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Distributed denial-of-service (DDoS) flood attacks remain great threats to the Internet. To ensure
network usability and reliability, accurate detection of these attacks is critical. Based on Li’s work
on DDoS flood attack detection, we propose a DDoS detection method by monitoring the Hurst
variation of long-range dependant traffic. Specifically, we use an autoregressive system to estimate
the Hurst parameter of normal traffic. If the actual Hurst parameter varies significantly from
the estimation, we assume that DDoS attack happens. Meanwhile, we propose two methods to
determine the change point of Hurst parameter that indicates the occurrence of DDoS attacks.
The detection rate associated with one method and false alarm rate for the other method are also
derived. The test results on DARPA intrusion detection evaluation data show that the proposed
approaches can achieve better detection performance than some well-known self-similarity-based
detection methods.

1. Introduction

DDoS flood attacks have been one of the most frequently occurring attacks that badly threaten
the stability of the Internet. For DDoS flood attack, an intruder undermines the availability of
computer systems or services by exploiting the inherent weakness of the Internet system
architecture, and overwhelming the target with a huge amount of traffic flows launched
through multiple zombies. The attack process is a relatively simple, yet very powerful
technique to attack the Internet resources. Therefore, accurate detection of these attacks is
critical to the Internet community.

As shown by Leland et al. [1], and supported by a number of later research [2–7],
the measurements of local and wide-area network traffic, wire-line and wireless network



2 Mathematical Problems in Engineering

traffic all demonstrate self-similarity and long range dependence (LRD) characteristics at
large time scales. The work in [8] points out that self-similarity of the Internet traffic is
attributed to a mixture of the actions of a number of individual users, hardware and software
behaviors at their originating hosts, multiplexed through an interconnection network. In
other words, this self-similarity always exists regardless of the network type, topology,
size, protocol, or the type of services the network is carrying. On the other hand, it is
reported in [9–15] that when DDoS attack happens, the self-similarity of network traffic
will change significantly. Thus, by monitoring the change of the Hurst parameter, the key
parameter to describe the self-similarity of a self-similar process, DDoS attacks may be
detected.

Much work has been done to detect DDoS attack by recognizing the pattern of
self-similarity in the literature. In [16], Li deduced the statistical characteristic of network
traffic autocorrelation function under normal condition and DDoS attack and gave the
detection threshold based on the preselected detection rate and false alarm rate. In [11],
Li quantitatively described the statistics of abnormal traffic and suggested that the Hurst
parameter of network traffic under DDoS attack tends to be significantly smaller than that of
normal traffic. Li also demonstrated in [11] that the average Hurst parameter of fixed number
of normal traffic pieces follows Gaussian distribution at large time scales and when the attack
occurs, this statistical property may in general change.

Based on Li’s work, we propose a DDoS detection method by monitoring the Hurst
variation. Specifically, we use an autoregressive (AR) system to estimate the Hurst parameter
of normal traffic. If the actual Hurst parameter varies significantly from the estimation
beyond a threshold, we assume that DDoS attack happens. Then we propose two methods
to determine the change point of Hurst parameter, that is, to determine the threshold of
Hurst variation that is used to distinguish attack traffic from normal traffic. The detection
rate associated with one method and false alarm rate for the other method are also derived.
The experiment results on Defense Advanced Research Projects Agency (DARPA) data sets
indicate that the proposed detection methods are effective in detecting DDoS flood attacks,
and can achieve better detection performance than some well-known self-similarity-based
detection methods.

The rest of this paper is organized as follows. Section 2 briefly introduces the concept
of self-similarity and the Hurst parameter estimation. Section 3 explains the proposed
detection process based on the Hurst variation. Section 4 discusses the two methods for
determining the change point of LRD traffic. Section 5 presents the performance evaluation
and analysis of the proposed detection methods with traffic data from DARPA, followed by
a brief conclusion in Section 6.

2. Preliminaries

2.1. Self-Similar Network Traffic

Self-similarity means that the sample paths of the process B(t) and those of rescaled
version δHB(t/δ), obtained by simultaneously dilating the time axis t by a factor δ > 0,
and the amplitude axis by a factor δH, cannot be statistically distinguished from each
other. Equivalently, it implies that an affine dilated subset of one sample path cannot be
distinguished from its whole. H is called the Hurst parameter. For a general self-similar
process, H measures the degree of self-similarity.
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Network traffic arrival process; is a discrete time process, so the discrete time self-
similarity definition is given below. Let X = {xi, i ∈ Z+}be a wide-sense stationary discrete
stochastic traffic time series with constant mean μ, finite variance σ2, and autocorrelation
function r(τ), (τ ∈ Z+). Let X(m) = {x(m)

i , i,m ∈ Z+} be an m-order aggregate process of X;
then

x
(m)
i =

xmi−m+1 + · · · + xmi
m

. (2.1)

For each m,X(m) defines a wide-sense stationary stochastic process with autocorrelation
function r(m)(τ).

Definition 2.1. A second-order stationary process X is called exact second-order self-similar
(ESOSS) with Hurst parameter H = 1 − β/2, 0 < β < 1 if the autocorrelation function satisfies

r(m)(τ) = r(τ), (2.2)

where r(τ) = [(τ + 1)2−β − 2τ2−β + (τ − 1)2−β]/2 and m ∈ Z+.

Definition 2.2. A second-order stationary process X is called asymptotical second-order self-
similar (ASOSS) with Hurst parameter H = 1 − β/2, 0 < β < 1 if the autocorrelation function
satisfies

lim
m→∞

r(m)(τ) = r(τ), (2.3)

where r(τ) = [(τ + 1)2−β − 2τ2−β + (τ − 1)2−β]/2 and m ∈ Z+.

In the field of network traffic theory, it is more practical to use ASOSS.

2.2. Hurst Parameter Estimation

To date, several methods have been proposed to estimate the Hurst parameter. Some of the
most popular ones include the aggregated variance, local whittle, and the wavelet-based
methods [17–21]. In this paper, we use the method proposed by Li [11] to estimate the Hurst
parameter of network traffic. The estimation process is summarized as follows. For more
information please refer to [11].

Let r(τ) be the autocorrelation function of xi. Then

r(τ) ∼ cτ (2H−2), (2.4)

where ∼ stands for the asymptotical equivalence under the limit τ → ∞, c > 0, and H ∈
(0.5, 1).

By taking fractional Gaussian noise as an approximate model of xi, one has

σ2
x
(m)
i

≈ m2H−2σ2
xi , (2.5)
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Figure 1: Composition of normal and attack traffic.

where σ2
x
(m)
i

and σ2
xi are the variances of m-order aggregate process x(m)

i and xi.

Divide the traffic series xi into N nonoverlapping sections, and each section is further
divided into W nonoverlapping segments. Then the autocorrelation function of the wth
segment in the nth section is given by

r(τ ;Hw(n)) = 0.5
[
|τ + 1|2Hw(n) − 2|τ |2Hw(n) + |τ − 1|2Hw(n)

]
, (2.6)

where Hw(n) is the Hurst parameter of the wth segment in the nth section traffic piece. Let
J[Hw(n)] =

∑
τ [r(τ ;Hw(n)) − r(τ)]2 be the cost function. Then one has

Hw(n) = arg min J[Hw(n)]. (2.7)

Averaging Hw(n) in terms of w yields

H(n) =
1
W

W∑
w=1

Hw(n), (2.8)

where H(n)(n = 1, . . . ,N) represents the Hurst parameter in the nth section.

3. DDoS Detection Based on Hurst Variation

Given discrete network traffic trace time series X = {xi, i ∈ Z+}, Y = {yi, i ∈ Z+} and
Z = {zi, i ∈ Z+}, let X and Y be normal traffic and abnormal traffic, respectively and Z the
DDoS flood attack traffic during transition process of attacking. X and Z are uncorrelated
[11], so Y can be expressed as Y = X + Z.

Figure 1 illustrates the components of normal traffic, attack traffic, and abnormal
traffic. xi(p) represents the number of bytes sent out by node p at time i for normal network
services, zi(q) stands for the number of bytes sent out by node q at time i for DDoS flood
attack, and yi is the total traffic the target received at time i.

Based on the theorems in [22], we understand that no matter whether Z is a self-
similar process or not, as long as X is a second-order stationary self-similar process, Y will
be a self-similar process, but the degree of self-similarity may change. Let rX , rZ, and rY
be the autocorrelation functions of X, Z, and Y , respectively. Li in [11] proved that during
the transition process of attacking, ‖rY − rX‖ is significant, where rY = rX + rZ. For each
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value of Hurst parameter in the range of H ∈ (0.5, 1), there is exactly one corresponding
autocorrelation function [23]. Therefore, ‖rY−rX‖ is significant means that ‖HY−HX‖ changes
significantly when attack occurs, where HY and HX are the Hurst parameters of Y and X,
respectively. Based on this observation, we propose a DDoS detection method by monitoring
the Hurst variation ΔH = ‖HY −HX‖ in this paper. The details of the detection process are
explained as follows.

After the Hurst parameter estimation of each section using (2.7), we apply
autoregressive (AR) model to determine the self-similarity of traffic without attacks. That
is,

Ĥ(n) =
Q∑
k=1

bkH(n − k), (3.1)

where Ĥ(n) is the estimated Hurst parameter of normal traffic section n,Q is the order of AR
model, and {bk} are the coefficients of AR model, which can be obtained by using the least-
squares method [24]. Other models such as moving average (MA) model and autoregressive
moving average (ARMA) model also can be used in our method in the same way.

Since the Hurst parameter H(n) without any attack follows Gaussian distribution in
most cases for W > 10 [11], the probability distribution function of H(n) is given by

p(H(n)) =
1√

2πσH
e−[H(n)−μH]2/2σ2

H , (3.2)

where

μH =
1
N

N∑
n=1

H(n),

σ2
H =

1
N

N∑
n=1

[
H(n) − μH

]2
,

(3.3)

where N is the number of traffic section. μH and σ2
H are the mean and variance of the Hurst

parameter H(n), respectively.
Using linear estimation, the change of self-similarity ΔH(n) is given by

ΔH(n) = Ĥ(n) −H(n) =
Q∑
k=1

bkH(n − k) −H(n), (3.4)
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which can be regarded as the sum of independent Gaussian variables. So ΔH(n) also follows
Gaussian distribution. The mean and variance of ΔH(n) are obtained by

μΔH = μH
Q∑
k=1
bk − μH = μH

(
Q∑
k=1
bk − 1

)
,

σ2
ΔH = σ2

H

Q∑
k=1

b2
k + σ

2
H = σ2

H

(
Q∑
k=1

b2
k + 1

)
.

(3.5)

So the probability distribution function of ΔH(n) is expressed by

p(ΔH) =
1√

2πσΔH
e−[ΔH(n)−μΔH]2/2σ2

ΔH . (3.6)

The attack detection can be formulated as the following hypothesis testing problem.

(A0) The change of self-similarity ΔH(n) is within a threshold indicating normal
network traffic.

(A1) The change of self-similarity ΔH(n) is outside the threshold indicating abnormal
network traffic caused by DDoS attacks.

It can be seen that a proper threshold of ΔH(n) is the key to successfully detect
DDoS attacks. The threshold is also the change point of Hurst parameter whereby Hurst
variation beyond this point implies DDoS attack. In the next section, we propose two methods
for change point detection, one based on order statistic and the other based on maximum
likelihood estimate.

4. Determining Change Point of LRD Traffic

In the following discussion, the change point of self-similarity is equivalent to the threshold
that is used to distinguish attack traffic from normal traffic. We propose two methods to
determine the change point and calculate the associated detection rate for one method and
false alarm rate for the other method.

4.1. Order Statistic-Based Detection

For order statistic-based detection, ΔH(n) (n = 1, 2, . . . ,N) are first sorted in an increasing
order to N reference cells as

ΔH(1) ≤ ΔH(2) ≤ · · · ≤ ΔH(ς) ≤ · · · ≤ ΔH(N). (4.1)

The detection threshold is obtained by selecting the ζth-order-ranked ΔH(ς) to represent the
normal traffic plus measured noise. The input is multiplied to that cell by a scalar factor λ,
and the threshold θOS is expressed by

θOS = λΔH(ς). (4.2)
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The traffic in section n is considered normal if the change of self-similarity ΔH(n) <
θOS; otherwise, the traffic is considered abnormal, indicating possible attacks in that section.
ΔH(ς) is a random variable, and its probability distribution function is expressed by

p[ΔH(ς)] = ς
(
N
ς

)
[P(ΔH)]ς−1[1 − P(ΔH)]N−ςp(ΔH), (4.3)

where p(ΔH) is the probability distribution function of ΔH(n), and P(ΔH) is the
distribution function of ΔH(n).

We define the term detection as correctly recognizing an abnormal sign. The detection
rate pd is obtained by averaging the conditional probability of detection under the given
threshold θOS over all possible values of the threshold. That is,

pd =
∫+∞

θOS

[∫+∞

θOS

p(ΔH)dΔH

]
p[ΔH(ς)]dΔH(ς). (4.4)

Substituting (3.6) and (4.3) into (4.4) yields

pd = ς
(
N
ς

)∫+∞

θOS

[∫+∞

θOS

1√
2πσΔH

e−[ΔH(n)−μΔH]2/2σ2
ΔHdΔH

]

×
[∫ΔH

−∞

1√
2πσΔH

e−[ΔH(n)−μΔH]2/2σ2
ΔHdΔH

]ς−1

×
[

1 −
∫ΔH

−∞

1√
2πσΔH

e−[ΔH(n)−μΔH]2/2σ2
ΔHdΔH

]N−ς
1√

2πσΔH
e−[ΔH(n)−μΔH]2/2σ2

ΔHdΔH.

(4.5)

4.2. Maximum Likelihood Estimate-Based Detection

Considering the independence between ΔH(n) and ΔH(n′), (n/=n′), the joint probability
density function of ΔH is obtained by

pjoint(ΔH) =
N∏
n=1

p[ΔH(n)] =
1

(2π)N/2σNΔH
e−
∑N

n=1 [ΔH(n)−μΔH]2/2σ2
ΔH . (4.6)

Taking the natural logarithm on both sides of (4.6), we have

ln
[
pjoint(ΔH)

]
= ln

(
1

(2π)N/2σNΔH
e−
∑N

n=1 [ΔH(n)−μΔH]2/2σ2
ΔH

)

= −
(
N

2
ln(2π) +N lnσΔH +

1
2σ2

ΔH

N∑
n=1

[
ΔH(n) − μΔH

]2)
.

(4.7)
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In order to get the maximum likelihood estimate (MLE) of μΔH and σ2
ΔH , we have

∂ ln
[
pjoint(ΔH)

]
∂μΔH

=
1

σ2
ΔH

N∑
n=1

[
μΔH −ΔH(n)

]
= 0,

∂ ln
[
pjoint(ΔH)

]
∂σ2

ΔH

=
1

2
(
σ2
ΔH

)2

N∑
n=1

[
ΔH(n) − μΔH

]2 N

2σ2
ΔH

= 0.

(4.8)

By solving (4.8), one has

μΔHMLE =
1
N

N∑
n=1

ΔH(n),

σ2
ΔHMLE

=
1
N

N∑
n=1

[
ΔH(n) − μΔH−MLE

]2
.

(4.9)

So the probability distribution function of ΔH(n) is expressed by

p(ΔHMLE) =
1√

2πσΔHMLE

e
−[ΔH(n)−μΔHMLE ]

2/2σ2
ΔHMLE . (4.10)

Let the detection threshold be θMLE. The traffic in section n is considered normal if
the change of self-similarity ΔH(n) < θMLE; otherwise, the traffic is considered abnormal,
indicating possible attacks in that section.

Define false alarm as mistakenly recognizing a normal traffic as abnormal traffic. The
false alarm rate pf of the proposed detection system is expressed by

pf = p(θMLE < ΔH(n)) =
∫+∞

θMLE

1√
2πσΔHMLE

e
−[ΔH(n)−μΔHMLE ]

2/2σ2
ΔHMLEdΔH. (4.11)

So when given the preselected false alarm rate pf , the detection threshold θMLE is given by

θMLE = μΔHMLE + Φ(1−pf )σΔHMLE , (4.12)

where Φ is the standard normal distribution function.

5. Experiments and Analysis

5.1. Data Preparation

To evaluate the proposed detection methods, we use two traffic data sets from DARPA 1999
[25]. The DARPA 1999 data sets are from the Information Systems Technology Group, MIT
Lincoln Laboratory, under DARPA ITO and Air Force Research Laboratory. These traffic data
sets are the first standard for the evaluation of computer network intrusion detection systems.
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The first traffic set collected from 8:20:00.0 to 11:10:39, 1 March (Monday), 1999, named
DARPA1999-week1-Monday-inside, is an attack free series. The second traffic set collected
from 8:20:00.0 to 16:24:41.5, 8 March (Monday), 1999, named DARPA1999-week2-Monday-
inside, is an attack contained series. 3 types of DDoS attacks are contained in this data set,
which are pod, back, and land separately. We rename the first-attack free traffic set as D99-
W1-1-i and second attack contained traffic set as D99-W2-1-i for short. The traffic traces for
these two data sets are displayed in Figure 2. The merging time scale is 100 ms.

5.2. Test Results and Analysis

After the 100 ms merging, the number of data in D99-W1-1-i is 102400 and the number of data
in D99-W2-1-i is 290816. Combine these two traffic sets into one and name it as D99. D99 is
divided into 64 sections (N = 64) and each section is further divided into 12 segments (W =
12). So the length of each traffic segment is 512. We use (2.7) to estimate the Hurst parameter
Hw(n) of the wth traffic segment in the nth section (w = 1, 2, . . . ,W and n = 1, 2, . . . ,N), then
average the Hw(n) in terms of w. After that, we obtain the Hurst parameter H(n) in the nth
section, as shown in Figure 3.
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Figure 4: Hurst variation of traffic D99.
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We apply AR model with order Q (Q = 10) to estimate the Hurst parameter of the
traffic. The Hurst variation ΔH(n) of the nth traffic section is obtained using (3.4). The results
are shown in Figure 4.

For the order statistic-based detection method, we first sort ΔH(n) in an increasing
order and then choose the scale factor λ = 1.2. After selecting a value ζ, the detection threshold
θOS is calculated according to (4.2). Figure 5 shows the thresholds when ζ is 40, 45, and 50,
respectively.

Form Figure 5, we can see that when ζ is smaller (ζ = 40), the detection threshold
is lower. In this case, more traffic sections will have Hurst variations above the threshold
thus more attacks are declared. However, note that a smaller ζ may also introduce more false
alarms, mistakenly recognizing more normal traffic as attack traffic.

For the maximum likelihood estimate-based detection, we compute the detection
threshold θMLE using (4.12). Figure 6 shows the resulted thresholds when the pre-selected
false alarm rate pf is 1%, 5%, and 10%, respectively.

Form Figure 6, we can see that when the pre-selected false alarm rate pf is higher
(pf = 10%), the resulted threshold is lower. This is in accordance with our expectation because
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when the pre-selected false alarm rate is high, it is allowed to mistakenly treat some normal
traffic as attacks, thus the detection threshold is low.

Figure 7 shows the detection rate pd versus false alarm rate pf for both of the detection
methods. We can see from the figure that both of the two detection methods can achieve
reasonable detection rate, but the detection performance of maximum likelihood estimate-
based method is better than the order statistic-based method. Meanwhile, we can see that
for both detection methods, a minor increase of the pf results in a significant increase in pd
when pf is lower than 0.1. Which means if we allow a little bit more false alarm, the detection
rate will be significantly improved. We can also observe from Figure 7 that when pd is higher
than 0.9, a minor increase in pd will require a significant increase in pf . That is, if we want to
improve the detection rate in the range greater than 0.9, we have to tolerate much more false
alarms.
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Table 1: Comparisons of detection performance.

Detection method pf pd

Allen 34% 80%
Order statistic-based detection 34% 87%

Maximum likelihood estimate-based detection 34% 92%
Ren 38% 89%

Order statistic-based detection 38% 91%
Maximum likelihood estimate-based detection 38% 96%

5.3. Comparison with Existing Detection Methods

In this section, we compare our proposed two detection methods with Allen’s method [26]
and Ren’s method [27], for these are two well-known self-similarity-based detection methods
in the literature. Both of these methods define a range of Hurst parameter for normal traffic.
For Allen’s method, the Hurst range is (0.5, 0.99) and the range is (0.65, 0.85) in Ren’s method.
Traffic section with a Hurst outside the range is treated as abnormal traffic.

Table 1 compares the detection performance of Allen’s method, Ren’s method, and our
proposed methods. Ren’s detection method achieves higher detection rate pd than Allen’s
method at the cost of slightly higher false alarm rate pf . We first use the Allen’s false alarm
rate 34% as the false alarm rate of the proposed two detection methods. The proposed order
statistic-based detection method can archive detection rate as high as 87%, and maximum
likelihood estimate-based detection method archives detection rate as high as 92%, both
higher than the detection rate of Allen’s method. Similarly, we use the Ren’s false alarm rate
38% as the false alarm rate of the proposed two detection methods. The detection rates of the
proposed detection methods are also higher than that of the Ren’s method.

6. Conclusion

In this paper, we have proposed a DDoS detection method by monitoring Hurst variation
based on Li’s work on DDoS attack detection. Meanwhile, we have discussed two methods
for determining the change point of LRD traffic, which can be used to distinguish attack traffic
from normal traffic. Experiments have been conducted to evaluate the performance of our
proposed scheme, and the test results show that the proposed detection methods outperform
existing self-similarity based detection methods, and can significantly enhance the reliability
and robustness of the DDoS flood attack detection.
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