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We propose a new variational model for segmenting objects of interest from color images. This
model is inspired by the geodesic active contour model, the region-scalable fitting model, the
weighted bounded variation model and the active contour models based on the Mumford-Shah
model. In order to segment desired objects in color images, the energy functional in our model
includes a discrimination function that determines whether an image pixel belongs to the desired
objects or not. Compared with other active contour models, our new model cannot only avoid the
usual drawback in the level set approach but also detect the objects of interest accurately.Moreover,
we investigate the new model mathematically and establish the existence of the minimum to the
new energy functional. Finally, numerical results show the effectiveness of our proposed model.

1. Introduction

Image segmentation is one of the fundamental problems in image processing and computer
vision. Recently, variational methods have been extensively studied for image segmentation
because of their flexibility in modeling and advantages in numerical implementation. In
generally these methods can be categorized into two classes: edge-based models [1–3] and
region-based models [4–6].

Edge-based models utilize the image gradient to stop evolving contours on object
boundaries. The geodesic active contour (GAC) model is one of the most well-known edge-
based models. It was proposed in [2] and widely used in practice [7]. However, this model
has one major disadvantage: given an initial curve, during the evolution, the energy may
evolve to its bad local minimizers. Region-based models have some advantages over the
edge-based models. Firstly, region-based models do not utilize the image gradient, so they
have better performance for images with weak object boundaries. Secondly, these models
are significantly less sensitive to the location of initial contours. The Chan-Vese (CV) model
[5] is one of the most popular region-based models. It is successful for an image with two
regions, each of which has a distinct mean of pixel intensities. In order to handle images
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with multiple regions, Vese and Chan proposed the piecewise constant (PC) models [8], in
which multiple regions can be represented by multiple level set functions. And yet, these PC
models are not very successful for images with intensity inhomogeneity. In order to segment
images with intensity inhomogeneity efficiently, local intensity information was incorporated
into the active contours models [9–11]. For example, Li et al. [9] proposed the region-
scalable fitting model which draws upon local intensity means. This model is able to segment
object boundaries accurately. In papers [12, 13], both local intensity means and variances are
used to characterize the local intensity distribution in their proposed active contour models.
However, these local intensity means and variances must be defined empirically. In addition,
similar forms of local intensity means and variances were also introduced in [14] for a
statistical interpretation of Mumford-Shah functional [15]. In a word, these methods have
a certain capability of handling intensity inhomogeneity. Moreover, there are some models
that make full use of advantages of the edge-based and the region-based models, such as the
model [7] that unifies the GACmodel and the CV model. This model can obtain good results
when the contrast between meaningful objects and the background is low.

When the aim is to detect all the objects, the above models are very efficient. However,
if only the objects of interest (OOI) are concerned, the segmentation of OOI using active
contour methods becomes difficult. In order to detect OOI, the properties of OOI must be
known mathematically. However, it is not an easy task to find out a suitable mathematical
description of these characters. Many segmentation methods have used shape or texture
characters of OOI. For example, the active shape models (ASM) [16], the geodesic active
contour method incorporated with shape information [17], and the supervised texture
segmentation method [18].

In this paper, inspired by the weighted bounded variation model [19], the geodesic
active contour model, the region-scalable fitting model and the active contour models
based on the Mumford-Shah model [7], we propose a new model which can be applied
to segmenting objects of interest from color images. In order to segment desired objects in
color images, the energy functional in our model includes a discrimination function [20]
which determines whether an image pixel belongs to the desired objects or not. Moreover,
our new model uses not only the edge detector which contains information concerning
boundaries of desired objects but also the spatially varying fitting functions which are used to
approximate the image intensities. Compared with other active contour models, our method
cannot only have the advantages of both edge-based and region-basedmodels, but also avoid
the usual drawback in the level set approach (e.g., initiation and reinitiation). In particular,
our new model can detect the desired objects accurately. Finally, we investigate this new
model mathematically: we establish the existence of the minimum to the energy functional,
analyze the property of it and implement the numerical algorithm efficiently.

The remainder of the paper is organized as follows: in Section 2, we show some
background. In Section 3, our new model is proposed. Theoretical results, iterating schemes
and experimental results are also given in this section. Finally, we conclude our paper in
Section 4.

2. Background

2.1. The Region-Scalable Fitting Model

Let Ω ⊂ R
2 be the image domain and f : Ω → R be a given gray-scale image. The region-

scalable fitting model is defined by minimizing the following energy functional:
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where Kσ is a Gaussian kernel and f1, f2 are two functions that fit image intensities near
the point x. Moreover, φ is the level set function embedding the evolving active contour
c = {x : φ(x) = 0} andH(φ) is the Heaviside function.

This model does not need to reinitialize φ periodically during the evolution because
of the second term of (2.1). If λ2 = 0, (2.1) is equivalent to

∂φ

∂t
= H ′

[
div

(
∇φ∣∣∇φ
∣∣
)

− λ1

∫
Ω
Kσ

(
x − y

)∣∣f(x) − f1(y)
∣∣2dy

+λ3

∫
Ω
Kσ

(
x − y

)∣∣f(x) − f2(y)
∣∣2dy

]
.

(2.2)

The steady state solution of this gradient flow is
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And it is known that (2.3) is the gradient descent flow of the following energy:
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2.2. Some Related Models

In [2], the geodesic active contour model (GAC) is defined by the following minimization
problem:

min
c

{
EGAC(c) =

∫L(c)

0
gds

}
, (2.5)
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where L(c) is the length of the curve c and the function g is an edge indicator function that
vanishes at object boundaries. For a color image f = (f1, f2, f3), a stopping function g(x)was
proposed in [21]

g =
1

1 + β∧2
, (2.6)

where ∧ is the largest eigenvalue of the structure tensormetric gij in the spatial-spectral space,
and

gij =

(
1 + R2

x1
+ B2

x1
+G2

x1
Rx1Rx2 + Bx1Bx2 +Gx1Gx2

Rx1Rx2 + Bx1Bx2 +Gx1Gx2 1 + R2
x2
+ B2

x2
+G2

x2

)
, (2.7)

where x = (x1, x2) and R, G, B represent the pixel values of Red, Green, and Blue after
Gaussian convolution, respectively, that is, R = Gσ1 ∗ f1, G = Gσ1 ∗ f2 and B = Gσ1 ∗ f3.

In order to segment the desired objects in color images, a novel stopping function
depending on both the discrimination function of OOI and the image gradient was proposed
in [20]:

g =
1

1 + (Gσ1 ∗ α)∧2
, (2.8)

where Gσ1 is a Gaussian kernel and the discrimination function α(x) can be defined by the
following steps in [20].

(1) m sample pixels are chosen from the OOI. The color information of the ith sample
pixel is denoted by (Ji1, Ji2, Ji3). Therefore, J = (Jij) is am × 3 matrix.

(2) Compute the correlation coefficient matrix of J as ρ = (ρi,j)3×3.

(3) Compute the eigenvalues λ̃1, λ̃2, λ̃3 of ρ and the corresponding eigenvectors
w1, w2, w3. And these eigenvalues satisfy λ̃1 ≥ λ̃2 ≥ λ̃3.

(4) Compute P = (P1, P2, P3) = J · (w1, w2, w3).

(5) The confidence interval is constructed as [p1− (sp1/
√
m)t1−	/2, p1+(sp1/

√
m)t1−	/2]

with the degree of confidence 1 − 	 (0 < 	 < 1), where p1 = (1/m)
∑m

i=1 Pi1, sp1 =√
(1/(m − 1))

∑m
i=1(Pi1 − p1)

2 and t1−	/2 is the t-value of t-distribution with m − 1
degrees of freedom.

(6) Compute a = (a1, a2, a3) = f · (w1, w2, w3). If a1(x) belongs to the above interval,
α(x) = 1. If a1(x) does not belong to the above interval, α(x) = 0.

3. Our Proposed Model

Let f = (f1, f2, f3) : Ω → R
3 be a given color image where Ω ⊂ R

2 is the image domain (a
bounded open set). Inspired by the GAC model, the energy functional (2.4), and the active
contour models based on the Mumford-Shah model [7], our new model is constructed. This
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model is to minimize the following energy functional w.r.t. u ∈ g − BV[0,1](Ω), fi1, fi2 (i =
1, 2, 3):
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(3.1)

where λi1, λi2 (i = 1, 2, 3) are positive constants, |u|g−BV (Ω) = sup{∫Ω u(x)divϕ(x)dx : ϕ ∈
C1

0(Ω), |ϕ| ≤ g}, g is a diffusion coefficient defined as the formula (2.8), Kσ, Gσ1 are the
Gaussian kernels, and α(x) is a discrimination function. The purpose of constructing such
a discrimination function is to derive the characteristics of desired objects so that these
characteristics can be shown in the energy functional. This is done by analyzing m sample
pixels chosen from the desired objects. The Principal Components Analysis (PCA) and
interval estimation [22] are used in the analysis. By using PCA, a new set of variables which
is called principal components, is obtained. By using the interval estimation, we can define
an interval that covers many samples for each principal component. In our problem, at most
the first two principal components are used. Without loss of generality, we only assume the
first principal component is used. An interval [a, b] for this principal component can be
constructed by the interval estimation. When every pixel x of the color image is projected
from its RGB values to the first principal component axis, we get a new value ũ(x). If the
value is within the interval, the pixel is probabilistically regarded as a pixel in the desired
objects. Thus the discrimination function α(x) based on the color information is constructed
as

α(x) =

⎧⎨
⎩
1, a ≤ ũ(x) ≤ b,

0, others.
(3.2)

In order to understand more details of constructing this discrimination function,
please see [23].

In the following, we analyze the above model from two aspects. Firstly, for any given
u, according to the necessary condition of the minimization problem, it is known that the
functions fi1(y), fi2(y) (i = 1, 2, 3) must satisfy the following equations:
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where Kσ takes larger values at the points near the center point y, and decreases to 0 as x
goes away from y. Therefore, fi1(y), fi2(y) (i = 1, 2, 3) are allowed to vary in space.

Furthermore, for any given fi1, fi2 (i = 1, 2, 3), the model (3.1) can be converted into a
simpler form. That is
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If u is limited to a characteristic function 1Ωc , the energy functional (3.4) can be
changed into the following form:
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where C is a constant.
In this case, the model (3.4) is equal to the following constrained minimization

problem:

min
c

∫
c

gds, (3.6)

when approximating fi of desired objects with spatially varying fitting functions fi1, fi2 (i =
1, 2, 3).

The above analysis shows that our new model uses both the edge detector which
contains information concerning boundaries of desired objects, and the spatially varying
fitting functions fi1(y), fi2(y) (i = 1, 2, 3)which are used to approximate the image intensities
of desired objects. Just because of this, our model can segment the desired objects very
accurately.

3.1. Mathematical Results

In [7, 24], the proof of the existence of models has not been given. In the following, we will
state the existence of the minimizer to the energy functional (3.4) and analyze the property
of it.

Theorem 3.1. For any given fi1, fi2 ∈ L∞(Ω) (i = 1, 2, 3), there exists a function u ∈ g−BV[0,1] (Ω)
minimizing the energy functional E1 in (3.4).
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Proof. Let
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By fi ∈ L∞(Ω) (i = 1, 2, 3), Gσ1 ∗ α ∈ L∞(Ω), we get r(x) ∈ L∞(Ω). Since u ∈ g − BV[0,1](Ω)
and | ∫Ω r(x)u dx| ≤ M1 < ∞, we have

E1(u) = |u|g−BV +
∫
Ω
r(x)udx ≥ −M1. (3.8)

Assume infE1 = β̃ ≥ −M1 and {un} is the minimizing sequence of (3.4) in g −BV[0,1](Ω), that
is, limn→∞E1(un) = β̃. So there is a positive constant M2 such that

|E1(un)| =
∣∣∣∣|un|g−BV +

∫
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r(x)un dx

∣∣∣∣ < M2. (3.9)

The structure tensor metric gij is symmetric positive and ∧ is the largest eigenvalue of
gij . Thus

0 ≤ ∧ ≤ trace
(
gij
) ≤ 2 + c1

∥∥f1∥∥2L∞(Ω) + c2
∥∥f2∥∥2L∞(Ω) + c3

∥∥f3∥∥2L∞(Ω), (3.10)

where ci ≥ 0 (i = 1, 2, 3).
Since fi ∈ L∞(Ω) (i = 1, 2, 3), Gσ1 ∗ α ≥ 0 and Gσ1 ∗ α ∈ L∞(Ω), g ≥ 1/(1 + C2) where

C2 is a positive constant. That is, g ≥ δ (δ = 1/(1 + C2)). Then

δ|un|BV ≤ M2 +
∣∣∣∣
∫
Ω
r(x)undx

∣∣∣∣ ≤ M2 +M1 = M3. (3.11)

So |un|BV is bounded.
Because {un} ∈ g−BV[0,1](Ω) = {u : u(x) ∈ [0, 1] for every x ∈ Ω}⋂ g−BV (Ω), the BV-

norm of un is bounded. Thus, there is a subsequence, also denoted by {un}, and u∗ ∈ BV (Ω)
such that un → u∗ strongly in L1(Ω).

Moreover, according to the formula un → u∗ in L1(Ω), we know that there is a
subsequence, also denoted by {un}, satisfying limn→∞un(x) = u∗(x) almost everywhere for
x ∈ Ω. Since un(x) ∈ [0, 1] for any x ∈ Ω, u∗(x) ∈ [0, 1] almost everywhere for x ∈ Ω.

Assume Ω0 ⊂ Ω, s.t. m(Ω0) = 0 and u∗(x) ∈ [0, 1], limn→∞un(x) = u∗(x) for any
x ∈ Ω \Ω0 ⊂ Ω. Let

u∗(x) =

⎧⎨
⎩
u∗(x), if x ∈ Ω \Ω0,

1, if x ∈ Ω0.
(3.12)
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Then

∫
Ω
|un − u∗|dx =

∫
Ω\Ω0

|un − u∗|dx =
∫
Ω\Ω0

|un − u∗|dx =
∫
Ω
|un − u∗|dx. (3.13)

That is, un → u∗ strongly in L1(Ω) and u∗(x) ∈ [0, 1] for every x ∈ Ω.
Furthermore, by the lower semicontinuity for the g − BV space, we get

|u∗|g−BV ≤ lim
n→∞

inf |un|g−BV < ∞. (3.14)

So u∗ ∈ g − BV[0,1](Ω). According to the dominated convergence theorem, we know

∫
Ω
r(x)u∗ dx = lim

n→∞

∫
Ω
r(x)undx. (3.15)

The formulas (3.14)-(3.15) imply the weak lower semicontinuity of the energy functional E1

E1(u∗) ≤ lim
n→∞

infE1(un) = β̃. (3.16)

Therefore, the infimum is attained by u∗ ∈ g − BV[0,1](Ω) and it is a minimum of the energy
functional E1.

Similar to [7, 25], we can obtain a property of minimizers to the energy functional
(3.4).

Theorem 3.2. Let fi(x) (i = 1, 2, 3), g(x) ∈ [0, 1]. For any given fi1, fi2 (i = 1, 2, 3), if u(x)
is any minimum of the energy functional E1 defined in (3.4), then for almost every μ ∈ [0, 1], the
characteristic function 1Ωc = 1{x:u(x)>μ} is also a global minimum of the functional E1 where c is the
boundary of the set Ωc.

In addition, according to the above theorem, we know Ωc = {x : u(x) > μ} is a
minimizer of the following minimization problem

min
c

∫
c

gds +
1
3

∫
Ωc

(Gσ1 ∗ α(x))
(

3∑
i=1

λi1

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi1(y)

)2
dy

)
dx

+
1
3

∫
Ω\Ωc

(Gσ1 ∗ α(x))
(

3∑
i=1

λi2

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi2(y)

)2
dy

)
dx.

(3.17)

3.2. Numerical Implementation

In the numerical algorithm, we do not deal with the new variational model (3.1) directly since
too many equations need to be computed. In order to improve computational efficiency, we
use the algorithm framework of the paper [24] to deal with our model. That is, we minimize
the energy functional E by alternating the following steps.
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(1) Considering u fixed, compute fi1 and fi2 (i = 1, 2, 3) by using the formula (3.3).

(2) Considering fi1 and fi2 (i = 1, 2, 3) fixed, update u by using the iterative
schemes of the minimization problem (3.4). When a steady state is found, the
final segmentation is obtained by thresholding u at any level in [0, 1] (in our
experiments, we choose μ = 0.5).

In the following, we will give the iterative schemes of the minimization problem (3.4).
To solve this minimization problem, we firstly change it into the following unconstrained
minimization problem:

min
u

E2(u) = |u|g−BV (Ω) + ζ

∫
Ω
ν(u)dx

+
1
3

∫
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(Gσ1 ∗ α(x))

(
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)2
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u(x)dx

− 1
3

∫
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(
3∑
i=1

λi2

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi2(y)

)2
dy

)
u(x)dx,

(3.18)

where ν(u) = max{0, 2|u − 0.5| − 1} is an exact penalty function provided that the constant
ζ is chosen large enough. According to the paper [7], it is known that this unconstrained
minimization problem has the same set of minimizers as the minimization problem (3.4). The
energy functional E2 is convex, so it doesn’t possess local minimizers. Hence, any minimizer
of E2 is global.

Based on [26–28], a convex regularization is used

min
u,v

1
3

∫
Ω
(Gσ1 ∗ α(x))

(
3∑
i=1

λi1

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi1

(
y
))2

dy

)
vdx

+ |u|g−BV (Ω) +
1
2θ

‖u − v‖2

+
∫
Ω
−1
3
(Gσ1 ∗ α(x))

(
3∑
i=1

λi2

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi2(y)

)2
dy

)
v + ζν(v)dx,

(3.19)

where θ is chosen to be small enough so that we almost have u = v. Thus, we consider the
iterative schemes of the above weak approximation as the iterative schemes of step (2). Since
this functional is convex, its minimum can be computed by minimizing this functional with
respect to u and v separately. That is

(1) v being fixed, we search for u as a solution of

min
u

|u|g−BV (Ω) +
1
2θ

‖u − v‖2, (3.20)



10 Mathematical Problems in Engineering

(a) (b) (c)

Figure 1: An example of an image segmentation. (a) The original image (our desired object is the blue
rectangle). (b–c) The final active contour and u obtained by using our model (m = 7, δt = 1/8, λi1 = λi2 =
0.001 (i = 1, 2, 3), θ = 0.1).

(a) (b) (c)

Figure 2:An example of an image segmentation. (a) The original image (our desired object is the bird). (b–
c) The final active contour and u obtained by using ourmodel (m = 6, δt = 1/8, λi1 = λi2 = 0.001 (i = 1, 2, 3),
θ = 0.1).

(2) u being fixed, we search for v as a solution of

min
v

1
3

∫
Ω
(Gσ1 ∗ α(x))

(
3∑
i=1

λi1

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi1(y)

)2
dy

)
vdx +

1
2θ

‖u − v‖2

+
∫
Ω
−1
3
(Gσ1 ∗ α(x))

(
3∑
i=1

λi2

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi2(y)

)2
dy

)
v + ζν(v)dx.

(3.21)

According to [29], we know the solution of (3.20) can be given by

u = v − θ div �p, (3.22)

where �p = (p1, p2) is given by

g(x)∇(θ div �p − v
) − ∣∣∇(θ div �p − v

)∣∣�p = 0. (3.23)
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(a) (b)

(c) (d)

Figure 3: An example of an image segmentation. (a) The original image (our desired object is the plane).
(b–c) The final active contour and u obtained by using our model (m = 7, δt = 1/8, λi1 = λi2 = 0.001 (i =
1, 2, 3), θ = 0.1). (d) The final active contour obtained by using the model in [23].

The previous equation can be solved by the fixed point method

�p n+1 =
�p n + δt∇(div �p n − v/θ

)
1 + δt/g(x)

∣∣∇(div �p n − v/θ
)∣∣ ,

�p 0 = (0, 0).
(3.24)

Moreover, the solution of (3.21) is given by

v = min{max{u(x) − θr(x), 0}, 1}, (3.25)

where

r(x) =
1
3
(Gσ1 ∗ α(x))

(
3∑
i=1

(
λi1

∫
Ω
Kσ

(
x − y

)(
fi(x) − fi1(y)

)2
dy

−λi2
∫
Ω
Kσ

(
x − y

)(
fi(x) − fi2(y)

)2
dy

))
.

(3.26)

In this paper, our model is solved numerically by alternative minimization schemes
and not by using the classical Euler-Lagrange equations method.When using Euler-Lagrange
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(a) (b)

(c) (d)

Figure 4:An example of an image segmentation. (a) The original image (our desired objects are the yellow
leaves). (b–c) The final active contour and u obtained by using our model (m = 7, δt = 1/8, λi1 = λi2 =
0.001 (i = 1, 2, 3), θ = 0.1). (d) The final active contour obtained by using the model in [23].

(a) (b)

(c) (d)

Figure 5:An example of an image segmentation. (a) The original image (our desired objects are the leaves).
(b–c) The final active contour and u obtained by using our model (m = 7, δt = 1/8, λi1 = λi2 = 0.001 (i =
1, 2, 3), θ = 0.1). (d) The final active contour obtained by using the model in [23].
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equations, one must consider
∫
Ω g(x)

√
|∇u|2 + ε2dx instead of the weighted TV-norm, where

the small parameter ε is necessary to prevent numerical instabilities. The direct result of this
regularization parameter is the obligation to use a small temporal step to ensure a correct
minimization process. Thus, a large number of iterations to reach the steady state solution is
necessary. In other words, although it is correct, the segmentation process remains slow. In
the algorithm of our paper, the iteration process (3.22)–(3.24) is very similar to the standard
Chambolle’s projection algorithm. The only difference is the appearance of the factor g(x).
This iteration process has two important advantages: firstly, it can be implemented very
fast since it uses many useful convex optimization tools. Secondly, it is more faithful to the
continuous formulation of the energy since it does not use the additional artificial parameter
ε. Therefore, our algorithm is fast and doesn’t need so many iterations to reach the steady
state. Moreover, the algorithm of our paper is numerically more efficient than classical level
set methods since the level set methods need to initialize the active contour in a distance
function and reinitialize it periodically during the evolution. In fact, the algorithm of our
paper belongs to the algorithm framework mentioned in [24]. And there are many papers
[7, 28] that have analyzed the complexity of this kind of algorithms. So we just analyze it
simply in this paper. If more details are wanted, please see [7, 24, 28].

3.3. Experimental Results

Our method can be implemented on many synthetic and natural images. First, we consider
two different cases Figures 1(a) and 2(a). Figure 1(a) is an image containing three different
objects. The blue rectangle is our desired object. Figure 2(a) is not a simple image where the
bird is our interested object. Figures 1(b), 2(b), 1(c), and 2(c) display the final active contours
and u got by using our newmodel, respectively. From these experimental results, we find our
model can detect OOI, regardless of other objects.

In the following, we compare our new model with the model [23] in Figures 3, 4, and
5. Figures 3(a), 4(a), and 5(a) are the original images. Our purpose is to segment the plane in
Figure 3(a), the yellow leaves in Figure 4(a) and the green leaves of oranges in Figure 5(a).
Figures 3(b), 4(b), 5(b), 3(c), 4(c), and 5(c) denote the final active contours and u obtained
by using our new model, respectively. According to these results, we see that our model can
detect the boundaries of the desired objects very accurately. And these results are hard to
achieve by using the model in [23].

4. Conclusion

This paper describes a new variational model for segmenting desired objects in color images.
This model is inspired by the GAC model, the region-scalable fitting model, the weighted
bounded variation model and the active contour models based on the Mumford-Shah model.
In order to segment objects of interest from color images, the energy functional in our model
includes a discrimination function which determines whether an image pixel belongs to the
desired objects or not. Compared with other active contour models, our new model cannot
only avoid the usual drawback in the level set approach but also detect the desired objects
accurately. Our numerical results confirm the effectiveness of our algorithm. Moreover, we
establish the existence of theminimum to the new energy functional and analyze the property
of it.
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