent to the uniform flow Mach number, which stands for the
physical parameter of the problem, and γ is the ratio of the specific heats usually taken equal
to 1.4; hence, the respective (dimensionless) coefficientsAij

0 ,A
ij
κ andA

ij

κλ
of (2.1) (the u3,3 term

vanishes) are given by

A11
0 = 1 −M2, A11

1 = −2.4M2, A11
11 = −1.2M2, A11

22 = −0.2M2,

A12
2 = A21

2 = −M2, A12
12 = A21

12 = −M
2

2
,

A22
0 = 1, A22

1 = −0.4M2, A22
11 = −0.2M2, A22

22 = −1.2M2.

(4.2)

Relations (2.3a), (2.3b) also hold true. As mentioned in Section 2, the above equation
represents a highly appropriate case, where the physical relevance of the imposed constraints
(2.3a)-(2.3b)–(2.5) can be explained by a normalized physical background like the one
generated by a uniform flow passing over a slightly “perturbed” surface, according to a
specific geometry (see Figure 1, and the applications at the end of this section). Here, u1,
u2 represent the dimensionless perturbation velocity components along the x1, x2 axes (see
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x1

x2

Figure 1: Orientation of the perturbed plane field with respect to the body’s surface.

Figure 1), normalized by the uniform velocity of the steady flow, which is parallel to the x1

direction in the physical plane.
A wavy surface (projection in the x1x2 plane) is shown in Figure 1, as a representative

case able to produce small plane perturbations in the velocity field (the surface is supposed
to have very small amplitude). Moreover, the irrotationality condition (2.9c) holds true and
(2.10) and (2.11c) become

u = G

[
x1 − R1(u)

R2(u)
x2

]
, (4.3)

u = G3
(
x1 + f ′

2x2
)
, (4.4)

respectively, where G, G3 denote arbitrary functions and R1, R2 are as in (2.7a),(2.7b) (we
mention that u = u1). Obviously in the two-dimensional case, (2.9a),(2.9b) and (2.11a),(2.11b)
become identities. Comparison between (4.3) and (4.4) results in (2.18).

If we refer now to the proper conditions restricted by the analysis (see Appendix D),
we extract that the discriminant Δ of P(u) (x has been replaced by u) is always positive (Δ >
0), and, moreover, since A22

11 < 0, by obtaining the roots of P(u), considering the respective to
the Cases P-1 and P-2 intervals for u and assuming u ≤ 0.1 (u � 1) as well, then a restriction
to the domain ofM is derived. More precisely, we find that formulae (3.34a), (3.34b) are valid
for

M ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.71
(
u = 10−1

)
,

0.74
(
u = 5 × 10−2

)
,

0.78
(
u = 10−2

)
,

0.79
(
u = 10−4

)
.

(4.5)

Thus, for the specific 2-D steady flow field, the obtained approximate solution can be applied
only to subsonic flows. Moreover, as far as the integral I(τ) =

∫
dτ/Γ(τ), involved into
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the function Ω(τ), is concerned (see (3.26), (3.27)), the discriminant δ of Γ(τ) is evaluated
negative (δ < 0), and therefore the integral I is obtained as

−I(τ)
2

= − 1√
−δ

arctan
1 + 2τ√

−δ
. (4.6)

Now, in order to construct an appropriate procedure to obtain τ(x1, x2), we consider
the well-known boundary condition (see [6, page 208])

u · ∇ϕ = 0, (4.7)

where u = (1 + u(ξ1, ξ2), u2(ξ1, ξ2)) is the total dimensionless velocity vector of the flow at
the solid surface, while ϕ(ξ1, ξ2) = 0 represents the equation of the “surface line”, that is, the
section of the body’s surface with the x1x2 plane. Here, ξ1, ξ2 denote the plane coordinates
on this line with ξ1 ∈ [0, L], L being the body’s length, and |ξ2| � 1. Condition (4.7) states
that at the surface of the body the direction of the flow must be tangential to the surface line.
Developing (4.7), we arrive at

(1 + u(ξ1, ξ2))ϕ, ξ1 + u2(ξ1, ξ2)ϕ, ξ2 = 0, (4.8)

where by neglecting u(u � 1), we obtain

u2(ξ1, ξ2) = −ϕ, ξ1

ϕ, ξ2

=
dξ2
dξ1

= g(ξ1, ξ2). (4.9)

By squaring (4.9) and substituting u2 and u by their parametric expressions (3.34b),(3.34a),
we derive a transcendental equation for τ , namely,

ϕ2
2
[
τ, ϕ1(τ)

]
= g2(ξ1, ξ2). (4.10)

Thus, for a given pair (ξ1, ξ2) on the surface line, the solution of (4.10) results in τ(ξ1, ξ2),
substitution of which into (3.34a), (3.34b) yields the perturbed velocity vector (u1, u2) of
the flow at (ξ1, ξ2). In fact, in the case of the flow under consideration, only the perturbed
velocity u is evaluated by, use of the extracted parametric solution, since due to (4.9) u2

simply expresses approximately the slope of the surface line. Furthermore, assuming that
the functions ui(x1, x2), i = 1, 2 are analytic inside a domain located on any line x1(=
ξ1) = constant with x1 ∈ [0, L] (L represents the body’s length) and x2, slightly different
from ξ2(x2 > ξ2), by developing in Taylor series around (ξ1, ξ2), we have

ui(ξ1, x2) = ui(ξ1, ξ2) +
∂ui

∂x2
(x2 − ξ2) +

1
2
∂2ui

∂x2
2

(x2 − ξ2)
2 + · · · , i = 1, 2. (4.11)

Taking into account the small perturbation theory (the derivatives involved into the series
(4.11), as well as ξ2, are very small compared to unity) and also that x2 lies close enough
to ξ2, so that (x2 − ξ2) � 1, all the terms after the first in the right-hand side of (4.11) can
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Figure 2: (a) u1(×102) versus x1, M = 0.7, sinusoidal shape: as = 0.05, b = 0.5; (b) u1(×102) versus x1,
M = 0.7, sinusoidal shape: as = 0.05, b = 0.5, Ad hoc parametric solution (black line)—linearized equation
(blue line); (c) u2 versus x1, M = 0.7, sinusoidal shape: as = 0.05, b = 0.5.

be neglected. Thus, we can approximately evaluate the perturbed plane flow field inside
a thin zone over the body’s surface. Obviously, the thickness of this zone depends on the
order of magnitude of ξ2. For example, if the boundary has a sinusoidal shape (one of the
cases considered below), that is, ξ2 = a sin(bξ1), ξ1 ∈ [0, L], a, b ∈ (0, 1) and if we take
a = 0.05, then within the domain {(x1, x2) : x1 ∈ [0, L], x2 ∈ (ξ2, ξ2 + 2a)} (a plane zone of
thickness 2a (measured in the x2-direction) with parallel sinusoidal boundaries), the error
in (4.11) is O(x2 − ξ2) ≤ 10−2. Therefore, the above approximation is valid inside a zone
over the solid surface of thickness less or equal to 2a(= 0.1). In addition, in order to obtain
τ0 = τ(x10, x20) and C (see the end of Section 3), the axes origin is used which is located
at the point where the flow arrives at the body surface and consequently (x10, x20) = (0, 0),
(u0, u20) = (0, g(0, 0))(u0 = u(0, 0), u20 = u2(0, 0)), where g is given by (4.9). Therefore, by
means of (3.34b) and (3.36) we conclude that

τ(0, 0) = τ0 =
b4

3αc3g2(0, 0) − b2
, C = − B4

B5τ0Ω(τ0)
(4.12)

with Ω provided by (3.26) and (3.27), where the integral I is evaluated by (4.6).
The derived solution, constructed by relations (3.34a), (3.34b), and (4.10), is applied to

the two-dimensional steady frictionless flow past a boundary of sinusoidal (wavy wall), as
well as of a parabolic shape. The problem is governed by (4.1). Especially for the “sinusoidal”
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Figure 3: Solid lines: ad hoc parametric solution (black)—linearized equation (blue). (a) u1(×104) versus
x1, M = 0.7, parabolic shape: ap = 5 × 103, ξ10 = 10; (b) u2(×10) versus x1, M = 0.7, parabolic shape:
ap = 5 × 103, ξ10 = 10.

boundary problem, implicit solutions in the form of transcendental equations have been
extracted in [5, Section 5, Equation (72) and (74), (77)], for the more simplified case of (2.1),
where the only nonzero coefficients wereA11

0 , A11
1 , andA22

0 [5, Equation (9)]. Here, boundary
condition (4.7) holds with

ϕs(ξ1, ξ2) = ξ2 − as sin(bξ1) = 0, as, b ∈ (0, 1), (4.13a)

ϕp(ξ1, ξ2) = ap(ξ2 + ξ20)
2 − ξ1 − ξ10 = 0, ap, ξ10, ξ2 > 0, ξ20 =

(
ξ10/ap

)1/2
, (4.13b)

where ϕs and ϕp describe the sinusoidal and parabolic form of the surface, respectively,
while as and ap denote the amplitude and the curvature of the surface line in the cases
under consideration. The low magnitude of as and the large magnitude of ap allow the
small perturbation theory to be applied. Additionally, in both (4.13a), (4.13b), we have
ξ1(= x1) ∈ [0, L], where L stands for the assumed body’s length, while in the “sinusoidal”
case, the wavelength of the wavy surface is equal to 2π/b.

As far as the graphs exhibited below are concerned, the “dashed” line represents the
sinusoidal or the parabolic boundary, with geometries: as = 0.05, b = 0.5 (Figures 2(a), 2(c)—
(4.13a)) and ap = 5 × 103, ξ10 = 10 (Figures 3(a), 3(b), (4.13b)). Moreover, the solid blue
line in Figures 2(b) and 3(a) has been obtained as the solution for u1 of the linearized form
of (4.1), where the slope of the solid surface has been substituted for the component u2. In
both geometries, the body’s length L is taken equal to 12π (three wavelengths in the wavy
case) and the correspondent to the uniform unperturbed flow Mach number is set equal to
0.7. We note that by changing the values of the geometric parameters involved in (4.13a) and
(4.13b), as well as the value of the Mach number, the perturbed field presents qualitatively
similar graphs to those obtained here. Finally, as mentioned above the perturbed velocity u2

is obtained as the slope of the surface.
In Figure 2(b), we note that the linear approximation is excellent throughout the

body’s length except in small intervals centered at the picks of the sinusoidal surface with
radius approximately equal to π/6(((2k + 1)π −π/6, (2k + 1)π +π/6), k = 0, 1, . . .). Outside
these locations the maximum error of the linear approximation (with respect to the ad hoc
solution) is approximately equal to 6×10−5, while inside these intervals the difference between
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the two solutions increases with x1 moving towards the pick. Furthermore, concerning
the comparison of the solutions in the case of the parabolic surface (Figure 3(a)), we find
that for the considered body’s length, the maximum error of the linear approximation is
approximately equal to 1.5 × 10−6 (the error increasing with x1).

5. Summary and Conclusion

In this paper an ad hoc analytical parametric solution has been obtained, concerning a
nonlinear PDE governing a two-dimensional steady irrotational vector field. However, in
Section 2 of this work the three-dimensional case is treated. As a result, we obtain a system
of two (nonlinear) ODEs being equivalent to that of the original PDEs (including the
irrotationality conditions). The analytical tools have been used in order to integrate the first
ODE (concerning the two-dimensional case), in combination with linear approximations of
certain polynomial and rational expressions, succeeded in transforming the above equation to
a parametrically solvable Abel form. In particular, as established in Section 3, the “splitting”
technique proved excellent in manipulating and transforming strongly nonlinear ODEs to
integrable equations, and hence it may be considered representative of the general pattern of
the analysis. Thus, we believe that the developed methodology, possibly modified, extended
and enrichedwithmore analytical techniques, can be a powerful tool of research on nonlinear
problems in mechanics and physics.

Appendices

A. Lagrange Method for Quasilinear PDEs of First Order

According to this method, a general solution of the quasilinear equation

H1(x1, x2, x3, u)u,1 +H2(x1, x2, x3, u)u,2 +H3(x1, x2, x3, u)u,3 = R(x1, x2, x3, u),

u = u(x1, x2, x3), u,i =
∂u

∂xi
, i = 1, 2, 3

(A.1)

has the form

G(w1, w2, w3) = 0, (A.2)

where

w1(x1, x2, x3, u) = a, w2(x1, x2, x3, u) = b, w3(x1, x2, x3, u) = c, (A.3)

with a, b, c being constants, are solutions of the subsidiary Lagrange equations

dx1

H1
=

dx2

H2
=

dx3

H3
=

du

R
(A.4)



18 Mathematical Problems in Engineering

and G is an arbitrary function possessing continuous partial derivatives with respect to its
arguments.

B. Analytical Parametric Solution of the Equation yy′
x − y = Ax + B

It is well known that the general ODE of the first order

F
(
x, y, y′

x

)
= 0 (B.1)

can accept a parametric solution of the form

x = x(t), y = y(t), (B.2)

in case where the following system can be integrated, namely,

dx

dt
= − F,t

F,x + tF,y
, (B.3a)

dy

dt
= t

dx

dt
= − tF,t

F,x + tF,y
, (B.3b)

where the notation F ′
x = dF/dx, F,x = ∂F/∂x has been adopted. The above system is obtained

by the substitution of y′
x = t and differentiation of (B.1)with respect to t. In particular, if t can

be eliminated from (B.2), then a closed-form solution of (B.1) is extracted.
Therefore, as far as the Abel equation yy′

x−y = Ax+B is concerned, since it is solvable
for x, that is,

x =
t − 1
A

y − B

A
, (B.4)

then (B.3b) is considered, namely, (F(x, y, t) = yt − y −Ax − B = 0)

dy

dt
= − ty

t2 − t −A
. (B.5)

Integration of (B.5) in combination with (B.4) results in

x =
C

A
(t − 1) exp

(
−
∫

tdt

t2 − t −A

)
− B

A
,

y = C exp
(
−
∫

tdt

t2 − t −A

) (B.6)
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withC being an arbitrary constant. Moreover, by substituting τ = t−1 and taking into account
[19, Integral 2.175.1], the parametric solution (B.6) takes the form

x =
C

A
τ
(
τ2 + τ −A

)−1/2
exp
(
−1
2

∫
dτ

τ2 + τ −A

)
− B

A
,

y = C
(
τ2 + τ −A

)−1/2
exp
(
−1
2

∫
dτ

τ2 + τ −A

)
.

(B.7)

C. Approximations due to the Weakness of the Field

The weakness of the field under consideration, especially of the u1(= u) coordinate, that is,
u � 1, allows us to establish the following approximations.

(1) We linearly approximate all the polynomials p (x) (x represents u) of degree greater
or equal than two, namely,

p(x) = a + bx +O
(
x2
)
. (C.1)

(2) Considering the ratio of binomials

p1(x) =
α + βx

γ + δx
, (C.2)

we evaluate

p1(x) =

(
α + βx

)(
γ − δx

)

γ2 − δ2x2
=

αγ +
(
βγ − αδ

)
x +O(x2)

γ2 +O(x2)
, (C.3)

and therefore we obtain

p1(x) ∼= α

γ
+
1
γ

(
β − αδ

γ

)
x. (C.4)

D. Expressions for f(x) and E(x)

In this appendix, we extract appropriate formulas for the function f(x), appearing in (3.2),
as well as for the function E(x) = exp(κ(x)/12), involved into the reduction procedure of the
Abel equation (3.18) [8, Chapter 1, Section 3.4]. Thus, by considering the function κ(x) =∫
ρ11(x)dx, given from (3.2) and substituting ρ11 from (2.21), by means of [9, Expression

2.175.1], we arrive at

κ(x) = A7 ln[P(x)] +A8

∫
dx

P(x)
, P(x) = A22

0 +A22
1 x +A22

11x
2. (D.1)
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The coefficients involved in various expressions appearing in this appendix are listed
in Appendix E. We mention that all these coefficients (appeared through the analytical
procedure in this work) are functions of the physical parameter(s), of the problem. Therefore,
for this (these) parameter(s) taking values such that the discriminant Δ of P(x) becomes
positive (Δ = (A22

1 )2 − 4A22
0 A22

11) if ρ1, ρ2 represent the roots of P(ρ1,2 = (−A22
1 ±

√
Δ2A22

11) and
considering the following cases:

Case P-1

Δ > 0, A22
11 < 0

(
ρ1 < ρ2

)
: ρ1 < x <

ρ2 − ε

3
,

Δ > 0, A22
11 > 0

(
ρ2 < ρ1

)
:
ρ2 + ε

3
< x < ρ1.

(D.2)

Case P-2

Δ > 0, A22
11 < 0 : x < ρ1 or x > ρ2 + ε,

Δ > 0, A22
11 > 0 : x < ρ2 − ε or x > ρ1

(D.3)

with ε =
√
Δ/|A22

11|, then by elementary algebra (using [9, Expression 2.172]) we can easily
prove the following Lemma.

Lemma D.1. If Case P-1 or P-2 is valid, then the integral
∫
dx/P can be written in the form:

∫
dx

P(x)
=

1√
Δ

ln[1 − λ(x)], |λ(x)| < 1 (D.4)

with

λ(x) =
λ0 + λ1x

μ0 + μ1x
. (D.5)

The coefficients λ0, λ1 are different as regards these two cases, while μ0, μ1 are common
(see Appendix E). Thus, substituting (D.4) into (D.1), we obtain

f(x) = exp
(
−κ(x)

2

)
= PA9(x)[1 − λ(x)]A10 ,

E = exp
(
κ(x)
12

)
= Pa9(x)[1 − λ(x)]a10 .

(D.6)
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Then by writing P in the form P(x) = A22
0 (1 +A11x +A11x

2) and developing in power series
(assuming that |A11x +A11x

2| < 1) up to the first order, we take

PA9(x) = A12 +A13x +O
(
x2
)
, Pa9(x)a12 + a13x +O

(
x2
)
. (D.7)

Furthermore, by applying (C.4) to (D.5), we arrive at

λ(x) = λ2 + λ3x, λ2(x) = λ22 + 2λ2λ3x +O
(
x2
)
. (D.8)

Then developing [1 − λ(x)]A10 and [1 − λ(x)]a10 up to the second order and substituting (D.8),
we conclude that

[1 − λ(x)]A10 = λ4 + λ5x +O
(
x2
)
, [1 − λ(x)]a10 = μ4 + μ5x +O

(
x2
)
. (D.9)

Finally, substitution of (D.7) and (D.9) into (D.6) results in

f (x) = (A 12 +A 13x)(λ4 + λ5x), (D.10a)

E = (a12 + a13x)
(
μ4 + μ5x

)
. (D.10b)

E. List of Coefficients

α = A22
22, β = A11

22, A2 = A12
2 +A21

2 , A3 = 2
(
A12

12 +A21
12

)
, A4 = A2

2 − 4βA22
0 ,

A5 = 2A2A3 − 4βA22
1 , A6 = A3

2 − 4βA22
11, A7 =

A3

2A22
11

, A8 = A2 −
A3A

22
1

2A22
11

,

A9 = −A7

2
, a9 =

A7

12
, A10 = − A8

2
√
Δ
, a10 =

A8

12
√
Δ
,

A11 =
A22

1

A22
0

, A11 =
A22

11

A22
0

, A12 =
(
A22

0

)A9
, A13 = A9A11A12,

a12 =
(
A22

0

)a9
, a13 = a9A11a12,

μ0 = A221 +
√
Δ, μ1 = 2A22

11,
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λ0 = 2A22
1 , λ1 = 4A22

11, (Case P − 1)

λ0 = 2
√
Δ, λ1 = 0, (Case P − 2)

λ2 =
λ0
μ0

, λ3 =
λ1 − λ2μ1

μ0
, λ4 = 1 −A10λ2

(
1 − A10 − 1

2
λ2

)
, λ5 = −A10λ3(1 − (A10 − 1)λ2),

μ4 = 1 − a10λ2

(
1 − a10 − 1

2
λ2

)
, μ5 = −a10λ3(1 − (a10 − 1)λ2),

F10 = a12

(
5A2

2 − 12A4 + 12A2A
22
1

)
μ4,

F11 = 2a12

[
−6A5 + 6A3A

22
1 +A2

(
5A3 + 12A22

11

)]
μ4 +

(
a13

a12
+
μ5

μ4

)
F10,

Q0 = 36αA2A12λ4, Q1 = 36α(A3A12λ4 +A2A13λ4 +A2A12λ5),

F00 = a12A
22
0

(
A2

2 + 6A4 − 72αA11
0

)
μ4,

F01 = 2a12A
22
0

(
A2A3 + 3A5 − 36αA11

1

)
μ4 +

(
a13

a12
+
μ5

μ4
+
A22

1

A22
0

)
F00,

M0 =
A12λ4
a12μ4

F10, M1 =
A13λ4 +A12λ5

a12μ4
F10 + 2A12

(
−6A5 + 6A3A

22
1 + 5A2A3 + 12A2A

22
11

)
λ4,

B0 =
F10

Q0
, B1 =

F11 − B0Q1

Q0
, B2 = − 2

3α
F00

M0
, B3 = − 2

3α
1

M0

(
F01 − F00M1

M0

)
,

B3 =
B3

B0
, B4 = −B2

B3

, B5 =
1

B3

,

B6 = −(a12 + a13B4)
(
A22

0 +A22
1 B4 +A22

11B4
2
)(

μ4 + B4μ5
)
,

B7 = −B5

[
a12

(
A22

1 + 2A22
11B4

)
μ4 +

(
A22

0 + 2A22
1 B4 + 3A22

11B
2
4

)(
a13μ4 + a12μ5

)

+a13B4

(
2A22

0 + 3A22
1 B4 + 4A22

11B
2
4

)
μ5

]
,

B8 = 3α(A12 +A13B4)(λ4 + B4λ5),

B9 = −B2
5

[
a12A

22
11μ4 +

(
A22

1 + 3A22
11B4

)(
a13μ4 + a12μ5

)
+ a13

(
A22

0 + 3A22
1 B4 + 6a13A

22
11B

2
4

)
μ5

]
,

B10 = 3αB5(A13λ4 +A12λ5 + 2A13B4λ5),

B11 = −B3
5

[
a13A

22
11μ4 +

(
a13A

22
1 + a12A

22
11 + 4a13A

22
11B4

)
μ5

]
,

B12 = 3αA13B
2
5λ5, B13 = −a13A

22
11B5

4μ5,

c0 = (a12 + a13B4)
(
μ4 + B4μ5

)
, c1 = B5

[
a13μ4 + (a12 + 2a13B4)μ5

]
, c2 = a13B

2
5μ5,
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b0 = −B4

B5
, b1 =

1
B5

, b2 = B6 + b0B7 + b20B9 + b30B11 + b40B13,

b3 = b1
(
B7 + 2b0B9 + 3b20B11 + 4b30B13

)
, b4 = b0B8 + b20B10 + b30B12,

b5 = b1
(
B8 + 2b0B10 + 3b20B12

)
,

c3 = c0 + b0c1 + b20c2, c4 = b1(c1 + 2b0c2).

(E.1)
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