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For modeling and controlling dynamic phenomena it is important to establish with higher
accuracy some significant quantities corresponding to the dynamic system. For fast phenomena,
such significant quantities are represented by the derivatives of the received signals. In case
of advanced computer modeling, the received signal should be filtered and converted into a
time series corresponding to the estimated values for the dynamic system through a sampling
procedure. This paper will show that present-day methods for computing in a robust manner the
first derivative of a received signal (using an oscillating system working on a limited time interval
and a supplementary differentiation method) can be extended to the robust computation of higher
order derivatives of the received signal by using a specific set of second-order oscillating systems
(working also on limited time intervals) so as estimative values for higher-order derivatives
are to be directly generated (avoiding the necessity of additional differentiation or amplifying
procedures, which represent a source of supplementary errors in present-day methods).

1. Introduction

For modeling and controlling dynamic phenomena it is important to establish with higher
accuracy some physical quantities corresponding to the dynamic system. Usually this
procedure is based on signal processing method applied upon the signal received from the
dynamic system, implying some filtering methods (for noise rejection). In case of advanced
computer modeling, the filtered signal should be converted further into a time series
corresponding to the estimated values for the dynamic system through a sampling procedure.
Many times these filtering and sampling devices consist of lowpass filters represented by
asymptotically stable systems, the sampling moment of time being set after the transient
regime of the filtering device has passed.
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However, for fast phenomena, significant quantities are represented by the derivatives
of the received signals. Usually the derivatives of a received signal y(t) = z(t) + n(t) (where
z(t) represents the useful part of the signal, and n(t) represents the noise) are computed by
filtering the received signal and dividing the difference between the filtered values u(tk) of
the signal at two consecutive sampling moments of time by the time difference between these
time moments (for first order derivative), by dividing the difference between the values of
first-order derivative by the same time difference (for the second-order derivative), and so
on. Yet this method requires very good filtering properties, while any difference in sampled
values can drastically affect the estimation for the derivative.

The average value of the first derivative can be approximated by

z(tk) − z(tk−1)
tk − tk−1

=
z(tk) − z(tk−1)

Δt
(1.1)

and can be estimated by the mathematical operation

u(tk) − u(tk−1)
tk − tk−1

=
u(tk) − u(tk−1)

Δt
, (1.2)

where u(tk) represents the filtered values of the received signal y(t) (as has been shown). In
the ideal case, u(tk) should be equal to z(tk). This cannot be achieved. For avoiding significant
errors the difference z(tk)−z(tk−1) should be estimatedwith higher accuracy. This implies that
the filtered values u(tk) should be close to the values of the useful part of the received signal
z(tk).

As a consequence, the filtering device should reject the noise (supposed to present fast
variation as compared to the variations of the useful part z(t)) in a significant manner. For
this purpose, the filtering and sampling devices based on asymptotically stable systems can
be improved. They have the transfer function

H(s) =
1

T0s + 1
(1.3)

(for a first-order system) and

H(s) =
1

T2
0 s

2 + 2bT0s + 1
(1.4)

(for a second-order system). They attenuate an alternating signal of angular frequency
ω � ω0 = 1/T0 (corresponding to noise) aboutω/ω0 times (for a first-order system) or about
(ω/ω0)

2 times (for a second-order system). The response time of such systems at a c useful
signal is about 5T0 (5T0 for the first-order system and 4T0/b for the second-order system). If
the signal generated by the first- or second-order system is integrated over such a period, a
supplementary attenuation for the alternating signal of about 5ω/ω0 can be obtained.
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However, such structures are very sensitive at the random variations of the integration
period (for unity-step input, the signal, which is integrated, is equal to unity at the sampling
moment of time). Even if we use oscillators with a very high accuracy, such random variations
will appear due to the fact that the integration is performed by an electric current charging a
capacitor. This capacitor must be charged at a certain electric charge Q necessary for further
conversions; this electric charge cannot be smaller than a certain value Qlim, while it has to
supply a minimum value Imin for the electric current necessary for conversions on the time
period tconv required by these conversions, the relation

Qlim = Imintconv (1.5)

being valid. So the minimum value Iint(min) for the electric current charging the capacitor in
the integrator system is determined by the relation

Iint(min) =
Qlim

tint
, (1.6)

where tint is the integration period required by the application (knowing the sampling
frequency fs, we can approximately establish tint using the relation tint = 1/fs). So the current
charging the capacitor cannot be less than a certain value; thus random variations of the
integration period will appear due to the fact that the random phenomena are generated
when a nonzero electric current is switched off.

2. Specific Aspects of Using Oscillating Systems for
Filtering the Received Signal

The disadvantage of using asymptotically stable systems (previously mentioned) can be
avoided by using an oscillating second-order system having the transfer function

Hosc =
1

T2
0 s

2 + 1
(2.1)

working on the time interval [0, 2πT0] (see [1] for more details). For initial conditions equal
to zero, the response of the oscillating system at a step input with amplitude A will have the
form

w(t) = A

(
1 − cos

(
t

T0

))
. (2.2)

By integrating this result on the time interval [0, 2πT0], we obtain the result u = 2πAT0,
and we can also notice that the quantity which is integrated and its slope are equal to zero
at the end of the integration period. Thus the influence of the random variations of the
integration period (generated by the switching phenomena) is practically rejected. Analyzing
the influence of the oscillating system upon an alternating input, we can observe that the
oscillating system attenuates about (ω/ω0)

2 times such an input. The use of the integrator
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leads to a supplementary attenuation of about (2π)(ω/ω0) times. The oscillations having the
form

wosc = a sin(ω0t) + b cos(ω0t) (2.3)

generated by the input alternating component have a lower amplitude and generate a null
result after an integration over the time interval [0, 2πT0]. As a conclusion, such a structure
provides practically the same performances as a structure consisting of an asymptotically
stable second-order system and an integrator (response time of about 6T0, an attenuation of
about 6(ω/ω0)

3 times for an alternating component having frequency ω) moreover being
less sensitive at the random variations of the integration period. It is the most suitable for the
operation

u(tk) − u(tk−1)
Δt

, (2.4)

where Δt = tk − tk−1. The difference u(tk) − u(tk−1) can be further divided by a constant value
(corresponding to Δt) so as to estimate the first-order derivative z(tk) − z(tk−1). For restoring
the initial null conditions after the sampling procedure (at the end of the working period)
some electronic devices must be added (see [2] for more details).

However, this method presents a major disadvantage: the filtering devices can
generate an electronic voltage corresponding to u(tk) within a certain range (less than
10Volts, usually). This means that the difference u(tk) − u(tk−1) would correspond to a
small voltage, implying the necessity of amplifying this voltage so as to achieve a result in
a certain range (suitable for modeling, controlling, and data acquisition). This represents
a supplementary source of errors (the resolution being limited by the resolution of the
operation u(tk)−u(tk−1)). It implies the necessity of using an oscillating second-order system
so as the result of the integration on a working interval corresponds to the derivative of the
useful part z(t) of the received signal y(t) (if possible).

3. Analog Signal Processing Methods Suitable for
Derivative Procedures

A general mathematical method for obtaining the derivatives of the useful part z(t) of a
received signal y(t) in a robust manner (with good filtering properties and also with a good
resolution, avoiding a supplementary amplification of the difference between two previously
sampled values) consists in using a signal processing device with the transfer function H(s)

H(s) =
sN(

T2
1 s

2 + 1
)(
T2
2 s

2 + 1
) · · · (T2

k
s2 + 1

) · · · (T2
n+1s

2 + 1
) , (3.1)

which can be also written as

H(s) = sN
n+1∏
k=1

1(
T2
k
s2 + 1

) . (3.2)
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The degree of the denominator polynomial must be greater or equal to the degree of
numerator polynomial so as the transfer function is to be implemented using electronic
devices; this means thatN ≤ 2(n + 1) (as can be easily noticed).

The output of this signal processing system for an input corresponding to y(s) =
1/sN+1 (the Laplace transformation of the time function y(t) = (1/N!)tN) is represented
by

w(s) =
1

sN+1
sN

1(
T2
1 s

2 + 1
) 1(

T2
2 s

2 + 1
) · · · 1(

T2
ns2 + 1

) , (3.3)

which can be also written as

w(s) =
1
s

1(
T2
1 s

2 + 1
) 1(

T2
2 s

2 + 1
) · · · 1(

T2
ns2 + 1

) (3.4)

or

w(s) =
1
s

n+1∏
k=1

1(
T2
k
s2 + 1

) , (3.5)

which represents a set of multiplication of a unity step input 1/s by transfer functions
1/(T2

k
s2 + 1).
This means that it can be written as

w1(s) =
1(

T2
1 s

2 + 1
) 1
s
,

w2(s) =
1(

T2
2 s

2 + 1
)w1(s),

w3(s) =
1(

T2
3 s

2 + 1
)w2(s)

(3.6)

or (in a general form)

wk+1(s) =
1(

T2
k+1s

2 + 1
)wk(s) (3.7)

until

wn(s) =
1(

T2
n−1s

2 + 1
)wn−1(s). (3.8)

As was shown in previous paragraph, the function w1(t) will be represented by a unity step
function and by an alternating function − cos(t/T1) (which can be also written as sin(t/T1 +
φ1) = sin(ω1t + φ1), where the angular frequency ω1 = 1/T1). This represents the input for
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the transfer function 1/(T2
2 s

2 + 1). Its outputw2 will be represented by the sum of the output
of this transfer function for a unity step input 1/s and the output of this transfer function for
the input sin(t/T1 + φ1) = sin(ω1t + φ1). The output generated by the unity step input will be
represented once again by an unity step function and by an alternating function with angular
frequency ω1 = 1/T1; the output generated by this transfer function for the alternating input
with angular frequency ω1 will be represented by a sum of two alternating functions with
angular frequencies ω1 and ω2, respectively. It results that w2 can be written as

w2(t) = 1 + a
(2)
1 sin

(
ω1t + φ

(2)
1

)
+ a

(2)
2 sin

(
ω2t + φ

(2)
2

)
(3.9)

(there are just three terms because alternating functions with the same angular frequency ω1

were grouped together in a
(2)
1 sin(ω1t + φ1)).

The whole procedure can continue by analyzing the outputw3 of the transfer function
1/(T2

3 s
2 + 1) for the input represented by w2(t). It results that a unity step output 1/s will

appear once again, together with three alternating components with angular frequencies ω1,
ω2, and ω3, respectively. This means that w3(t) can be written as

w3(t) = 1 + a
(3)
1 sin

(
ω1t + φ

(3)
1

)
+ a

(3)
2 sin

(
ω2t + φ

(3)
2

)
+ a

(3)
3 sin

(
ω3t + φ

(3)
3

)
, (3.10)

where ω3 = 1/T3. In the general form, the output wk(t) can be written as

wk(t) = 1 + a
(k)
1 sin

(
ω1t + φ

(k)
1

)
+ · · · + a

(k)
k

sin
(
ωkt + φ

(k)
k

)
(3.11)

or

wk(t) = 1 +
k∑
i=1

a
(k)
i sin

(
ωit + φ

(k)
i

)
(3.12)

(it can be noticed that the coefficient and phase corresponding to a certain angular frequency
ωi are changed from a

(k−1)
i , φ

(k−1)
i to a

(k)
i , φ

(k)
i at each step due to the mixture of alternating

functions with the same angular frequency ωi generated by the transfer function 1/(T2
k + 1)

for input represented by a sum of the unity step function and by alternating functions with
angular frequencies ωj , j < i (as was shown for w2(t), where certain functions with the
same angular frequency were grouped together)). Finally, the output of the signal processing
system w(t) (at step n + 1) will be represented by function wn which can be written as

wn+1(t) = 1 + a
(n+1)
1 sin

(
ω1t + φ

(n+1)
1

)
+ · · · + a

(n+1)
n+1 sin

(
ωn+1t + φ

(n+1)
k

)
(3.13)

or

w(t) = wn+1 = 1 +
n+1∑
i=1

a
(n+1)
i sin

(
ωit + φ

(n+1)
i

)
. (3.14)
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By integrating this function w(t) on a time interval T represented by a multiple of all time
periods 2πT1, 2πT2, . . . , 2πTn (this means that any ratio Ti/Tj should be expressed by a
rational number) the influence of all alternating components vanishes. As a consequence,
the result u(T) of the integration will be

u(T) = 2πT (3.15)

for a received signal corresponding to y(t) = (1/N!)tN which has been processed by H(s).
This means that the result u(T) is proportional to the derivative of order N of the received
signal (supposed to have the form y(t) = (1/N!)tN).

The analysis of the action of transfer function H(s) upon an input represented by

y(t) =
1
sM

, M < N (3.16)

(corresponding to the time function y(t) = (1/(N −M)!)tN−M) can be considered as

w(s) = H(s)
1
sM

= H(s)sN−M 1
sN

= sN−MH(s)
1
sN

. (3.17)

According to Laplace transformation properties, the operator sN−M corresponds to a
derivative procedure applied (N − M) times upon a certain function. Since H(s)1/sN

corresponds to the sum of a step function and a set of alternating components previously
presented, it results that the output w(t) corresponding to the input 1/sN−M can be
represented as

w(t) =
dN−M

dtN−M

(
1 +

n+1∑
i=1

a
(n+1)
i sin

(
ωit + φ

(n+1)
i

))
. (3.18)

But the derivatives of a constant function equal zero, and the derivatives of alternating
functions of certain angular frequency are represented also by alternating functions with the
same angular frequency. This means that the integration of this function on the time interval
T represented by a multiple of all time periods will generate a null result. As a consequence,
if the received signal y(t) can be written as a sum

y(t) = c0 + c1t + c2t
2 + · · · + cNtN (3.19)

(according to properties of Taylor series), the action of a transfer functionH(s) is represented
by

H(s) = sN
n+1∏
k=1

1(
T2
k
s2 + 1

) . (3.20)

The integration of the outputw(t) of this filtering device on a time interval T represented by a
multiple of all time periods Ti will generate a result proportional toN!cN , being proportional
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to the derivative of orderN of the received signal. Thus this signal processing method based
on a set of oscillating second-order systems and an integrator can generate a sequence of
sampling values corresponding to theNth derivative of the received signal at the end of each
working interval, the derivative of order N being transformed into a time series suitable
for modeling, control, and/or data acquisition. Filtering properties are still good, as long as
any angular frequency corresponding to noise (n(t) is several times greater than any angular
frequencies ωi from the set ω1, . . . , ωn+1.

We must point the fact that certain limitations appear as the order N of the derivative
to be estimated increases.

(i) For a great number of alternating functions, it is quite possible for the maximum
value of the sum of alternating functions of angular frequencies ωi (part of w(t)) to become
several times greater than the constant part of w(t) (corresponding to the derivative to
be estimated); so the resolution of the method decreases (the voltage range of estimated
derivative decreases since it represents a small part of the maximum voltage allowed by
electronic devices).

(ii) Taylor series for y(t)was restricted to (N + 1) terms. This means that the influence
of derivatives of orderK > N on the integration period T was neglected. This approximation
should be carefully checked in any signal analysis.

4. Conclusions

This paper has presented a possibility of obtaining the derivatives of the received electrical
signal using a filtering device consisting of a sequence of certain oscillating second-order
systems and an integrator. The oscillating systems are working on a time period for filtering
a received electrical signal, with initial null conditions. The output of this system is integrated
over a time period corresponding to amultiple of all time periods of the second-order systems
which are part of the signal processing device (at the end of this period the integrated
signal being sampled). The influence of all alternating components is rejected due to the
integration performed on a multiple of all time periods, and thus the final result corresponds
to the integration of a constant function which is proportional to the derivative having to be
estimated. The proposed method has shown that present-day methods for computing in a
robust manner the first derivative of a received signal (using an oscillating system working
on a limited time interval and a supplementary differentiation method) can be extended
to the robust computation of higher-order derivatives of the received signal by using a
specific set of second-order oscillating systems (working also on limited time intervals) so
as estimative values for higher order derivatives are to be directly generated (avoiding the
necessity of additional differentiation or amplifying procedures, which represent a source
of supplementary errors in present-day methods). It can be used for decreasing the phase
delay for signal processing methods, but without using a weighted sum of real and filtered
derivatives of the received signal, as in [3]. The proposed method is similar to other attempts
for computing the derivative without using additional procedures (see also [4] where the
need of sampled and digitised data is avoided).

In future studies, the analysis will continue by trying to use nonlinear dynamical
equations able to generate practical test functions for estimating in robust manner and
with greater accuracy the derivatives of the signal transmitted by dynamic systems (see
[5] for general properties of nonlinear differential equations able to generate practical test
functions). The results presented in this paper can be extended for modeling phenomena
described by partial differential equations as traveling waves and wavelets inside certain
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materials [6, 7] or as general transformations of waves when the material reference system
is changed (see [8] for classical field of interaction and [9] for quantum field of interaction)
due to advantages presented by the accurate estimation of higher-order derivatives. It could
be also used for integrating derivative procedures in procedures of analyzing time series
(as presented in [10–12]) or directly into machine learning algorithms or emergent dynamic
routing by establishing certain sampling moments (see [13, 14]).
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