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For a bounded reservoir with no flow boundaries, the pseudo-steady-state flow regime is common
at long-producing times. Taking a partially penetrating well as a uniform line sink in three
dimensional space, by the orthogonal decomposition of Dirac function and using Green’s function
to three-dimensional Laplace equation with homogeneous Neumann boundary condition, this
paper presents step-by-step derivations of a pseudo-steady-state productivity formula for a
partially penetrating vertical well arbitrarily located in a closed anisotropic box-shaped drainage
volume. A formula for calculating pseudo skin factor due to partial penetration is derived in
detailed steps. A convenient expression is presented for calculating the shape factor of an isotropic
rectangle reservoir with a single fully penetrating vertical well, for arbitrary aspect ratio of the
rectangle, and for arbitrary position of the well within the rectangle.

1. Introduction

Well productivity is one of primary concerns in oil field development and provides the basis
for oil field development strategy. To determine the economical feasibility of drilling a well,
the engineers need reliable methods to estimate its expected productivity. Well productivity
is often evaluated using the productivity index, which is defined as the production rate per
unit pressure drawdown. Petroleum engineers often relate the productivity evaluation to the
long-time performance behavior of a well, that is, the behavior during pseudo-steady-state
or steady-state flow.

For a bounded reservoir with no flow boundaries, the pseudo-steady-state flow regime
is common at long producing times. In these reservoirs, also called volumetric reservoirs,
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there can be no flow across the impermeable outer boundary, such as a sealing fault, and
fluid production must come from the expansion and pressure decline of the reservoir. This
condition of no flow boundary is also encountered in a well that is offset on four sides.

Flow enters the pseudo-steady-state regime when the pressure transient reaches all
boundaries after drawdown for a sufficiently long-time. During this period, the rate of
pressure decline is almost identical at all points in the reservoir and wellbore. Therefore, the
difference between the average reservoir pressure and pressure in the wellbore approaches
a constant with respect to time. Pseudo-steady-state productivity index is defined as the
production rate divided by the difference of average reservoir pressure and wellbore
pressure, hence the productivity index is basically constant [1, 2].

In many oil reservoirs the producing wells are completed as partially penetrating
wells. If a vertical well partially penetrates the formation, the streamlines converge and the
area for flow decreases in the vicinity of the wellbore, which results in added resistance, that
is, a pseudoskin factor. Only semianalytical and semi-empirical expressions are available in
the literature to calculate pseudoskin factor due to partial penetration.

Rarely do wells drain ideally shaped drainage areas. Even if they are assigned
regular geographic drainage areas, they become distorted after production commences, either
because of the presence of natural boundaries or because of lopsided production rates in
adjoining wells. The drainage area is then shaped by the assigned production share of a
particular well. An oil reservoir often has irregular shape, but a rectangular shape is often
used to approximate an irregular shape by petroleum engineers, so it is important to study
well performance in a rectangular or box-shaped reservoir [1, 2].

2. Literature Review

The pseudo-steady-state productivity formula of a fully penetrating vertical well which is
located at the center of a closed isotropic circular reservoir is [3, page 63]

Qw = FD
2πKH(Pa − Pw)/

(
μB
)

ln(Re/Rw) − 3/4
, (2.1)

where Pa is average reservoir pressure in the circular drainage area, Pw is flowing wellbore
pressure, K is permeability, H is payzone thickness, μ is oil viscosity, B is oil formation
volume factor, Re is radius of circular drainage area, Rw is wellbore radius, and FD is the
factor which allows the use of field units and practical SI units, and it can be found in [3,
page 52, Table 5.1].

Formula (2.1) is only applicable for a fully penetrating vertical well at the center of a
circular drainage area with impermeable outer boundary.

If a vertical well is partially penetrate the formation, the streamlines converge and
the area for flow decreases in the region around the wellbore, and this added resistance is
included by introducing the pseudoskin factor, Sps. Thus, (2.1) may be rewritten to include
the pseudoskin factor due to partial penetration as [4, page 92]:

Qw = FD
2πKH(Pa − Pw)/

(
μB
)

ln(Re/Rw) − 3/4 + Sps
. (2.2)
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Sps can be calculated by semianalytical and semiempirical expressions presented by
Brons, Marting, Papatzacos, and Bervaldier [5–7].

Assume that the well-drilled length is equal to the well producing length, (i.e.,
perforated interval,) Lp = L, and define partial penetration factor η:

η =
Lp

H
=
L

H
. (2.3)

Pseudoskin factor formula given by Brons and Marting is [5]

Sps =
(
1
η
− 1
)
[
ln(hD) −G

(
η
)]
, (2.4)

where

hD =
(
H

Rw

)(
Kh

Kv

)1/2

, (2.5)

G
(
η
)
= 2.948 − 7.363η + 11.45η2 − 4.675η3. (2.6)

Pseudoskin factor formula given by Papatzacos is [6]

Sps =
(
1
η
− 1
)
ln
(
πhD
2

)
+
(
1
η

)
ln

[(
η

2 + η

)(
Ψ1 − 1
Ψ2 − 1

)1/2
]

, (2.7)

where hD has the same meaning as in (2.5), and

Ψ1 =
H

h1 + 0.25Lp
,

Ψ2 =
H

h1 + 0.75Lp
,

(2.8)

and h1 is the distance from the top of the reservoir to the top of the open interval.
Pseudoskin factor formula given by Bervaldier is [7]

Sps =
(
1
η
− 1
)[ ln

(
Lp/Rw

)

(
1 − Rw/Lp

) − 1

]

. (2.9)

It must be pointed out that the well location in the reservoir has no effect on Sps

calculated by (2.4), (2.7), and (2.9).
By solving-three-dimensional Laplace equation with homogeneous Dirichlet bound-

ary condition, Lu et al. presented formulas to calculate Sps in steady state [8].
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To account for irregular drainage shapes or asymmetrical positioning of a well within
its drainage area, a series of shape factors was developed by Dietz [9]. Formula (2.1) can be
generalized for any shape into the following formula:

Qw = FD
2πKH(Pa − Pw)/

(
μB
)

(1/2) ln
[
2.2458A/

(
CAR

2
w

)] , (2.10)

where CA is shape factor, and A is drainage area.
Dietz evaluated shape factor CA for various geometries, in particular, for rectangles of

various aspect ratios with single well in various locations. He obtained his results graphically,
from the straight line portion of various pressure build-up curves. Earlougher et al. [10]
carried out summations of exponential integrals to obtain dimensionless pressure drops at
various points within a square drainage area and then used superposition of various square
shapes to obtain pressure drops for rectangular shapes. The linear portions of the pressure
drop curves so obtained, corresponding to pseudo-steady-state, were then used to obtain
shape factors for various rectangles.

The methods used by Dietz and Earlougher et al. are limited to rectangles whose sides
are integral ratios, and the well must be located at some special positions within the rectangle.

Lu and Tiab presented formulas to calculate productivity index and pseudoskin factor
in pseudo-steady-state for a partially penetrating vertical well in a box-shaped reservoir,
they also presented a convenient expression for calculating the shape factor of an isotropic
rectangle reservoir [1, 2]. But in [1, 2], they did not provide detail derivation steps of their
formulas.

The primary goal of this paper is to present step-by-step derivations of the pseudo-
steady-state productivity formula and pseudoskin factor formula for a partially penetrating
vertical well in an anisotropic box-shaped reservoir, which were given in [1, 2]. A
similar procedure in [8] is given in this paper, point sink solution is first derived by the
orthogonal decomposition of Dirac function and Green’s function to Laplace equation with
homogeneousNeumann boundary condition, then using the principle of superposition, point
sink solution is integrated along the well length, uniform line sink solution is obtained, and
rearrange the resulting solution, pseudo-steady-state productivity formula and shape factor
formula are obtained. A convenient expression is derived for calculating the shape factor
of an isotropic rectangle reservoir with a single fully penetrating vertical well, for arbitrary
aspect ratio of the rectangle and for arbitrary position of the well within the rectangle.

3. Partially Penetrating Vertical Well Model

Figure 1 is a schematic of a partially penetrating well. A partially penetrating vertical well of
length L drains a box-shaped reservoir with height H, length (x direction) a, and width (y
direction) b. The well is parallel to the z direction with a length L ≤ H, and we assume b ≥ a.

The following assumptions are made.

(1) The reservoir is homogeneous, anisotropic, and has constantKx,Ky,Kz permeabil-
ities, thickness H, and porosity φ. All the boundaries of the box-shaped drainage
volume are sealed.

(2) The reservoir pressure is initially constant. At time t = 0, pressure is uniformly
distributed in the reservoir, equal to the initial pressure Pi.
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Figure 1: Partially Penetrating Vertical Well Model.

(3) The production occurs through a partially penetrating vertical well of radius Rw,
represented in the model by a uniform line sink.

(4) A single phase fluid, of small and constant compressibility Cf , constant viscosity μ,
and formation volume factor B, flows from the reservoir to the well at a constant
rate Qw. Fluids properties are independent of pressure.

(5) No gravity effect is considered. Any additional pressure drops caused by formation
damage, stimulation, or perforation are ignored, we only consider pseudoskin
factor due to partial penetration.

The partially penetrating vertical well is taken as a uniform line sink in three
dimensional space. The coordinates of the two end points of the uniform link sink are
(x′, y′, 0) and (x′, y′, L). We suppose the point (x′, y′, z′) is on the well line, and its point
convergence intensity is q.

By the orthogonal decomposition of Dirac function and using Green’s function to
Laplace equation with homogeneous Dirichlet boundary condition, Lu et al. obtained point
sink solution and uniform line sink solution to steady-state productivity equation of a
partially penetrating vertical well in a circular cylinder reservoir [8]. For a box-shaped
reservoir and a circular cylinder reservoir, the Laplace equation of a point sink is the same, in
order to obtain the pressure at point (x, y, z) caused by the point (x′, y′, z′), we have to obtain
the basic solution of the following Laplace equation:

Kx
∂2P

∂x2
+Ky

∂2P

∂y2
+Kz

∂2P

∂z2
= φμCt

∂P

∂t
+ μqBδ

(
x − x′)δ

(
y − y′)δ

(
z − z′), (3.1)

in the box-shaped drainage volume:

Ω = (0, a) × (0, b) × (0,H), (3.2)

and we always assume

b ≥ a� H, (3.3)

and δ(x − x′), δ(y − y′), δ(z − z′) are Dirac functions.
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All the boundaries of the box-shaped drainage volume are sealed, that is,

∂P

∂N

∣
∣
∣
∣
Γ
= 0, (3.4)

where ∂P/∂N|Γ is the exterior normal derivative of pressure on the surface of box-shaped
drainage volume Γ = ∂Ω.

The reservoir pressure is initially constant

P |t=0 = Pi. (3.5)

Define average permeability:

Ka =
(
KxKyKz

)1/3
. (3.6)

In order to simplify (3.1), we take the following dimensionless transforms:

xD =
(x
L

)(Ka

Kx

)1/2

, yD =
(y
L

)(Ka

Ky

)1/2

, zD =
(z
L

)(Ka

Kz

)1/2

,

aD =
(a
L

)(Ka

Kx

)1/2

, bD =
(
b

L

)(
Ka

Ky

)1/2

,

LD =
(
Ka

Kz

)1/2

, HD =
(
H

L

)(
Ka

Kz

)1/2

,

tD =
Kat

φμCtL2
.

(3.7)

The dimensionless wellbore radius is [8]

RwD =

(
Kz/
√
KxKy

)1/6[(
Kx/Ky

)1/4 +
(
Ky/Kx

)1/4]
Rw

2L
.

(3.8)

Assume that q is the point convergence intensity at the point sink (x′, y′, z′), the
partially penetrating well is a uniform line sink, the total productivity of the well is Qw, and
there holds [8]

q =
Qw

LpD
=
Qw

LD
. (3.9)
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Dimensionless pressures are defined by

PD =
KaL(Pi − P)

μqB
, (3.10)

PwD =
KaL(Pi − Pw)

μqB
. (3.11)

Then (3.1) becomes

∂PD
∂tD

−
(
∂2PD

∂x2
D

+
∂2PD

∂y2
D

+
∂2PD

∂z2D

)

= δ
(
xD − x′

D

)
δ
(
yD − y′

D

)
δ
(
zD − z′D

)
, (3.12)

in the dimensionless box-shaped drainage volume

ΩD = (0, aD) × (0, bD) × (0,HD), (3.13)

with boundary condition

∂PD
∂ND

∣∣∣∣
ΓD

= 0, (3.14)

and initial condition

PD|tD=0 = 0. (3.15)

4. Point Sink Solution

For convenience in the following reference, we use dimensionless transforms given by (3.7)–
(3.10), every variable, drainage domain, initial and boundary conditions should be taken as
dimensionless, but we drop the subscript D.

Consequently, (3.12) is expressed as

∂P

∂t
−
(
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2

)

= δ
(
x − x′)δ

(
y − y′)δ

(
z − z′). (4.1)

Rewrite (3.14) below

∂P

∂N

∣∣∣∣
Γ
= 0, (4.2)

and (3.15) becomes

P |t=0 = 0. (4.3)
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We want to solve (4.1) under the boundary condition (4.2) and initial condition (4.3),
and to obtain point sink solution when the time t is so long that the pseudo-steady-state is
reached.

If the boundary condition is (4.2), there exists the following complete normalized
orthogonal system {glmn(x, y, z)} [11, 12]:

glmn
(
x, y, z

)
=

√
1

abHdldmdn
cos
(
lπx

a

)
cos
(mπy

b

)
cos
(nπz
H

)
, (4.4)

where l,m, n are nonnegative numbers, and

dl =

⎧
⎪⎨

⎪⎩

1 if l = 0,

1
2

if l > 0,
(4.5)

and dm, dn have similar definitions.
According to the complete normalized orthogonal systems of the Laplace equation’s

basic solution, Dirac function has the following expression for homogeneous Neumann
boundary condition ([13, 14]):

δ
(
x − x′)δ

(
y − y′)δ

(
z − z′) =

∞∑

l,m,n=0

glmn
(
x, y, z

)
glmn
(
x′, y′, z′

)
. (4.6)

In order to simplify the following derivations, we define the following notation:

∞∑

l,m,n=0

Flmn
(
x, y, z

)
=

∞∑

l=0

∞∑

m=0

∞∑

n=0

Flmn
(
x, y, z

)
, (4.7)

which means in any function F(x, y, z), the subscripts l,m, n of any variable must count from
0 to infinite.

And define

∑

l+m+n>0

Flmn
(
x, y, z

)
=

∞∑

l≥0

∞∑

m≥0

∞∑

n≥0
Flmn
(
x, y, z

)
(l +m + n > 0), (4.8)

which means in any function F(x, y, z), the subscripts l,m, n of any variable must be no less
than zero, and at least one of the three subscripts l,m, nmust be positive to guarantee l +m +
n > 0. And the upper limit of the subscripts l,m, n is infinite.

Let

P
(
t, x, y, z;x′, y′, z′

)
=

∞∑

l,m,n=0

elmn(t)glmn
(
x, y, z

)
, (4.9)

where elmn(t) are undetermined coefficients.
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Substituting (4.9) into left-hand side of (4.1), and substituting (4.6) into right-hand
side of (4.1), we obtain

∞∑

l,m,n=0

{
∂elmn(t)

∂t
glmn
(
x, y, z

) − elmn(t)Δ
[
glmn
(
x, y, z

)]
}

=
∞∑

l,m,n=0

{
∂elmn(t)

∂t
+ elmn(t)λlmn

}
glmn
(
x, y, z

)

=
∞∑

l,m,n=0

glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)
,

(4.10)

where Δ is the three-dimensional Laplace operator

Δ =
∂2

∂x2
+

∂2

∂y2
+
∂2

∂z2
, (4.11)

λlmn =
(
lπ

a

)2

+
(mπ

b

)2
+
(nπ
H

)2
. (4.12)

From (4.3) and (4.9),

elmn(0) = 0, (4.13)

compare the coefficients of glmn(x, y, z) at both sides of (4.10), we obtain

∂elmn(t)
∂t

+ λlmnelmn(t) = glmn
(
x′, y′, z′

)
, (4.14)

because λ000 = 0, from (4.14),

e000(t) = g000
(
x′, y′, z′

)
t

=
t√
abH

.
(4.15)

When λlmn /= 0 (l +m + n > 0), solve (4.14),

elmn(t) =

[
1 − exp(−λlmnt)

]
glmn
(
x′, y′, z′

)

λlmn
. (4.16)
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Substitute (4.15) and (4.16) into (4.9) and obtain

P
(
t, x, y, z;x′, y′, z′

)
=

∞∑

l,m,n=0

elmn(t)glmn
(
x, y, z

)

=
(

t√
abH

)
g000
(
x, y, z

)

+
∑

l+m+n>0

[
1 − exp(−λlmnt)

]
glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)

λlmn

=
t

abH
+
∑

l+m+n>0

glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)

λlmn

−
∑

l+m+n>0

exp(−λlmnt)glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)

λlmn
.

(4.17)

Define

I1 =
t

abH
, (4.18)

I2 = Ψ
(
x, y, z;x′, y′, z′

)

=
∑

l+m+n>0

glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)

λlmn
,

(4.19)

I3 =
∑

l+m+n>0

exp(−λlmnt)glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)

λlmn
, (4.20)

then

P
(
t, x, y, z;x′, y′, z′

)
= I1 + I2 − I3. (4.21)

Recall (4.19), the average value ofΨ throughout of the total volume of the box-shaped
reservoir is

Ψa,v =
(

1
V

)∫

Ω
Ψ
(
x, y, z

)
dV

=
(

1
V

)∫a

0

∫b

0

∫H

0
Ψ
(
x, y, z;x′, y′, z′

)
dx dy dz

=
(

1
V

)(
glmn
(
x′, y′, z′

)

λlmn

)∫a

0

∫b

0

∫H

0

∑

l+m+n>0

glmn
(
x, y, z

)
dx dy dz.

(4.22)
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Note that l+m+n > 0 implies that at least one of l,m, nmust be greater than 0, without
losing generality, we may assume

l > 0, (4.23)

then

∫a

0
cos
(
lπx

a

)
dx = 0. (4.24)

So,

∫a

0

∫b

0

∫H

0

∑

l+m+n>0

glmn
(
x, y, z

)
dx dy dz = 0, (4.25)

consequently,

Ψa,v = 0. (4.26)

If time t is sufficiently long, pseudo-steady-state is reached, I3 decreases by exponential
law, I3 will vanish, that is,

I3 ≈ 0, (4.27)

then

P
(
t, x, y, z;x′, y′, z′

)
=

t

abH
+ Ψ
(
x, y, z;x′, y′, z′

)
. (4.28)

Substituting (4.28) into (4.1), we have

1
abH

−ΔΨ = δ
(
x − x′)δ

(
y − y′)δ

(
z − z′). (4.29)

Define

f
(
x, y, z

)
= −ΔΨ

= −
(

1
abH

)
+ δ
(
x − x′)δ

(
y − y′)δ

(
z − z′),

(4.30)

note that Ψ is equal to I2 in (4.19), and

∂Ψ
∂N

= 0, on Γ. (4.31)
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From Green’s Formula [15],

0 =
∫

Γ

∂Ψ
∂N

dS =
∫

Ω
ΔΨdV = −

∫

Ω
f
(
x, y, z

)
dV, (4.32)

that is,

∫

Ω
f
(
x, y, z

)
dV = 0, (4.33)

where V is volume of drainage domain Ω.
Define the following notation of internal product of functions f(x, y, z) and g(x, y, z):

⌊
f
(
x, y, z

)
, g
(
x, y, z

)⌋
=
∫

Ω
f
(
x, y, z

)
g
(
x, y, z

)
dx dy dz =

∫

Ω
f
(
x, y, z

)
g
(
x, y, z

)
dV,

(4.34)

where 	f, g
means the internal product of functions f and g.
From (4.33), we know that the internal product of f(x, y, z) and constant number 1 is

zero

⌊
f
(
x, y, z

)
, 1
⌋
= 0, (4.35)

and it is easy to prove

⌊
f
(
x, y, z

)
, g000

⌋
= 0, (4.36)

where g000 means glmn when l = m = n = 0.
Thus, f(x, y, z) can be decomposed as [13, 14]:

f
(
x, y, z

)
=

∞∑

l,m,n=0

⌊
f, glmn

(
x′, y′, z′

)⌋
glmn
(
x, y, z

)

=
∑

l+m+n>0

⌊
f, glmn

(
x′, y′, z′

)⌋
glmn
(
x, y, z

)

=
∑

l+m+n>0

⌊
δ
(
x − x′)δ

(
y − y′)δ

(
z − z′), glmn

(
x′, y′, z′

)⌋
glmn
(
x, y, z

)

=
∑

l+m+n>0

glmn
(
x′, y′, z′

)
glmn
(
x, y, z

)
.

(4.37)
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The drainage volume is

V = abH. (4.38)

Recall (4.28), the average pressure throughout the reservoir is

Pa,v =
(

1
V

)∫

Ω
P
(
x, y, z

)
dx dy dz =

t

abH
+ Ψa,v. (4.39)

The wellbore pressure at point (xw, yw, zw) is

Pw =
t

abH
+ Ψw, (4.40)

where Ψw is the value of Ψ at wellbore point (xw, yw, zw).
Combining (4.39) and (4.40) gives

Pa,v − Pw = Ψa,v −Ψw, (4.41)

which implies Pa,v − Pw is independent of time.

5. Uniform Line Sink Solution

For convenience, in the following reference, every variable, drainage domain, initial and
boundary conditions should be taken as dimensionless, but we drop the subscript D.

The producing portion of the partially penetrating well is between point (x′, y′, 0)
and point (x′, y′, L), recall (4.4) and (4.19), in order to obtain uniform line sink solution, we
integrate Ψ with respect to z′ from 0 to L, then

J
(
x, y, z;x′, y′, z′; l,m, n

)
=
∫L

0
Ψ
(
x, y, z;x′, y′, z′

)
dz′

=
∑

l+m+n>0

Ilmn
(
x, y, z;x′, y′, z′; l,m, n

)
,

(5.1)
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where

∑

l+m+n>0

Ilmn
(
x, y, z;x′, y′, z′; l,m, n

)

=
∑

l+m+n>0

(
1

abHdldmdnλlmn

)
cos
(
lπx

a

)

× cos
(mπy

b

)
cos
(nπz
H

)

× cos
(
mπy′

b

)
cos
(
lπx′

a

)∫L

0
cos
(
nπz′

H

)
dz′

=
∑

l+m+n>0

(
1

abHdldmdnλlmn

)
cos
(
lπx

a

)
cos
(mπy

b

)
cos
(nπz
H

)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
H

πn

)
cos
(
lπx′

a

)
cos
(
mπy′

b

)
sin
(
nπL

H

)
if l /= 0,

L cos
(
mπy′

b

)
cos
(
lπx′

a

)
if l = 0.

(5.2)

Define

C = {(l,m, n) : l +m + n > 0}, (5.3)

C1 = {(l,m, n) : l = m = 0, n > 0}, (5.4)

C2 = {(l,m, n) : l = 0, m > 0, n ≥ 0}, (5.5)

C3 = {(l,m, n) : l > 0, m ≥ 0, n ≥ 0}, (5.6)

then it is easy to prove

C = C1 ∪ C2 ∪ C3,

C1 ∩ C2 = ∅, C2 ∩ C3 = ∅, C3 ∩ C1 = ∅.
(5.7)

Recall (5.1) and (5.2), and use (5.3)–(75), J(x, y, z;x′, y′, z′; l,m, n) can be decomposed
as

J =
∑

l+m+n>0

Ilmn
(
x, y, z;x′, y′, z′; l,m, n

)

=
∞∑

n=1

I00n +
∞∑

m=1

∞∑

n=0

I0mn +
∞∑

l=1

∞∑

m=0

∞∑

n=0

Ilmn.

(5.8)
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Define the following notations:

Jz =
∞∑

n=1

I00n, (5.9)

Jyz =
∞∑

m=1

∞∑

n=0

I0mn, (5.10)

Jxyz =
∞∑

l=1

∞∑

m=0

∞∑

n=0

Ilmn, (5.11)

so

J = Jz + Jyz + Jxyz, (5.12)

and the average value of J at wellbore can be written as

Ja,w = (Jz,a)w +
(
Jyz,a
)
w
+
(
Jxyz,a

)
w
. (5.13)

Rearrange (4.12) and obtain

λlmn =
(
lπ

a

)2

+
(mπ

b

)2
+
(nπ
H

)2
=
( π
H

)2(
n2 + μ2

lm

)
, (5.14)

where

μ2
lm =

(
lH

a

)2

+
(
mH

b

)2

=
(
H

b

)2
[

m2 +
(
lb

a

)2
]

,

μl0 =
lH

a
,

λlm0 =
( π
H

)2
μ2
lm,

λ0mn =
(mπ

b

)2
+
(nπ
H

)2
=
( π
H

)2
[

n2 +
(
mH

b

)2
]

,

λ00n =
n2π2

H2
.

(5.15)

There hold [16, page 47]

∞∑

n=1

sin(nx)
n3

=
π2x

6
− πx2

4
+
x3

12
(0 ≤ x ≤ 2π), (5.16)

∞∑

n=1

1 − cos(nx)
n4

=
π2x2

12
− πx3

12
+
x4

48
(0 ≤ x ≤ 2π). (5.17)
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Recall (5.4) and (5.9), Jz is for the case l = m = 0, n > 0, and at wellbore of the off-
center well,

y = y′
/= 0, x′

/= 0, x = x′ + Rw, 0 ≤ z = z′ ≤ L,

(Jz)w =
∞∑

n=1

(
1

abHdnλ00n

)
cos
(nπz
H

)∫L

0
cos
(
nπz′

H

)
dz′

=
(

2
abH

) ∞∑

n=1

(
H2

π2n2

)

cos
(nπz
H

)( H

nπ

)
sin
(
nπL

H

)

=

(
2H2

abπ3

) ∞∑

n=1

(
1
n3

)
sin
(
nπL

H

)
cos
(nπz
H

)
.

(5.18)

The average value of (Jz)w along the well length is

(Jz,a)w =
(
1
L

)∫L

0
Jzdz

=
(
1
L

) ∞∑

n=1

(
2H2

π3abn3

)

sin
(
nπL

H

)∫L

0
cos
(nπz
H

)
dz

=
∞∑

n=1

(
2H2

π3abLn3

)

sin
(
nπL

H

)[(
H

nπ

)
sin
(
nπL

H

)]

=
∞∑

n=1

(
2H3

π4abLn4

)

sin2
(
nπL

H

)

=

(
H3

π4abL

) ∞∑

n=1

(
1
n4

)[
1 − cos

(
2nπL
H

)]

=

(
H3

π4abL

)(
2πL
H

)2
[
π2

12
− π

12

(
2πL
H

)
+

1
48

(
2πL
H

)2
]

=
(
4HL

ab

)(
1
12

− L

6H
+

L2

12H2

)

=
(
2HL

3ab

)(
1
2
− L

H
+

L2

2H2

)

,

(5.19)

where we have used (5.17).
For a fully penetrating well, L = H, then

(Jz,a)w = 0. (5.20)
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Recall (5.5) and (5.10), Jyz is for the case l = 0, m > 0, n ≥ 0, and at wellbore of the
off-center well,

y = y′
/= 0, x′

/= 0, x = x′ + Rw, 0 ≤ z = z′ ≤ L,

(
Jyz
)
w
=
(

1
abH

) ∞∑

m=1

∞∑

n=0

(
1

dmdnλ0mn

)
cos2
(
mπy′

b

)
cos
(nπz
H

)∫L

0
cos
(
nπz′

H

)
dz′

=
(

2
abH

) ∞∑

m=1

∞∑

n=0

⎧
⎨

⎩
cos2
(
mπy′/b

)
cos(nπz/H)

π2dn
[
(n/H)2 + (m/b)2

]
∫L

0
cos
(
nπz′

H

)
dz′

⎫
⎬

⎭

=
(

2
abH

) ∞∑

m=1

⎧
⎨

⎩

∞∑

n=1

2(H/nπ) cos(nπz/H) sin(nπL/H)cos2
(
mπy′/b

)

π2
[
(n/H)2 + (m/b)2

]

+cos2
(
mπy′

b

)(
b2L

π2m2

)⎫⎬

⎭

=

(
2H3

π3abH

) ∞∑

m=1

⎧
⎨

⎩

∞∑

n=1

2 cos(nπz/H) sin(nπL/H)cos2
(
mπy′/b

)

n
[
n2 + (mH/b)2

]

+cos2
(
mπy′

b

)(
b2Lπ

H3m2

)⎫⎬

⎭

=

(
2H2

π3ab

)(
πLb2

H3

) ∞∑

m=1

(
1
m2

)
cos2
(
mπy′

b

)

+

(
2H2

π3ab

) ∞∑

m=1

∞∑

n=1

⎧
⎨

⎩
2 cos(nπz/H) sin(nπL/H)cos2

(
mπy′/b

)

n
[
n2 + (mH/b)2

]

⎫
⎬

⎭

=
(

2bL
π2aH

) ∞∑

m=1

(
1
m2

)
cos2
(
mπy′

b

)

+

(
2H2

π3ab

) ∞∑

m=1

∞∑

n=1

⎧
⎨

⎩
2 cos(nπz/H) sin(nπL/H)cos2

(
mπy′/b

)

n
[
n2 + (mH/b)2

]

⎫
⎬

⎭
,

(5.21)

where we use the following formulas [16, page 47]:

∞∑

m=1

(
1
m2

)
cos(mx) =

π2

6
− πx

2
+
x2

4
(0 ≤ x ≤ 2π), (5.22)

∞∑

m=1

(
1
m2

)
cos2(mx) =

π2

6
− πx

2
+
x2

2
(0 ≤ x ≤ π). (5.23)
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The average value of (Jyz)w along the well length is

(
Jyz,a
)
w
=
(
1
L

)∫L

0
Jyzdz

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H2

abLπ3

) ∞∑

m=1

∞∑

n=1

⎧
⎨

⎩
2 sin(nπL/H)cos2

(
mπy′/b

)

n
[
n2 + (mH/b)2

]
∫L

0
cos
(nπz
H

)
dz

⎫
⎬

⎭

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H2

abLπ3

) ∞∑

m=1

∞∑

n=1

⎧
⎨

⎩
2Hsin2(nπL/H)cos2

(
mπy′/b

)

πn2
[
n2 + (mH/b)2

]

⎫
⎬

⎭

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H3

abLπ4

) ∞∑

m=1

∞∑

n=1

⎧
⎨

⎩
[1 − cos(2nπL/H)]cos2

(
mπy′/b

)

n2
[
n2 + (mH/b)2

]

⎫
⎬

⎭

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H3

abLπ4

) ∞∑

m=1

∞∑

n=1

(
b

mH

)2

cos2
(
mπy′

b

)

×
[

1 − cos
(
2nπL
H

)
,
1
n2

− 1

n2 + (mH/b)2

]

=
(
2bL
aH

)(
1
6
− y′

2b
+
y2′

2b2

)

+

(
H3

2abLπ4

) ∞∑

m=1

(
b

mH

)2

cos2
(
mπy′

b

)

×
∞∑

n=1

[
1
n2

− cos(2nπL/H)
n2

− 1

n2 + (mH/b)2
+
cos(2nπL/H)

n2 + (mH/b)2

]

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H3

abLπ4

) ∞∑

m=1

(
b

mH

)2

cos2
(
mπy′

b

)

×
{
π2

6
−
[
π2

6
− π

2

(
2πL
H

)
+
1
4

(
2πL
H

)2
]

−
[(

bπ

2mH

)
coth
(
mHπ

b

)
− 1
2

(
b

mH

)2
]

+

[(
bπ

2mH

)
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− 1
2

(
b

mH

)2
]}

,

(5.24)
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where we use the following formulas [16, page 47]:

∞∑

n=1

cos(nx)
n2 + β2

=
(
π

2β

){cosh
[
β(π − x)]

sinh
(
βπ
)

}

− 1
2β2

(0 ≤ x ≤ 2π), (5.25)

∞∑

n=1

1
n2 + β2

=
(
π

2β

)
coth
(
βπ
) − 1

2β2
(0 ≤ x ≤ 2π), (5.26)

and we may simplify (5.24) further

(
Jyz,a
)
w
=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H3

abLπ4

) ∞∑

m=1

cos2
(
mπy′

b

)(
b

mH

)2

×
{
π2L

H
− π2L2

H2
+
(

bπ

2mH

){
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− coth

(
mHπ

b

)}}

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+

(
2H3

abLπ4

) ∞∑

m=1

cos2
(
mπy′

b

)(
1
m2

)

×

⎧
⎪⎪⎨

⎪⎪⎩

π2Lb2

H3
− π2L2b2

H4
+

(
b3π

2mH3

)

×
{
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− coth

(
mHπ

b

)}
⎫
⎬

⎭

=
(
2bL
aH

)(
1
6
− y′

2b
+
y

′2

2b2

)

+
(

2b
aπ2

)(
1 − L

H

)(
π2

6
− π2y′

2b
+
π2y2′

2b2

)

+

(
b2

aLπ3

) ∞∑

m=1

cos2
(
mπy′

b

)(
1
m3

)

×
{
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− coth

(
mHπ

b

)}

=
(
2b
a

)(
1
6
− y′

2b
+
y2′

2b2

)

+

(
b2

aLπ3

) ∞∑

m=1

[
cos2
(
mπy′/b

)

m3

]{
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− coth

(
mHπ

b

)}
.

(5.27)

For a fully penetrating well, L = H, then

(
Jyz,a
)
w
=
(
2b
a

)(
1
6
− y′

2b
+
y

′2

2b2

)

. (5.28)
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Define

f(x) = sinh[α(1 − x)] sinh(αx), (5.29)

since the derivative of f(x) is

f ′(x) = α cosh(αx) sinh[α(1 − x)] − α cosh[α(1 − x)] sinh(αx)
= α sinh[α(1 − 2x)],

(5.30)

consequently,

f ′
(
1
2

)
= 0. (5.31)

When x = 0 and x = 1,

f(0) = f(1) = 0. (5.32)

When x = 1/2, f(x) reaches maximum value, let

x =
L

H
, (5.33)

and the producing length L is a variable, define

F(L) =
cosh

[
βπ(1 − 2L/H)

] − cosh
(
βπ
)

sinh
(
βπ
)

=
−2 sinh[βπ(1 − L/H)

]
sinh
[
βπL/(H)

]

sinh
(
βπ
) ,

(5.34)

thus when L = H/2, |F(L)| reaches maximum value,

|F(L)|max =
∣∣∣∣F
(
H

2

)∣∣∣∣

=
2sinh2(βπ/2

)

sinh
(
βπ
)

=
2sinh2(βπ/2

)

2 sinh
(
βπ/2

)
cosh

(
βπ/2

)

=
sinh
(
βπ/2

)

cosh
(
βπ/2

) < 1,

(5.35)
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so F(L) is a bounded function, let

β =
mH

b
, (5.36)

then

(
Jyz,a
)
w
=
(
2b
a

)(
1
6
− y′

2b
+
y2′

2b2

)

+

(
b2

aLπ3

)

×
∞∑

m=1

[
cos2
(
mπy′/b

)

m3

]{
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− coth

(
mHπ

b

)}

=
(
2b
a

)(
1
6
− y′

2b
+
y2′

2b2

)

+

(
b2

aLπ3

)

×
∞∑

m=1

[
cos2
(
mπy′/b

)

m3

]{−2 sinh[(mHπ/b)(1 − L/H)] sinh(mLπ/b)
sinh(mHπ/b)

}

≈
(
2b
a

)(
1
6
− y′

2b
+
y2′

2b2

)

+

(
b2

aLπ3

)

×
M∑

m=1

[
cos2
(
mπy′/b

)

m3

]{−2 sinh[(mHπ/b)(1 − L/H)] sinh(mLπ/b)
sinh(mHπ/b)

}
.

(5.37)

Since 0 < L/H < 1, from (5.34) and (5.35), there holds

∞∑

m=101

∣∣∣∣∣

[
cos2
(
mπy′/b

)

m3

]{−2 sinh[(mHπ/b)(1 − L/H)] sinh(mLπ/b)
sinh(mHπ/b)

}∣∣∣∣∣

≤
∞∑

m=101

1
m3

= ζ(3) −
100∑

m=1

1
m3

= 4.9502 × 10−5,

(5.38)

where ζ(3) is Riemann-ζ function:

ζ(3) =
∞∑

m=1

1
m3

= 1.202057, (5.39)
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thus

∞∑

m=1

(
1
m3

){
2 sinh[(mHπ/b)(1 − L/H)] sinh(mLπ/b)

sinh(mHπ/b)

}

≈
100∑

m=1

(
1
m3

){
2 sinh[(mHπ/b)(1 − L/H)] sinh(mLπ/b)

sinh(mHπ/b)

}
.

(5.40)

So, in (5.37),M = 100 is sufficient to reach engineering accuracy.
Recall (5.6) and (5.11), Jxyz is for the case l > 0, m ≥ 0, n ≥ 0, and at wellbore of the

off-center well,

y = y′
/= 0, x′

/= 0, x = x′ + Rw, 0 ≤ z = z′ ≤ L, (5.41)

then

(
Jxyz
)
w
=
(

1
abH

)

×
∞∑

l=1

∞∑

m=0

∞∑

n=0

{[
cos(nπz/H) cos(lπx′/a) cos[(lπ(x′ + Rw))/a]cos2

(
mπy′/b

)

dldmdnλlmn

]

×
∫L

0
cos
(
nπz′

H

)
dz′
}

=
(

1
abH

) ∞∑

l=1

∞∑

m=0

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]
cos2
(
mπy′

b

)

×
{ ∞∑

n=1

[
4(H/nπ) sin(nπL/H) cos(nπz/H)

dmλlmn

]
+

2L
dmλlm0

}

.

(5.42)

The average value of (Jxyz)w along the well length is

(
Jxyz,a

)
w
=
(

1
abH

) ∞∑

l=1

∞∑

m=0

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]
cos2
(
mπy′

b

)

×
⎧
⎨

⎩

∞∑

n=1

⎡

⎣
4(H/nπ) sin(nπL/H)

∫L
0 cos(nπz/H)dz

dmλlmnL

⎤

⎦ +
2L

dmλlm0

⎫
⎬

⎭
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=
(

1
abH

) ∞∑

l=1

∞∑

m=0

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]
cos2
(
mπy′

b

)

×
{ ∞∑

n=1

[
4(H/nπ)2sin2(nπL/H)

dmλlmnL

]

+
2L

dmλlm0

}

=

(
H4

abHπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

] ∞∑

m=0

cos2
(
mπy′

b

)

×
{ ∞∑

n=1

2[1 − cos(2nπL/H)]
dmn2

(
n2 + μ2

lm

)
L

+
2π2L

dmH2μ2
lm

}

=

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]{ ∞∑

m=0

(
2
dm

)
cos2
(
mπy′

b

)

×
{ ∞∑

n=1

(
1

μ2
lmL

)[
1 − cos

(
2nπL
H

)]
×
(

1
n2

− 1
n2 + μ2

lm

)

+
π2L

H2μ2
lm

}

=

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]{ ∞∑

m=0

(
2

dmμ
2
lm
L

)

cos2
(
mπy′

b

)

×
{ ∞∑

n=1

[
1
n2

− cos(2nπL/H)
n2

− 1
n2 + μ2

lm

+
cos(2nπL/H)

n2 + μ2
lm

]}

+

(
π2L2

H2

)}

=

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

] ∞∑

m=0

(
2

dmμ
2
lmL

)

cos2
(
mπy′

b

)

×
{
π2

6
−
[
π2

6
−
(π
2

)(2πL
H

)
+
(
1
4

)(
2πL
H

)2
]

−
[(

π

2μlm

)
coth
(
μlmπ

) −
(

1
2μ2

lm

)]

+

[(
π

2μlm

)cosh
[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − 1
2μ2

lm

]}

+

(
π2L2

H2

)}

,

(5.43)

where we use (5.22) and (5.25).
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Let x = 0, recast (5.26), we obtain

1
β2

+ 2
∞∑

n=1

1
n2 + β2

=
(
π

β

)
coth
(
βπ
)
,

∞∑

n=0

1
(
n2 + β2

)
dn

=
(
π

β

)
coth
(
βπ
)
.

(5.44)

So,

(
Jxyz,a

)
w
=

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

] ∞∑

m=0

(
2

dmμ
2
lm
L

)

cos2
(
mπy′

b

)

×
{(

π2L

H
− π2L2

H2
+
π2L2

H2

)

+
(

π

2μlm

)[cosh
[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
]}

=

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]

×
{ ∞∑

m=0

(
π

dmμ
3
lmL

)

cos2
(
mπy′

b

)
×
{
cosh

[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}

+
(
2
L

)(
π2L

H

) ∞∑

m=0

cos2
(
mπy′/b

)

dmμ
2
lm

}

=

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]

×
{ ∞∑

m=0

(
π

dmμ
3
lmL

)

cos2
(
mπy′

b

)
×
{
cosh

[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}

+

(
abπ3

H3l

)

coth
(
lbπ

a

)
+

(
π2

H

) ∞∑

m=0

cos
(
2mπy′/b

)

dmμ
2
lm

}

=

(
H3

abLπ3

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]

×
{ ∞∑

m=0

(
1

dmμ
3
lm

)

cos2
(
mπy′

b

)
×
{
cosh

[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}}

+

(
H3

abπ4

) ∞∑

l=1

cos
(
lπx′

a

)
cos

[
lπ(x′ + Rw)

a
,

(
abπ3

H3l

)

coth
(
lbπ

a

)

+

(
π2

H

) ∞∑

m=0

cos
(
2mπy′/b

)

dmμ
2
lm

]

.

(5.45)
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Since

(
π2

H

) ∞∑

m=0

[
cos
(
2mπy′/b

)

dmμ
2
lm

]

=

(
b2

H3

) ∞∑

m=0

⎧
⎨

⎩
cos
(
2mπy′/b

)

dm
[
m2 + (bl/a)2

]

⎫
⎬

⎭

=

(
b2

H3

)(πa
bl

){cosh
[
πbl
(
1 − 2y′/b

)
/a
]

sinh(πbl/a)

}

≈
(

b

H3

)(πa
l

)
exp
(
−2πy

′l
a

)
,

(
H3

abπ4

)∣∣∣∣∣

∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

](
b

H3

)(πa
l

)
exp
(
−2πy

′l
a

)∣∣∣∣∣

≤
(

1
π3

)
ln
[
1 − exp

(−2πy′/a
)]

≈ 0,

(5.46)

thus

(
Jxyz,a

)
w
≈
(

H3

abLπ3

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

] ∞∑

m=0

(
1

dmμ
3
lm

)

cos2
(
mπy′

b

)

×
{
cosh

[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}

+
(
1
π

) ∞∑

l=1

(
1
l

)
coth
(
lbπ

a

)
cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]

≈
(

H3

abLπ3

) ∞∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

] ∞∑

m=0

(
1

dmμ
3
lm

)

cos2
(
mπy′

b

)

×
{
cosh

[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}

−
(

1
2π

)
ln
{
4 sin
(
πRw

2a

)
sin
[
π(2x′ + Rw)

2a

]}
,

(5.47)

where we use the following formula [16, page 46]:

∞∑

n=1

cos(nx)
n

= − ln
[
2 sin
(x
2

)]
, (5.48)
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and the following simplifications:

coth
(
lbπ

a

)
≈ 1,

∞∑

l=1

(
1
l

)
coth
(
lbπ

a

)
cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]

≈
∞∑

l=1

(
1
l

)
cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]

= −1
2
ln
{
4 sin
(
πRw

2a

)
sin
[
π(2x′ + Rw)

2a

]}
.

(5.49)

For a fully penetrating well, L = H, (5.47) is simplified as

(
Jxyz,a

)
w
= −
(

1
2π

)
ln
{
4 sin
(
πRw

2a

)
sin
[
π(2x′ + Rw)

2a

]}
. (5.50)

Recall (5.13), then

Ja,w = (Jz,a)w +
(
Jyz,a
)
w
+
(
Jxyz,a

)
w

=
(
2HL

3ab

)(
1
2
− L

H
+

L2

2H2

)

+
(
2b
a

)(
1
6
− y′

2b
+
y2′

2b2

)

+

(
b2

aLπ3

)
M∑

m=1

[
cos2
(
mπy′/b

)

m3

]{
cosh[(mHπ/b)(1 − 2L/H)]

sinh(mHπ/b)
− coth

(
mHπ

b

)}

+

(
H3

abLπ3

){
N∑

l=1

cos
(
lπx′

a

)
cos
[
lπ(x′ + Rw)

a

]
×

M∑

m=0

(
1

dmμ
3
lm

)

cos2
(
mπy′

b

)

×
{
cosh

[
μlmπ(1 − 2L/H)

]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}}

−
(

1
2π

)
ln
{
4 sin
(
πRw

2a

)
sin
[
π(2x′ + Rw)

2a

]}
.

(5.51)

Recall (4.28) and (4.40), the average wellbore pressure along the uniform line sink is

Pa,w =
t

abH
+ Ja,w, (5.52)
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then (4.41) becomes

Pa,v − Pa,w = Ja,v − Ja,w, (5.53)

which implies Pa,v − Pa,w is independent of time.

6. Productivity Formula and Shape Factor Formula

Note that (5.53) is in dimensionless form, that is,

Pa,vD − Pa,wD = Ja,vD − Ja,wD. (6.1)

Formulas (4.26), (4.41), (5.1), (5.2), and (5.53) are in dimensionless forms, recall (4.26)
and obtain

Ψa,vD = 0, Ja,vD = 0, (6.2)

which implies

Pa,vD − Pa,wD = −Ja,wD = −
[
KaL(Pa − Pw)

μqB

]
. (6.3)

In order to simplify the above formulas, let

Ye = a, Xe = b, Yw = x′, Xw = y′, (6.4)

then

YeD = aD, XeD = bD, YwD = x′
D, XwD = y′

D. (6.5)

Combining (3.6), (3.9), (5.13), (6.3), the pseudo-steady-state productivity formula for
a partially penetrating vertical well in an anisotropic closed box-shaped reservoir is obtained

Qw = FD
2π
(
KxKy

)1/2
H(Pa − Pw)/

(
μB
)

Λ + Sps
, (6.6)
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where Pa is average reservoir pressure throughout the box-shaped drainage volume, Pw is
average wellbore pressure, and

Λ =
(
4πXeD

ηYeD

)(
1
6
− XwD

2XeD
+
X2
wD

2X2
eD

)

− ln{4|sin[π(2YwD + RwD)/2YeD]| sin[πRwD/2YeD]}
η

(6.7)

Sps =
(

4πHDLD
3ηXeDYeD

)(
1
2
− η +

η2

2

)

+

(
2X2

eD

π2ηYeDLD

)
M∑

m=1

[
cos2(mπXwD/XeD)

m3

]

×
{
cosh

[
(mπHD/XeD)

(
1 − 2η

)]

sinh(mπHD/XeD)
− coth

(
mπHD

XeD

)}

+

{(
2H3

D

π2ηXeDYeDLD

)
N∑

l=1

cos
(
lπYwD
YeD

)
cos
[
lπ(YwD + RwD)

YeD

]

×
M∑

m=0

(
1

dmμ
3
lm

)

cos2
(
mπXwD

XeD

){cosh
[
μlmπ

(
1 − 2η

)]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}}

,

(6.8)

where η is partial penetration factor defined in (2.3), Sps is pseudoskin factor due to partial
penetration, and

μlm =

[(
lH

a

)2

+
(
mH

b

)2
]1/2

. (6.9)

In the above equations,M =N = 100 is sufficient to reach engineering accuracy.
For a fully penetrating well, L = H, then (6.8) reduces to

Sps = 0. (6.10)

If a fully penetrating vertical well located in a closed isotropic rectangular reservoir,

Sps = 0, Lp = H, Kx = Ky = Kz = K. (6.11)
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Then (6.6) reduces to

Qw =
2πKH(Pa − Pw)/

(
μB
)

Θ − ln{4 sin[πRw/(2Ye)] sin(πYw/Ye)} ,
(6.12)

where

Θ =
(
4πXe

Ye

)[
1
6
− 1
2

(
Xw

Xe

)
+
1
2

(
Xw

Xe

)2
]

. (6.13)

Note that for a rectangle, its area is A = XeYe, recall (2.10), equate (2.10) to (6.12),

2πKH(Pa − Pw)/
(
μB
)

Θ − ln{4 sin[πRw/(2Ye)] sin(πYw/Ye)} =
2πKH(Pa − Pw)/

(
μB
)

(1/2) ln
[
2.2458XeYe/

(
CAR

2
w

)] . (6.14)

A new expression to calculate the Dietz shape factor is obtained by solving CA in
(6.14),

CA =
88.6657f1sin2(πf3

)

exp
(
f4
) , (6.15)

where

f1 =
Xe

Ye
, f2 =

Xw

Xe
, f3 =

Yw
Ye

, (6.16)

f4 =
(
8πf1

)
(

1
6
− f2

2
+
f2
2

2

)

. (6.17)

Formula (6.6) is recommended to calculate productivity index in pseudo-steady-state,
because it does not require the shape factor, and it is applicable to an off-center partially
penetrating vertical well in pseudo-steady-state arbitrarily located in an anisotropic box-
shaped reservoir.

So, the step-by-step derivations of pseudo-steady-state productivity formula and
shape factor formula which were published in [1, 2] have been given in the above sections.

7. Examples and Discussions

The following examples are given to calculate well productivity index, pseudoskin factor due
to partial penetration, and shape factor.

Example One

Use (6.6) to calculate productivity index of a partially penetrating vertical well in pseudo-
steady-state in a closed box-shaped anisotropic reservoir. The wellbore, reservoir, and fluid
properties data practical SI units are given in Table 1.
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Table 1:Wellbore, Reservoir, and Fluid Properties Data.

Reservoir length, Xe 800m
Reservoir width, Ye 200m
Payzone thickness,H 20m
Well location in x direction, Xw 100m
Well location in y direction, Yw 50m
Producing well length, Lp 10m
Wellbore radius, Rw 0.1m
Permeability in x direction,Kx 0.1μm2

Permeability in y direction, Ky 0.4μm2

Permeability in z direction,Kz 0.025μm2

Oil viscosity, μ 5.0mPa.s
Formation volume factor, B 1.25Rm3/Sm3

Solution. The average permeability is

Ka = (0.1 × 0.4 × 0.025)1/3 = 0.1
(
μm2
)
. (7.1)

Using dimensionless transforms given by (3.7) through (3.10), we obtain

XeD =
(
800
10

)
×
(
0.1
0.1

)1/2

= 80.0, YeD =
(
200
10

)
×
(
0.1
0.4

)1/2

= 10.0,

XwD =
(
100
10

)
×
(
0.1
0.1

)1/2

= 10.0, YwD =
(
50
10

)
×
(
0.1
0.4

)1/2

= 2.5,

LD =
(

0.1
0.025

)1/2

= 2.0, HD =
(
20
10

)
×
(

0.1
0.025

)1/2

= 4.0,

RwD =

(
0.025

(0.1 × 0.4)1/2

)1/6

×
((

0.1
0.4

)1/4

+
(
0.4
0.1

)1/4
)

× 0.1
(2 × 10)

= 0.0075

η =
10.0
20.0

= 0.5, 1 − 2η = 0,

μlm =

[(
4l
10

)2

+
(
4m
80

)2
]1/2

=

(
4l2

25
+
m2

400

)1/2

.

(7.2)
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Recalling (6.8), pseudoskin factor due to partial penetration can be expressed as

Sps = Ψ1 + Ψ2 + Ψ3, (7.3)

where

Ψ1 =
(

4πHDLD
3ηXeDYeD

)(
1
2
− η +

η2

2

)

,

Ψ2 =

(
2X2

eD

π2ηYeDLD

)
100∑

m=1

[
1
m3

cos2
(
mπXwD

XeD

)]

×
{
cosh

[
(mHDπ/XeD)

(
1 − 2η

)]

sinh(mHDπ/XeD)
− coth

(
mHDπ

XeD

)}

,

Ψ3 =

(
2H3

D

π2ηXeDYeDLD

)
100∑

l=1

cos
(
lπYwD
YeD

)
cos
(
lπ(YwD + RwD)

YeD

)

×
{

100∑

m=0

(
1

dmμ
3
lm

)

cos2
(
mπXwD

XeD

){cosh
[
μlmπ

(
1 − 2η

)]

sinh
(
μlmπ

) − coth
(
μlmπ

)
}}

.

(7.4)

Consequently,

Ψ1 =
(
4 × π × 4.0 × 2.0
3 × 0.5 × 80 × 10

)
×
(
1
2
− 1
2
+

1
2 × 22

)

= 0.01047,

Ψ2 =

(
2 × 802

π2 × 0.5 × 10 × 2.0

)

×
(

100∑

m=1

(
1
m3

× cos2
(
10
80

× π ×m
)

×
(

cosh(0)
sinh(4.0 × π ×m/80.0) − coth

(
4.0
80.0

× π ×m
))))

= −10.92,



32 Mathematical Problems in Engineering

Ψ3 =

(
2 × 4.03

π2 × 0.5 × 80 × 10 × 2

)

×
100∑

l=1

cos2
(
l × π × 2.5

10

)

×

⎛

⎜
⎝

100∑

m=1

(
2

(4 × l2/25 +m2/400)3/2

)

× cos2
(
m × π × 10

80

)

×

⎛

⎜
⎝

cosh(0)

sinh
(
π ×
√
4 × l2/25 +m2/400

) − coth

⎛

⎝π ×
√

4 × l2

25
+
m2

400

⎞

⎠

⎞

⎟
⎠

+
(

125
8 × l3

)
×
(

cosh(0)
sinh(π × 2 × l/5) − coth

(
π × 2 × l

5

))
⎞

⎟
⎠

= −1.086,

Sps = 0.01047 + (−10.92) + (−1.086) ≈ −12.00.
(7.5)

Recalling (6.7), Λ is calculated by

Λ =
(
4 × π × 8

0.5

)
×
(
1
6
− 1
2 × 8

+
1

2 × 82

)

− ln(4 × sin(π × 0.0075/2 × 10) × sin(π × (0.0075 + 2 × 2.5)/2 × 10))
0.5

= 27.52.

(7.6)

We use (6.6), FD = 86.4 for practical SI units, the productivity index (the production
rate per unit pressure drawdown) in pseudo-steady-state of the given well is

PI =
86.4 × 2 × π × (0.1 × 0.4)1/2 × 20/(5 × 1.25)

27.52 + (−12.00) = 22.39
(
Sm3/D/MPa

)
. (7.7)

Example Two

Using the formulas given by Brons andMarting, Papatzacos, Bervaldier, calculate pseudoskin
factor of the well in Example One.
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Solution. If we use Brons and Marting’s pseudoskin factor formula, then

Kh =
(
KxKy

)1/2 = (0.1 × 0.4)1/2 = 0.2
(
μm2
)
,

hD =
(
H

Rw

)(
Kh

Kv

)1/2

=
(
20
0.1

)
×
(

0.2
0.025

)1/2

= 565.685,

G
(
η
)
= 2.948 − 7.363η + 11.45η2 − 4.675η3

= 2.948 − 7.363 × 0.5 + 11.45 × 0.52 − 4.675 × 0.53

= 1.545,

(7.8)

thus from (2.4), we have

Sps =
(
1
η
− 1
)
[
ln(hD) −G

(
η
)]

=
(

1
0.5

− 1
)
[ln(565.685) − 1.545]

= 4.793.

(7.9)

If we use Papatzacos’s pseudoskin factor formula, then

h1 = 0,

Ψ1 =
H

h1 + 0.25Lp
=

20
0 + 0.25 × 10

= 8.0,

Ψ2 =
H

h1 + 0.75Lp
=

20
0 + 0.75 × 10

= 2.667,

(7.10)

thus from (2.7), we have

Sps =
(
1
η
− 1
)
ln
(
πhD
2

)
+
(
1
η

)
ln

[(
η

2 + η

)(
Ψ1 − 1
Ψ2 − 1

)1/2
]

=
(

1
0.5

− 1
)
ln
(
π × 565.685

2

)
+
(

1
0.5

)
ln

[(
0.5

2 + 0.5

)(
8.0 − 1

2.667 − 1

)1/2
]

= 5.006.

(7.11)

If we use Bervaldier’s pseudoskin factor formula, then

Lp = 10 (m), Rw = 0.1 (m), (7.12)
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thus from (2.9), we have

Sps =
(
1
η
− 1
)[ ln

(
Lp/Rw

)

1 − Rw/Lp
− 1

]

=
(

1
0.5

− 1
)[

ln(10/0.1)
1 − 0.1/10

− 1
]

= 3.652.

(7.13)

But the pseudoskin factor in Example One calculated by (6.8) is

Sps = −12.0. (7.14)

Formulas (2.4), (2.7), and (2.9) cannot account for the effect of well location inside a
finite drainage volume on Sps. But (6.8) is applicable to a well arbitrarily located in a box-
shaped reservoir, Sps is a function of well location parameters Xw and Yw, and Sps is also a
function of reservoir size parametersXe and Ye. This is the reason why significant differences
exist between Sps calculated by (6.8) and Sps calculated by (2.4), (2.7), and (2.9).

Example Three

A fully penetrating vertical well is located at the center of an isotropic rectangular reservoir
withXe/Ye = 4, calculate the shape factor and compare with the corresponding shape factors
given by Dietz and Earlougher et al.

Solution. Since the well is located at the center of the rectangular reservoir with Xe/Ye = 4,
use (6.16),

f1 =
Xe

Ye
= 4, f2 =

Xw

Xe
= 0.5, f3 =

Yw
Ye

= 0.5, (7.15)

then

f4 = (8π × 4) ×
(

1
6
− 0.5

2
+
0.52

2

)

= 4.1888. (7.16)

Use (6.15), the shape factor is

CA =
88.6657 × 4 × sin2(π × 0.5)

exp(4.1888)

= 5.3783.

(7.17)

The corresponding shape factor given by Dietz [9] is CA = 5.38, and CA = 5.3790 given
by Earlougher et al. [10]. Thus, there does not exist significant difference between the shape
factor values calculated by our proposed formula and given by Dietz and Earlougher et al.,
which indicates that our proposed formula is reliable and reasonable accurate.
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More examples are given in [1, 2] to calculate productivity index and pseudoskin
factor due to partial penetration by using the proposed formulas, the values of shape factors
obtained by the methods of Dietz, Earlougher, and the proposed shape factor formula are
compared. The proposed formulas are shown to be reliable and reasonable accurate by the
examples in [1, 2], because the proposed equations are derived by solving analytically the
involved three-dimensional Laplace equation, they are a fast analytical tool to evaluate well
performance in pseudo-steady-state.

8. Summary and Conclusions

The summary and conclusions of this paper are given below.

(1) A pseudo-steady-state productivity formula for an off-center partially penetrating
vertical well in a closed box-shaped reservoir is presented.

(2) A formula for calculating pseudoskin factor due to partial penetration is presented;
the pseudoskin factor of a vertical well in a box-shaped reservoir is a function of
well location and reservoir size.

(3) The proposed formulas are reliable and reasonable accurate, because the proposed
formulas are derived by the orthogonal decomposition of Dirac function and
Green’s function to Laplace equation with homogeneous Neumann boundary
condition, they are a fast analytical tool to evaluate well performance in pseudo-
steady-state.
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