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The optimal pointwise control of the KdV equation is investigated with an objective of minimizing
a given performance measure. The performance measure is specified as a quadratic functional
of the final state and velocity functions along with the energy due to open- and closed-loop
controls. The minimization of the performance measure over the controls is subjected to the
KdV equation with periodic boundary conditions and appropriate initial condition. In contrast to
standard optimal control or variational methods, a direct control parameterization is used in this
study which presents a distinct approach toward the solution of optimal control problems. The
method is based on finite terms of Fourier series approximation of each time control variable with
unknown Fourier coefficients and frequencies. He’s variational iteration method for the nonlinear
partial differential equations is applied to the problem and thus converting the optimal control of
lumped parameter systems into amathematical programming. A numerical simulation is provided
to exemplify the proposed method.

1. Introduction

A modal for planar, unidirectional waves propagating in shallow water was originally
introduced by Korteweg and de Vries in 1895 [1]. The modal is expressed by a third-order
nonlinear partial differential equation called KdV equation. The KdV equation has been at
the center of naval science studies and other physical phenomena such as weakly nonlinear
long waves for the last 150 years. Therefore, solving and controlling the behavior of the KdV
equation have great implications.

Review of new techniques such as variational approaches, parameter-expanding
methods, and parameterized perturbation method for nonlinear problems is presented by
He in [2], and a detailed study of He’s approaches is given in [3]. In the literature, there
are a considerable number of numerical and theoretical aspects of the KdV equation. A
survey of results for the KdV equation is given in [4]. Existence and uniqueness of the
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solution of the KdV equation are given in different forms [5]. Numerical solution of the KdV
equation is studied by using modified Bernstein polynomials in [6], Galerkin B-spline finite
element method in [7], homotopy perturbation method to find solitary-wave solutions of the
combined Korteweg de Vries-Modified Korteweg de Vries Equation in [8], and variational
iteration method (VIM) in [9, 10]. Although, the numerical solution of the KdV equation has
been studied in depth, to the best knowledge of the author, optimal control aspect of the
problem did not attract many researchers. Control applications of nonlinear dispersive wave
equations in [11], exact controllability and stability of the KdV equation in [12], theoretical
aspect of boundary controllability of KdV on a bounded domain in [13], and stability and
numerical aspect of the boundary control of the KdV equation in [14] are discussed.

In this paper, we consider an active control of nonlinear waves expressed by the
KdV equation with periodic boundary conditions and initial conditions. To control water
waves in a uniform channel, point-wise control actuators in the spatial domain, and
linear displacement and displacement-slope feedback controls are implemented in the KdV
equation. The dynamic response of the system is measured by performance index functionals
that consist of weighted sum of the energy at the terminal time with the total effort
of open- and closed-loop controls. The objective of the control problem is to minimize
the dynamic response of the system with minimum expenditure of the modified energy.
The parameterization of the actuators uses a finite term of orthogonal (or nonorthogonal)
functions with unknown coefficients and the solution of state function is expressed as an
iterative function with a Lagrange multiplier known as VIM. Thereby, the optimal control
problem becomes a mathematical programming for unknown coefficients to be computed
optimally while state solution is obtained iteratively. The compact solution of state function
is expressed analytically in terms of unknown terms due to applied controls. To compare the
effects of different controls, first the open-loop control is applied to the system before both
open- and closed-loop controls are applied, or closed-loop control with an optimal actuator
is applied.

The computational and graphical results show that the present method has a desired
robustness. Moreover, it is observed that closed-loop control with an optimal actuator applied
to the system reduces the energy substantially and controls the behavior of the elongation and
velocity of waves.

2. Problem Formulation

We consider the KdV equation

ut(x, t) + 6αu(x, t)ux(x, t) + γuxxx(x, t) + C1u(x, t) + C2ux(x, t)

=
n∑

i=1

fi(t)δ(x − xi) for (x, t) ∈ Ω × [
0, tf

]
,

(2.1)

subject to the following periodic boundary conditions and initial condition:

∂iu

∂xi
(x, t) =

∂iu

∂xi
(x, t), i = 0, 1, 2, for (x, t) ∈ ∂Ω × [

0, tf
]
,

u(x, 0) = g(x),

(2.2)
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where u(x, t) describes the elongation of the wave at a point (x, t), and Ω = [a, b]; terminal
time is tf ; δ is the dirac delta function; α and γ are constants that are determined by the nature
of a physical application; C1 and C2 are feedback gains; n is the number of control actuators
placed in the interior of the spatial domain, and fi(t) is the applied force for t ∈ [0, tf] that
will be obtained optimally.

Remarks 2.1. Let the set of Lebesue integrable functions be given as

L2(Ω) =

{
f : Ω −→ R |

(∫

Ω

(
f(x)

)2
dx

)1/2

< ∞
}
, (2.3)

with the inner product 〈f, g〉L2(Ω) and the norm ‖f‖L2(Ω) being

〈
f, g

〉
L2(Ω) =

∫

Ω
f(x)g(x)dx,

∥∥f
∥∥2
L2(Ω) =

〈
f, f

〉
, (2.4)

and a Hilbert space H(Ω) is L2(Ω)with the inner product.

Our goal in this paper is to reduce the dynamical response of nonlinear waves
modelled by the KdV equation by implementing open- and closed-loop controls. The natural
attempt is to minimize the energy due to waves that should be achieved with limited
expenditure of control energy. The weighted performance of the system based on energy
at the terminal time and total control effort is measured by the following performance
functional:

J
(−→
F ;C1, C2; tf

)
= E

(−→
F ;C1, C2; tf

)
+ Eo

(−→
F ; tf

)
+ Ec

(
C1, C2; tf

)
, (2.5)

where

E
(−→
F ;C1, C2; tf

)
=
∫a

0

(
ε1u

2(x, tf
)
+ ε2u

2
t

(
x, tf

))
dx, Eo

(−→
F ; tf

)
=

n∑

i=1

∫ tf

0
μif

2
i (t)dt,

Ec

(
C1, C2; tf

)
=
∫ tf

0

∫a

0

(
ε3[C1u(x, t)]2 + ε4[C2ux(x, t)]2

)
dx dt,

(2.6)

in which
−→
F = (f1, . . . , fn), εj ≥ 0 for j = 1, . . . , 4 such that

∑4
j=1 εj /= 0 and μi ≥ 0, i = 1, . . . , n are

weighting factors. In (2.5), E(−→F ;C1, C2; tf) is the energy at the terminal time, and Eo(
−→
F ; tf) and

Ec(C1, C2; tf) are energies for the open-loop and closed-loop controls duration over [0, tf].
Here we are considering three optimal control problems.

(P1) The first is to find optimal
−→
F

0
(t) ∈ L2([0, tf]) for fixed real valued C1 and C2 such

that

Jo := J
(−→
F

0
;C1, C2; tf

)
= min−→

F(t)∈L2([0,tf ])
J
(−→
F ;C1, C2; tf

)
, (2.7)
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where Jo is the optimum open-loop performance, and subscript (−o) indicates
open-loop optimization.

(P2) Secondly, we seek optimal feedback gains, C1, C2 ∈ R, for optimal actuators
−→
F

0
(t)

obtained in (P1) such that

Jc := J
(−→
F

0
;C0

1, C
0
2; tf

)
= min

C1,C2

J
(−→
F

0
;C1, C2; tf

)
, (2.8)

where Jc is the optimum closed-loop performance, and subscript (−c) indicates
closed-loop optimization.

(P3) Finally, we seek optimal feedback gains, C0
1, C

0
2 ∈ R, and optimal actuators,

−→
F

0
(t),

such that

J
(−→
F

0
;C0

1, C
0
2; tf

)
= min−→

F(t)∈L2([0,tf ]);C1,C2

J
(−→
F ;C1, C2; tf

)
. (2.9)

In problems (2.7), (2.8) and (2.9), u(x, t) is subject to (2.1) and (2.2).

3. Solving Optimal Control Problems

The distributed parameter control problems in (2.7)–(2.9) are transformed into an iterative
parameter control problem in which a parameterization of actuators is introduced as a
direct method. The transformation is done by VIM. Optimal control problems are then
transformed into a mathematical programming problem that consists of unknowns due
to parameterization of actuators and the feedback parameters at each search of optimal
values the solution of the KdV is obtained iteratively. In the following subsections, the
parametrization of actuators is first introduced. It is followed by the solution technique for
KdV with a brief introduction to VIM.

3.1. Control Parameterization

A direct control parameterization is introduced using finite terms of a Fourier series
approximation. In the approximation, each actuator is expressed as a finite sum of a Fourier
series with unknown Fourier coefficients and frequencies. Actuators in (2.1) are given by

fi(t) =
N∑

k=1

αik cos(ζikt) + βik sin(ζikt)

= −→αi
T cos

(−→
ζ it

)
+
−→
β i

T
sin

(−→
ζ it

)
(3.1)
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where −→αi = (αi1, . . . , αiN)T ,
−→
β i = (βi1, . . . , βiN)T , and

−→
ζ i = (ζi1, . . . , ζiN)T , i = 1, . . . , n. It follows

from (3.1) that

−→κi =
(−→αi,

−→
β i,

−→
ζ i

)
, i = 1, . . . , n (3.2)

needs to be calculated optimally in (P1) and (P3).

3.2. Application of He’s Variational Iteration Method

It is observed that the VIM converges to the exact solutions, and VIM is used for many
nonlinear partial differential equations successfully such as [9, 10, 15]. Although the concern
about the convergence rate depends on the accurate calculation of the Lagrange multiplier
[16], the nonlinear terms in nonlinear problems are taken as restricted variations in order to
determine the Lagrange multipliers. A brief introduction to VIM is given in this section, but
readers are referred to a recent review of the method by He in [16, 17] and references therein.

For a nonlinear partial differential equation of the following form

L[u(x, t)] +N[u(x, t)] = f(x, t) (3.3)

where L is a linear operator, N is a nonlinear operator, and f(x, t) is a nonhomogeneous
term, n − th order approximation to u(x, t) is obtained iteratively by a correction function in
t-direction

un+1(x, t) = un(x, t) +
∫ t

0
λ
(
L[un(x, τ)] +N[ũn(x, τ)] − f(x, τ)

)
dτ (3.4)

in which λ is a general Lagrange multiplier, and ũn is a restricted variation, that is, δũn = 0.
The general Lagrange multiplier λ is found optimally via the variational theory [18].

For (2.1), a correctional functional is

un+1(x, t) = un(x, t) +
∫ t

0
λ

[
unt(x, τ) + 6αũn(x, τ)ũnx(x, τ) + γũnxxx(x, τ)

+C1un(x, τ) + C2ũnx(x, τ) −
n∑

i=1

fi(τ)δ(x − xi)

]
dτ.

(3.5)

The dirac delta function in (2.1) is taken as a pseudo dirac delta function for the sake of
simplicity in VIM.

If the variation is taken with respect to un(x, t) in (3.5), the following stationary
equations are obtained for λ(τ):

δunt : 1 + λ|τ=t = 0,

δun : λ′ + C1 = 0
(3.6)
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from which it follows immediately that the Lagrange multiplier, λ, is identified as

λ(τ) = −C1(τ − t) − 1. (3.7)

Thus, optimal control problem is reduced to a variational iteration with lumped parameters:

un+1(x, t) = un(x, t) −
∫ t

0
(C1(τ − t) + 1)

×
[
unt(x, τ) + 6αun(x, τ)unx(x, τ)

+γunxxx(x, τ) + C1un(x, τ) + C2unx(x, τ) −
n∑

i=1

fi(τ)δ(x − xi)

]
dτ,

(3.8)

where fi(τ) is given by the parametrization (3.1). The initial guess, u0(x, t), is given by a trial
function that satisfies boundary conditions.

The closed-form expression for un(x, t) in (3.8) is found with the aid of Maple. The
resulting un(x, t) is substituted into (2.7)–(2.9) for the prospective optimization problem. To
proceed with problems (P1)–(P3), necessary adjustments are done in (3.8). For (P1), −→κ given
by (3.2) is calculated optimally for fixed C1 and C2 for which 3 × n ×N unknown terms have
to be determined in the solution u(x, t) in (3.8). For (P3), the solution u(x, t) in (3.8) consists
of 3 × n × N + 2 unknown due to parameterization and feedback gains that are calculated
optimally. The iterative terms of un+1(x, t) are obtained through Maple, and then the terms
are placed in appropriate performance functional. Finally, optimization toolbox in MATLAB
is used to calculate the optimal parameters. In calculations, a zero vector for −→κ as an initial
guess is taken until a convergence is reached in L2 sense, that is,

‖Jo,i+1 − Jo,i‖2 −→ 0, as i −→ ∞. (3.9)

The same procedure is repeated for the calculations of feedback gains. Therefore, the
algorithm given in [19] is performed.

4. Numerics

In this section, the proposed technique is examined numerically. In the calculations, the
following data is used: a = 1, tf = 1, α = 0.0001, γ = 0.001, n = 1;N = 2, ε1 = 0.1, ε2 = 0.01,
μ1 = 0.001, and a nascent delta function δ(x) ≈ e−x

2/p2/(p
√
π) in (2.1). We will conduct the

simulations for VIM and Adomian methods.

Case 1 (u0 = sin(πx) and x1 = 0.5). For the given data above, the nonlinear partial differential
equation is solved by using VIM where only one iteration is used to ease the complexity in
the calculations without compromising the convergence in the solution. The solution for one
iteration is found by using Maple and the performance functions in (2.7)–(2.9) are written in
MATLAB to perform fminsearch command to find unknown parameters optimally. An optimal
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Figure 1: Uncontrolled distance functions at the terminal time.

result is obtained after three iterations with the updated initial guess obtained at the end of
each iteration in the Algorithm [19].

In the problem (P1), optimal actuator (3.2) is obtained as

−→κ1 = (−10.43, 10.01; 0.6468, 1.238; 35.23,−16.89)T . (4.1)

In the problem (P2), optimal feedback gains are found as C1 = 1.209 and C2 = −0.03902
for the optimal −→κ1 given by (4.1). For problem (P3), an optimal parameters −→κ1 =
(2.392,−3.918; 2.123,−0.2676; 0.4523,−17.09)T , C1 = 0.8111, and C2 = −0.0319 are found.

The energy for the uncontrolled system is 0.2459 that is reduced by 0.5% when the
open-loop control is applied to the system alone and by 49% when the open- and closed-loop
controls are applied to the system simultaneously. 78% is the reduction in the energy when
the closed-loop is applied to the system along with the optimal actuator obtained in the open-
loop control. The elongation of the wave, u(x, t), at a fixed point x = 0.8 and at the terminal
time are presented for uncontrolled cases in Figures 1 and 2, respectively. The velocity of
elongation of the wave, ut(x, t), at a fixed point x = 0.8 and at the terminal time is presented
for uncontrolled cases in Figures 3 and 4, respectively.

5. Discussions and Conclusion

The active control of waves defined by the KdV equation is studied by implementing
point-wise actuators in the spatial domain and linear displacement and slope-displacement
feedback controls in the system. An energy-based performance measure for control is
minimized to get a minimum expenditure in the total control effort. It is observed that
open-loop control alone does not reduces the energy, and simultaneously applying the
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open- closed-loop controls reduce the energy noticeably. On the contrary, closed-loop control
with optimal actuators reduces the energy substantially. In Figures 1 and 3, it is observed
that when one actuator is applied to the system, the displacement and the velocity show
indifferent behaviors with the uncontrolled cases, respectively, that might lead to different
results if more than one actuator is placed in the spatial domain. The behavior of the system
over time is presented in Figure 2 in which it becomes clear that the open-loop control for
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one actuator in the spatial domain does not improve the system. The nonlinear involvement
of the optimal control problem is solved by using VIM and available toolboxes in MATLAB.
Although applying the VIM is of great achievement in the optimal control problems for a
nonlinear phenomena, the computational cost in the calculations increases with the number
of iterations taken in VIM. It should also be noted that accurate calculation of the Lagrange
multiplier in VIM reduces the number of iterations in the calculations.
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