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A theoretical model of multistep gear transmission dynamics is presented. This model is based on
the assumption that the connection between the teeth of the gears is with properties within the
range from ideal clasic to viscoelastic so that a new model of connection between the teeth was
expressed by means of derivative of fractional order. For this model a two-step gear transmision
with three degrees of freedom of motion has been used. The obtained solutions are in the analytic
form of the expansion according to time. As boundary cases this model gives results for the case
of ideally elastic connection of the gear teeth and for the case of viscoelastic connection of the gear
teeth, as well. Eigen fractional modes are obtained and a vizualization is done.

1. Introduction

Gear transmissions have a long history dating back since the time of the first engineering
systems. Their practical usage in the present day modern engineering systems is enormous.
In accordance with contemporary development of mechanical engineering technics ever
growing requirements have been imposed concerning characteristics and working specifica-
tions. The machines which utilize high-power duty gear transmissions (excavating machines,
crushing mashines, rolling machines, ships, etc.) operate under nonstationary conditions
so that the loads of the elements of these gear transmissions are variable. For example,
abrupt accelerations and abrupt decelerations of machine parts, that is, masses of the gear
transmissions cause inertial forces which, in addition to the conditions of operation, influence
the magnitude of actual leads of the elements of gear transmissions. All this, together with
the changes of the torque of drive and operating machine, the forces induced by dynamic
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Figure 1: Two models of the gear power transmission with visco-elastic fractional order tooth coupling.

behaviours of the complete system, and so forth, lead to the simulation where the stresses in
the gears are higher than critical stresses; after certain time this may result in breakage of the
teeth.

1.1. Introduction into Nonlinear Dynamics of the Rotors

Dynamics of coupled rotors (see Figure 1) and of gyrorotors are very old engineering
problems with many different research results and discoveries of new nonlinear phenomena,
and of stationary and no stationary vibrations regimes with different kinetic parameters of
the dynamical system (see [1–14]). However, even nowadays many researchers pay attention
to this problem again.

Chaotic clock models, as well as original ideas on a paradigm for noise in machines
were presented by Moon (see [15]): “All machines exhibit a greater or lesser amount of
noise. The question arises as to whether a certain level of noise is natural or inevitable in a
complex assembly of mechanical or electromechanical devices?” In the cited paper, the nature
of noise or chaos in a specific class of complex multibody machines, namely the clock was
examined. For examining natural clocks of reductors (power transmission), as well as source
of nonlinear vibrations and noise in its dynamics, it is necessary to investigate properties of
nonlinear dynamics, and phase portraits, as well as structures of homoclinic orbits, layering
and sensitivity of this layering of homoclinic orbits and bifurcation of homoclinic points, as
it is presented in [6, 9–11].
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Following up the idea of Mossera that the distance between trajectories be measured
maintaining different time scales or “clock” with which time is measured along each
motion, Leela (see [16]) defines the new concepts of orbital stability in terms of given
topology of the function space. Leela’s paper pointed out the different kind of clock. Perfect
clock corresponds to stable system dynamics, entire clock space corresponds to the chaotic
topology and chaotic-like dynamics of the system.

By using examples of the rotor system which rotates about two axes with section
or without section, we applied the vector method of the kinetic parameters analysis of the
rotors with many axes which is done in [12, 13, 17–28]. In the previous listed papers, the
expressions for the corresponding linear momentum and angular momentum, as well as their
derivatives in time for the rotors with coupled rotation are used in the vector form. By these
expressions, the vector equations of the gyrorotor system dynamics are derived, as well as
the expression for the kinetic pressures on the gyro rotor system bearings. The mass moment
vectors introduced and defined by first author (see [6, 7, 17, 18, 29–36]), are used to present
a vector method for the analysis of kinetic parameter of coupled rigid rotors dynamics with
deviational mass properties of rotor, as well as of the dynamics of rotor with changeable mass
distribution (see [32, 32]).

By using vector equations (see [21, 22, 24, 25]), two scalar differential equations of
the heavy rotor system nonlinear dynamic for the case that disc is skewly eccentrically
positioned on the own polhode shaft axis (gyrodisk-rotor) is studied. For the case when one
rotation about axis is controlled by constant angular velocity, the nonlinear dynamics of the
rotation about other axis is studied. Non-linear gyrodisc-rotor system dynamics is presented
by phase portrait in the phase plane, with trigger of the coupled singularities, as well as with
homoclinic orbits and homoclinic points of the no stable type saddle. For the case of gyrodisc-
rotor system dynamics under the action of the perturbed couple the sensitive dependence in
the vicinity of the equilibrium no stable position which corresponds to homoclinic point of
the type no stable saddle, the possibility of the chaotic character behavior is pointed out.

Expressions of the kinetic pressures of shaft bearing are determined.
The analogy between motions of heavy material point: on the circle in vertical plane

which rotates around vertical axis in the plane (see [37, 38]) and corresponding motions case
of the heavy rotor around two axes with cross section, as well as of the gyrodisc-rotor which
rotates around two axes is pointed out (see [5, 21, 24, 25, 39, 40]).

Dynamics of disc on the one, or more, shaft is a classical engineering problem.
This problem attracts attention of many researchers and permanently takes place in world
scientific and engineering professional literature (see [3, 41, 42]). Some of these problems
are classical and can be found in university text books of mechanics (see [42]). As we
can see, these problems are in the nonlinear dynamics described by nonlinear differential
equations without analytical solutions. In present time these problems were conditionally
and approximately solved by approximate solutions or by linearizations (first by Simes,
Stodola, Rubanik and others [38, 43]). Problem of dynamics of the eccentric, skewly
positioned disc on one-shaft rotation is classical problem with gyroscopic effect (see classical
text books [17, 38, 43, 44]) which takes place in all text books of Dynamics and Theory of
Oscillations with applications in engineering, but their presentations are finished only by
nonlinear differential equations without their solutions and expression for kinetic pressures.
Nowadays, numerous new published papers containing different approximations of the
solutions of different classes of the mathematical descriptions of rotor dynamics are not
enough to take are into account all real influential factors to describe real system dynamics.
This is inspiration for new research in this area.
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By using knowledge of nonlinear mechanics (see [37, 45]), as well as by using
introduced mass moments vectors and vector rotators in the series of the published papers
[8, 19, 23–25, 34, 36, 46–49] phase portrait of gyrorotor dynamics with analysis of static and
dynamical equilibrium positions depending on system kinetic parameters are presented in
new light and new approach.

Using new knowledge in the nonlinear mechanics, theory of chaos and dynamical
systems published in [19, 50, 51], the sensitive dependence of the initial conditions and of
the forced motion—oscillation/rotation/stochasticlike-chaoticlike motion of the heavy rotor
with vibrating axis as well as gyrorotor in the “vicinity” of the homoclinic point and orbit are
analyzed. We followed the ideas of Holmes from [52] on the example pendulum excited by
one frequency force, and which showed us that Poincare maps contain the Smale horseshoe
map as well as global analysis processes of the dynamical systems which posses on the
homoclinic orbit is suitable for applying to study of the rotor dynamic. By using ideas of
Holmes from [52], it is easy to prove that forced dynamic of the heavy gyrorotor has in the
vicinity of homoclinic point sensitive dependence of initial conditions.

In the paper [6] the motion of a heavy body around a stationary axis in the field with
turbulent damping [53] is investigated and kinetic pressures on bearings are expressed by
mass moment vectors for the pole in the stationary bearing and for the axis of the body
rotation. The motion equations of a variable mass object rotating around a fixed axis are
expressed by mass moment vector for the pole and the axis and presented in [20].

A trigger of coupled singularities, on an example of coupled rotors with deviational
material particles are presented in [54]. Non-linear phenomena in rotor dynamics were
investigated in the series of [6].

From time to time it is useful to pay attention again to classical models of dynamics
of mechanical systems and evaluate possibilities for new approaches to these classical results
by using other than the methods usually used in the classical literature.

The interest in the study of vector and tensor methods with applications in the
Dynamics especially in Kinetics of rigid and solid body rotational motions and deformation
displacements as a new qualitative approach to the optimization of the time for study process
grew exponentially over the last few years because theoretical challenges involved in the
study of technical sciences need such optimization of university systems study. Short time
for fundamental knowledge transfer during one term (semester) courses with high level
of apparent study results requires the optimization of the time for introducing new basic
high level scientific ideas (logic and philosophical) which are easy to understand to most of
students in the study process and for engineering applications this is very important.

Also, we can conclude that the impact of different possibilities to establish the
phenomenological analogy of different model dynamics expressed by vectors connected to
the pole and the axis and the influence of such possibilities to applications allows professors,
researchers and scientists to obtain larger views within their specialization fields.

This is the reason to introduce mass moment vectors to presentation of the kinetic
parameters of the rotor dynamics and multistep gear transmission. On the basis of this
approach we built the first model presented in this paper.

In industry there is an increased need for detailed investigation of the toothed coupling
through models that involute the coupling of more than two teeth and for more than two, the
systems which give high revolution numbers and others. Relatively new models (see [1–
4, 14, 15, 26–28, 41, 55, 56]) have been established to study numerous problems in the gear
transmission dynamics.
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1.2. Introduction into Fractional Order Dynamics of the Rotors

In use, gear transmissions are very often exposed to action of forces that change with time
(dynamic load). There are also internal dynamic forces present. The internal dynamic forces
in gear teeth meshing, are the consequence of elastic deformation of the teeth and defects
in manufacture such as pitch differences of meshed gears and deviation of shape of tooth
profile. Deformation of teeth results in the so-called collision of teeth which is intensified
at greater difference in the pitch of meshed gears. Occurrence of internal dynamic forces
results in vibration of gears so that the meshed gears behave as an oscillatory system. This
model consists of reduced masses of the gear with elastic and damping connections (see
[2, 4, 55]). By applying the basic principles of mechanics and taking into consideration initial
and boundary conditions, the system of equation is established which describes physicality
of the gear meshing process. On the other hand, extremely cyclic loads (dynamic forces) can
result in breakage of teeth, thus causing failure of the mechanism or system.

Primary dependences between geometrical and physical quantities in the mechanics of
continuum (and with gear transmissions as well) include mainly establishing the constitutive
relation between the stress state and deformation state of the tooth’s material in the two teeth
in contact for each particular case.

Thus, solving this task, it is necessary to reduce numerous kinetic parameters to
minimal numbers and obtain a simple abstract model describing main properties for inves-
tigation of corresponding dynamical influences. Analytic methods include determination of
mathematical functions which detemine the solution in closed form. They are based on the
constitutive laws and relations of the stress-strain states in gear’s materials, and they can give
solutions for a very small number of boundary tasks. But, always each aproach needs certain
assumotions-approximations concerning description of real contours, properties of teeth is
contacts and initial conditions. For this reason numerous researchers resort to application of
numeric method in solving differential equation of the gear transmission motion. The basic
characteristic of the numeric methods is that the fundamental equations of the Elasticity
theory, including the boundary conditions, are solved by approximative numeric methods.
The solutions obtained are approximate.

Based on previous analysis at starting this part, we take into account that contact
between two teeth is possible to be constructed by standard light element with constitutive
stress—strain state relations which can be expressed by fractional order derivatives.

For that Reason, Let us make a short survey of the present results published in the
literatute.

The monographs [57, 58] contain a basic mathematical description of fractional
calculus and some solutions of the fractional order differential equations necessary for
applications of the corresponding mathematical description of a model of gear transmission
based on the teeths coupling by standard light fractional order element.

In series of the papers (see [59–62]) and in the monograph [63] analytical mechanics
of discrete hereditary systems is constructed and based on the standard light hereditary
elements in the form of neglected mass and with viscoelastic properties with corresponding
constitutive relations between forces and element deformations. Special case are constitutive
relations expressed by fractional order derivatices.

In [61] discrete continuum method was presented by use of the system of the material
particles coupled viscoelastically or creeping mass less standard light elements with different
stress-strain constitutive relations expressed by corresponding mathematical relations.
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Standard light element with constitutive stress-strain relation expressed by members with
fractional order derivatives are also used.

In the series of [45, 64–69] a series of the mixed discrete-continuum or continuum
mechanical systems with fractional order creep properties are mathematically described
by members contained in fractional order derivatives and analytically solved. These
examples with mathematical descriptions and solutions are basic for new model of the gear
transmission with fractional order properties.

2. Model of the Gear Transmission of the Fractional Order
Tooth Coupling

2.1. Description of the Gear Transmission Model of the Fractional
Order Tooth Coupling

Let us consider a model who is based on the three-step coupled rigid rotors but couplings
between gear teeth are realized by standard light elements fractional order constitutive stress-
strain relations, Figure 1(a). The second model of gear transmissions dynamics consists of
three rigid disks coupled by two standard light fractional order elements, as it is presented in
Figure 1(b). (see Appendix B).

2.2. Standard Light Fractional Order Element

Basic elements of multistep gear transmission system are

(i) gears in the form of disks with mass axial inertia moments Jk, k = 1, 2, 3,

(ii) standard light coupling elements of negligible mass in the form of axially stressed
rod without bending, and which has the ability to resist deformation under
static and dynamic conditions; Constitutive stress-strain relation between resti-
tution force P and element elongation x can be written in the general form
fpsr(P, Ṗ, x, ẋ, xα

t ,D,Dα
t ,J, n, c, c̃, μ, α, cα, T,U, . . .) = 0, where D, Dα

t and J are
differential, fractional order and integral operators (for detail see monographs
[45, 58–67, 70, 71]) which find their justification in experimental verifications of
material behavior, while n, c, c̃, μ, cα, α, . . . are material constants, which are also
determined experimentally.

For each single standard coupling light element of negligible mass, we shall define
a particular stress-strain constitutive relation-law of material properties. This means that
we will define stress-strain constitutive relation as description relation between forces and
deformations of two gears teeth in contact determined and constrained by rotation angles of
the gear model in the form of disk and with changes of distances in time, with accuracy up to
constants which depend on the accuracy of their determination through experiment.

The accuracy of those constants laws and with them the relation between forces and
elongations will depend not only on knowing the nature of object, but also on our having the
knowledge necessary for dealing with very complex stress-strain relations in the coupling
gears teeth (for details see [2, 4, 55]). In this paper we shall use three types of such light
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standard constraint elements: light standard creep constraint element for which the stress-strain
relation for the restitution force in the function of element elongation is given by fractional
order derivatives (see [62]) in the form

P(t) = −
{

c0x(t) + cαDt
α[x(t)]

}

, (2.1)

where Dα
t [·] is fractional order differential operator of the αth derivative with respect to time

t in the following form:

Dt
α[x(t)] =

dαx(t)
dtα

= x(α)(t) =
1

Γ(1 − α)
d

dt

∫ t

0

x(τ)
(t − τ)α

dτ, (2.2)

where c, cα are rigidity coefficients is momentary and prolonged one, and α a rational number
between 0 and 1, 0 < α < 1.

2.3. Governing Equations of the Two-Step Gear Transmission with
Fractional Order Tooth Coupling

For defined model of the two-step gear transmission fractional order system vibrations, we
use three generalized coordinates—angle of gear disks rotation ϑi, i = 1, 2, 3, and we take into
account that defined system poses three degrees of freedom.

Kinetic energy of the of the two-step gear transmission fractional order system
vibrations is in the form

Ek =
1
2

k=2
∑

k=1

Jkϑ̇2
k +

1
2
J3ϑ̇

2
2 +

1
2
J4ϑ̇

2
3. (2.3)

The first standard light fractional order coupling element is between first gear disk and
second and is strained for x1 = R1((R2/R1)ϑ2 − ϑ1), and the second standard light fractional
order coupling element is between the third gear disk and fourth and is strained for x2 =
R3((R4/R3)ϑ3 − ϑ2). On the basis of the previous constitutive stress-strain relation of the first
and second standard light fractional order coupling elements between geared disks in the
two-step gear power transmission are

P1 = −cx1 − cαDt
α[x1] = −cR1

(

R2

R1
ϑ2 − ϑ1

)

− cαDt
α

[

R1

(

R2

R1
ϑ2 − ϑ1

)]

,

P2 = −cx2 − cαDt
α[x2] = −cR3

(

R4

R3
ϑ3 − ϑ2

)

− cαDt
α

[

R3

(

R4

R3
ϑ3 − ϑ2

)]

.

(2.4)
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Governing system of the double gear transmission fractional order differential
equations is in the following form:

J1ϑ̈1 = −P1 = cR1

(

R2

R1
ϑ2 − ϑ1

)

+ cαDt
α

[

R1

(

R2

R1
ϑ2 − ϑ1

)]

,

(J2 + J3)ϑ̈2 = P1 − P2 = −cR1

(

R2

R1
ϑ2 − ϑ1

)

− cαDt
α

[

R1

(

R2

R1
ϑ2 − ϑ1

)]

+ cR3

(

R4

R3
ϑ3 − ϑ2

)

+ cαDt
α

[

R3

(

R4

R3
ϑ3 − ϑ2

)]

,

J4ϑ̈3 = P2 = −cR3

(

R4

R3
ϑ3 − ϑ2

)

− cαDt
α

[

R3

(

R4

R3
ϑ3 − ϑ2

)]

.

(2.5)

After introducing the following notations:

ω2
0 =

c

J1
R1, ω2

0α =
cα
J1
R1, k21 =

R2

R1
, k31 =

R3

R1
, k41 =

R4

R1
, λ23,1 =

(J2 + J3)
J1

, λ4,1 =
J4

J1
(2.6)

governing system of the l fractional order differential equations is possible to write in the
following form:

ϑ̈1 −ω2
0k21ϑ2 +ω2

0ϑ1 = ω2
0α1D

t
α[(k21ϑ2 − ϑ1)],

ϑ̈2 −ω2
0λ23,1ϑ1 +ω2

0λ23,1(k21 + k31)ϑ2 −ω2
0λ23,1k41ϑ3 = ω2

0αλ23,1Dt
α[ϑ1 + (k21 + k31)ϑ2 − k41ϑ3],

ϑ̈3 +ω2
0λ413(k41ϑ3 − k31ϑ2) = −ω2

0αλ4,1Dt
α[(k41ϑ3 − k31ϑ2)].

(2.7)

2.4. Solutions of the Governing System of Differential Equations of Two-Step
Gear Transmission Dynamics, with Fractional Order Tooth Coupling

Now, for beginning let us consider corresponding basic systems of the differential equations
in linear form:

ϑ̈1 −ω2
0k21ϑ2 +ω2

0ϑ1 = 0,

ϑ̈2 −ω2
0λ23,1ϑ1 +ω2

0λ23,1(k21 + k31)ϑ2 −ω2
0λ23,1k41ϑ3 = 0,

ϑ̈3 +ω2
0λ413(k41ϑ3 − k31ϑ2) = 0,

(2.8)

and with proposed solutions in the following form:

ϑk(t) = Ak cos(ωt + α), (2.9)
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and taking the following notation u = ω2/ω2
0, we can write the following systems of algebra

of algebra equations with respect to unknown amplitudes Ak in the matrix form

⎛

⎝

(1 − u) −k21 0
−λ23,1 [λ23,1(k21 + k31) − u] −λ23,1k41

0 −λ413k31 (λ413k41 − u)

⎞

⎠

⎧

⎨

⎩

A1

A2

A3

⎫

⎬

⎭

= {0}, (2.10)

and corresponding frequency equation in the developed form

f(u) = (1 − u)[λ23,1(k21 + k31) − u](λ413k41 − u)

− k21λ23,1(λ413k41 − u) − λ413k31λ23,1k41(1 − u) = 0.
(2.11)

From the previous frequency equation, we can obtain the following three roots us, s =
1, 2, 3 and corresponding eigen circular frequencies: ω2

s = usω
2
0, s = 1, 2, 3, and corresponding

cofactors are: K(s)
31 = −k21(λ413k41 − us); K

(s)
32 = −λ23,1k41(1 − u); K(s)

33 = −k21λ23,1k41. Then,
solution of the basic linear differential equations is

ϑk(t) =
s=3
∑

s=1

ϑ
(s)
k (t) =

s=3
∑

s=1

A
(s)
k

cos(ωst + αs) =
s=3
∑

s=1

K
(s)
3k Cs cos(ωst + αs) =

s=3
∑

s=1

K
(s)
3k ξs, (2.12)

where ξs = Cs cos(ωst + αs), s = 1, 2, 3 are main coordinates of the linear system.
By using the expression for generalized coordinates ϑi, i = 1, 2, 3 by normal coordinates

of the linear system, the governing system of the fractional differential equations (2.12) is
possible to be transform as in the following form:

ξ̈s +ω2
sξs = −ω2

αsD
t
α[ξs], s = 1, 2, 3, (2.13)

where

ω2
s =

∑i=3
i=1
∑j=3

j=1 cijK
(s)
3i K

(s)
3j

∑i=3
i=1
∑j=3

j=1 aijK
(s)
3i K

(s)
3j

, s = 1, 2, 3, ω2
αs =

∑i=3
i=1
∑j=3

j=1 cαijK
(s)
3i K

(s)
3j

∑i=3
i=1
∑j=3

j=1 aijK
(s)
3i K

(s)
3j

, s = 1, 2, 3.

(2.14)

Obtained system of the three fractional order differential equations (2.14) present three
uncoupled fractional order differential equations independent along normal coordinates ξs,
s = 1, 2, 3 of the considered fractional order model of the gear transmission dynamics. All
three fractional order differential equations are of the same type and each presents one mode
of the fractional order mode vibrations. Analytical solution is easy to obtain by using one of
[58] or [42] or [69] or [62]. Solutions of here fractional order differential equation is possible
to solve by using the approach presented in the Appendix A. (It is possible to solve these
fractional order differential equation by using the approach presented in the Appendix A).



10 Mathematical Problems in Engineering

Then, for the solutions of the each fractional order differential equations (2.13), we can
write the following expressions:

ξs(t) = ξ0s

∞
∑

k=0

(−1)kω2k
αst

2k
k
∑

j=0

(

k
j

)

(∓1)jω2j
αst
−αj

ω
2j
s Γ
(

2k + 1 − αj
)

+ ξ̇0s

∞
∑

k=0

(−1)kω2k
αst

2k+1
k
∑

j=0

(

k
j

)

(∓1)jω−2j
αs t−αj

ω
2j
s Γ
(

2k + 2 − αj
)

, s = 1, 2, 3,

(2.15)

where ξs(0) = ξ0s and ξ̇s(0) = ξ̇0s are initial values of these main coordinates defined by initial
conditions. Expressions (2.15) for main system coordinates present fractional order models
like one frequency vibration modes.

Now, we can separate three sets of the two fractional order time components ηs(t)
and ζs(t), s = 1, 2, 3 and in the expression of the solutions along normal coordinates of the
governing system of fractional differential equations describing our second model of the gear
transmission fractional order dynamics we can write in the following forms:

ηs(t) =
∞
∑

k=0

(−1)kω2k
αst

2k
k
∑

j=0

(

k

j

)

(∓1)jω2j
αst
−αj

ω
2j
s Γ
(

2k + 1 − αj
)

, s = 1, 2, 3, (2.16)

ζs(t) =
∞
∑

k=0

(−1)kω2k
αst

2k+1
k
∑

j=0

(

k

j

)

(∓1)jω−2j
αs t−αj

ω
2j
s Γ
(

2k + 2 − αj
)

, s = 1, 2, 3. (2.17)

These three series of the two fractional order time components ηs(t) and ζs(t), s = 1, 2, 3
present series of the six fractional order modes like one frequency modified cos as well as sin
vibration mode components.

Then the solution of the basic system of the fractional order differential equations (2.7)
along generalized coordinates ϑi, i = 1, 2, 3 contain sixth time functions in the forms (2.16) and
(2.17). Finally for the solution of the basic system of the fractional order differential equations
(2.7) describing dynamics of the fractional order two-step gear transmission it is possible to
express in the following form:

ϑk(t) =
s=3
∑

s=1

K
(s)
3k ξs(t) =

s=3
∑

s=1

K
(s)
3k ξ0s

∞
∑

k=0

(−1)kω2k
αst

2k
k
∑

j=0

(

k
j

)

(∓1)jω2j
αst
−αj

ω
2j
s Γ
(

2k + 1 − αj
)

+
s=3
∑

s=1

K
(s)
3k ξ̇0s

∞
∑

k=0

(−1)kω2k
αst

2k+1
k
∑

j=0

(

k
j

)

(∓1)jω−2j
αs t−αj

ω
2j
s Γ
(

2k + 2 − αj
)

, k = 1, 2, 3.

(2.18)

2.5. Numerical Analysis of the Solutions of the Governing System of
Fractional Order Differential Equations of Two-Step Gear Transmission
Dynamics, with Fractional Order Tooth Coupling

We can see that for fractional order model of the double gear transmission vibrations was
transformed by eigen normal coordinates ξs, s = 1, 2, 3 of the corresponding linear system
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Figure 2: Relations between eigen amplitudes of eigen main normal modes of corresponding system of the
basic linear differential equations (2.12), (a) for first, (b) for second, and (c) for third mode.

into three separate independent fractional order oscillators, each with one degree of freedom,
and each fractional order differential equation contain only one main coordinate of the system
dynamics.

Relations between eigen amplitudes of eigen main normal modes of corresponding
system of the basic linear differential equations (2.8) are given on Figure 2(a) for first, 2(b)
for second and 2(c) for third mode.

By using different numerical values of the kinetic and geometrical parameters of the
two-step gear transmission model, the series of the graphical presentation of the three sets
of the two-time components ηs(t) and ζs(t), s = 1, 2, 3 of the solutions, by using expressions
(2.15) and (2.16), are obtained. In the series Figures 3–7 are presented characteristic modes for
different values of the α coefficient of the fractional order of the used standard light fractional
order element for describing teeth coupling between gears (see Appendix B).

In Figure 3, first eigen fractional order time components η1(t) and ζ1(t) for different
system kinetic and geometric parameter values are presented.

In Figure 4, first eigen fractional order mode ξ1(t) with corresponding first eigen
fractional order time components η1(t) and ζ1(t) for different system kinetic and geometric
parameter values are presented. First eigen fractional order mode is like one frequency
vibration mode similar to first single frequency eigen mode of the corresponding linear
system.

In Figure 5, second eigen fractional mode ξ2(t) with corresponding second fractional
order time components η2(t) and ζ2(t) for different system kinetic and geometric parameter
values, are presented. Second eigen fractional order mode is like one frequency vibration
mode similar to second single frequency eigen mode of the corresponding linear system.

In Figure 6, third eigen fractional mode ξ3(t) with corresponding third fractional order
time components η3(t) and ζ3(t) for different system kinetic and geometric parameter values
are presented. Third eigen fractional order mode is like one frequency vibration mode similar
to third single frequency eigen mode of the corresponding linear system.

In Figure 7, first and second eigen fractional modes, ξ1(α, t) and ξ2(α, t) are presented
by surfaces with corresponding first and second fractional order time components, η1(α, t)—
surfaces in left column and η2(α, t)—surfaces in right column for same system kinetic and
geometric parameter values are presented.

The third eigen fractional mode ξ3(α, t) is not presented by surfaces with corre-
sponding third fractional order time components η3(α, t) by the reason that corresponding
surfaces qe similar as two previous first and second eigen fractional modes, ξ1(α, t) and ξ2(α, t)
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Figure 3: First eigen fractional order time components η1(t) and ζ1(t) for different system kinetic and
geometric parameter values.

presented in Figure 7, and some characteristic properties are visible in the graph presented in
Figure 6.

3. Concluding Remarks

Two approaches to the models of the gear transmission system dynamics with possibility of
investigate different properties of the very complex dynamics of the corresponding real gear
transmission system are possible.
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Figure 4: First eigen fractional mode ξ1(t) with corresponding first fractional order time components η1(t)
and ζ1(t) for different system kinetic and geometric parameter values. Eigen fractional order mode is like
one frequency vibration mode similar to first single frequency eigen mode of the corresponding linear
system.



14 Mathematical Problems in Engineering

−1.3

−0.59

0.11

0.82

1.53

0 3.5 7 10.5 14

t

Trace 1, η2(t)
Trace 2, η21(t)
Trace 3, η22(t)
Trace 4, η23(t)
Trace 5, η24(t)
Trace 6, η25(t)
Trace 7, η26(t)
Trace 8, η27(t)

(a)

−1

−0.5

0

0.5

1

0 3.75 7.5 11.25 15

t

Trace 1, ζ2(t)
Trace 2, ζ21(t)
Trace 3, ζ22(t)
Trace 4, ζ23(t)
Trace 5, ζ24(t)
Trace 6, ζ25(t)
Trace 7, ζ26(t)
Trace 8, ζ27(t)

(b)

−3

−1.5

0

1.5

3

0 3.5 7 10.5 14

t

Trace 1, ζ2(t)
Trace 2, ζ21(t)
Trace 3, ζ22(t)
Trace 4, ζ23(t)
Trace 5, ζ24(t)
Trace 6, ζ25(t)
Trace 7, ζ26(t)
Trace 8, ζ27(t)

Trace 1 for α = 0.5
Trace 1 for α = 0.1
Trace 1 for α = 0.2
Trace 1 for α = 0.4
Trace 1 for α = 0.6
Trace 1 for α = 0.8
Trace 1 for α = 1
Trace 1 for α = 0

(c)

Figure 5: Second eigen fractional mode ξ2(t) with corresponding second fractional order time components
η2(t) and ζ2(t) for different system kinetic and geometric parameter values. Eigen fractional order mode
is like one frequency vibration mode similar to second single frequency eigen mode of the corresponding
linear system.
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Figure 6: Third eigen fractional mode ξ3(t) with corresponding third fractional order time components
η3(t) and ζ3(t) for different system kinetic and geometric parameter values. Eigen fractional order mode
is like one frequency vibration mode similar to third single frequency eigen mode of the corresponding
linear system.
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Figure 7: First and second eigen fractional modes, ξ1(α, t) and ξ2(α, t) presented by surfaces with
corresponding first and second fractional order time components η1(α, t)—surfaces in left column and
η2(α, t)—surfaces in right column for same system kinetic and geometric parameter values.

First approach give a model based on the rigid rotors coupled with rigid gear teeth,
with mass distributions not balanced and in the form of the mass particles as the series of the
mass debalances of the gears in multistep gear transmission. By very simple model is possible
and useful investigation of the nonlinear dynamics of the multistep gear transmission and
nonlinear phenomena in free and forced dynamics. This model is suitable to explain source
of vibrations and big noise, as well as no stability in gear transmission dynamics. Layering
of the homoclinic orbits in phase plane is source of a sensitive dependence nonlinear type of
regime of gear transmission system dynamics.

Second approach give a model based on the two-step gear transmission taking
into account deformation and creeping and also visco-elastic teeth gears coupling. Our
investigation was focused to a new model of the fractional order dynamics of the gear
transmissiont. For this model we obtain analytical expressions for the corresponding
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fractional order modes like one frequency eigen vibrational modes. Generalization of this
model to the similar model of the multistep gear transmission is very easy.

Appendices

A. Solution of a Fractional Order Differential Equation of a Fractional
Order Creep Oscillator with Single Degree of Freedom

The fractional order differential equations from all three (79) obtained and considered cases
of eigen fractional order partial-particular oscillators of the hybrid fractional order gear
transmission system are in mathematical analogy same type of fractional order differential
equation with corresponding unknown time-function, ξs(t), s = 1, 2, 3. For all these time
functions ξs(t), s = 1, 2, 3, we can use notation T(t) and all previous derived fractional order
differential equations (79) of eigen fractional order partial oscillators with one degree of
freedom, correspond to the fractional order model dynamics of the gear transmission system
dynamics with three degree of freedom, we can rewrite it in the following form:

T̈(t) ±ω2
αT

(α)(t) +ω2
0T(t) = 0. (A.1)

This fractional order differential equation (A.1) on unknown time-function T(t), can
be solved by applying Laplace transforms (see [42, 58] or [67, 69]). Upon that fact Laplace
transform of solution is in the form

T
(

p
)

= L[T(t)]
pT(0) + Ṫ(0)

p2 +ω2
0

[

1 ±
(

ω2
α/ω

2
0

)

R
(

p
)] , (A.2)

where L�Dt
α[T(t)]� = R(p)L[T(t)] is Laplace transform of a fractional derivative dαT(t)/dtα

for 0 ≤ α ≤ 1. For creep rheological material those Laplace transforms are of the form:

L
[

Dt
α[T(t)]

]

= R
(

p
)

L[T(t)] − dα−1

dtα−1
T(0) = pαL[T(t)] − dα−1

dtα−1
T(0) (A.3)

where the initial value are

dα−1T(t)
dtα−1

∣

∣

∣

∣

∣

t=0

= 0, (A.4)

so, in that case Laplace transform of time-function is given by the following expression:

L{T(t)} =
pT0 + Ṫ0

[

p2 ±ω2
αpα +ω2

0

] . (A.5)
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Table 1: The datas of gear box.

Pinion Middle 1 Middle 2 Output gear
Number of the teeth 51 72 19 73
Modulus, mm 1,405 1,405 2,2175 2,2175
Face whith, mm 22,5 29 20 20
Inertias 0 01837 0 03837 0 00071 0 1740
Contact ratio 1,60 1,7
Mean stiffness 4, 24 × 109 3, 45 × 109

Mesh Phasing 0 257
Torque T , Nm 100 0 0 258,4

For boundary cases, when material parameters α take the following values: α = 0
and α = 1 we have the two special simple cases, whose corresponding fractional-differential
equations and solutions are known. In these cases fractional-differential equations are:

(1∗) T̈(t) ± ω̃2
0αT

(0)(t) +ω2
0T(t) = 0 for α = 0, (A.6)

where T (0)(t) = T(t), and

(2∗)
...
T (t) ±ω2

1αT
(1)(t) +ω2

0T(t) = 0 for α = 1, (A.7)

where T (1)(t) = Ṫ(t).
The solutions to equations (C.6) and (C.7) are

(1∗) T(t) = T0 cos t
√

ω2
0 ± ω̃

2
0α +

Ṫ0
√

ω2
0 ± ω̃

2
0α

sin t
√

ω2
0 ± ω̃

2
0α (A.8)

for α = 0.

(

2∗(a)
)

T(t) = e∓(ω
2
1/2)t

⎧

⎪

⎨

⎪

⎩

T0 cos t

√

ω2
0 −

ω4
1α

4
+

Ṫ0
√

ω2
0 −ω

4
1α/4

sin t

√

ω2
0 −

ω4
1α

4

⎫

⎪

⎬

⎪

⎭

(A.9)

for α = 1 and for ω0 > (1/2)ω2
1α, (for soft creep) or for strong creep:

(

2∗(b)
)

T(t) = e∓(ω
2
1α/2)t

⎧

⎪

⎨

⎪

⎩

T0Ch t

√

ω4
1α

4
−ω2

0 +
Ṫ0

√

ω4
1α/4 −ω2

0

Sh t

√

ω4
1α

4
−ω2

0

⎫

⎪

⎬

⎪

⎭

(A.10)

for α = 1 and for ω0 < (1/2)ω2
1α.

For kritical case

(

2∗(c)
)

T(t) = e∓(ω
2
1α/2)t

{

T0 +
2Ṫ0

ω2
1α

t

}

za α = 1, za ω0 =
1
2
ω2

1α. (A.11)
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Fractional-differential equation (A.1) for the general case, when α is real number from
interval 0 < α < 1 can be solved by using Laplace’s transformation. By using that is

L
{

dαT(t)
dtα

}

= pαL{T(t)} − dα−1T(t)
dtα−1

∣

∣

∣

∣

∣

t=0

= pαL{T(t)}, (A.12)

and by introducing for initial conditions of fractional derivatives in the form (A.3), and after
taking Laplace’s transform of (A.1) we obtain the equation (A.2) with respect to the Laplace
transform of solution, or in the following form:

L{T(t)} =
pT0i + Ṫ0i

2
(

p2 ±ω2
αpα +ω2

0

) . (A.13)

For the case when ω2
0 /= 0, the Laplace transform of the solution can be developed into

series by following way:

L{T(t)} =
pT0 + Ṫ0

p2
[

1 +
(

ω2
α/p2

)(

±pα +ω2
0/ω

2
α

)]

=
(

T0 +
Ṫ0

p

)

1
p

1
1 +
(

ω2
α/p2

)(

±pα +ω2
0/ω

2
α

) ,

(A.14)

L{T(t)} =
(

T0 +
Ṫ0

p

)

1
p

∞
∑

k=0

(−1)kω2k
α

p2k

(

±pα +
ω2

0

ω2
α

)k

,

L{T(t)} =
(

T0 +
Ṫ0

p

)

1
p

∞
∑

k=0

(−1)kω2k
α

p2k

k
∑

j=0

(

k
j

)

(∓1)jpαjω2(j−k)
α

ω
2j
o

.

(A.15)

In writing (A.15) it is assumed that expansion leads to convergent series. The inverse
Laplace transform of previous Laplace transform of solution (A.15) in term-by-term steps is
based on known theorems, and yield the following solution of differential equation (A.1) of
time function in the following form of time series:

T(t) = L−1L{T(t)} = T0

∞
∑

k=0

(−1)kω2k
α t2k

k
∑

j=0

(

k
j

)

(∓1)jω2j
α t
−αj

ω
2j
o Γ
(

2k + 1 − αj
)

+ Ṫ0

∞
∑

k=0

(−1)kω2k
α t2k+1

k
∑

j=0

(

k
j

)

(∓1)jω−2j
α t−αj

ω
2j
o Γ
(

2k + 2 − αj
)

.

(A.16)

B. Example of Numerical Experiment

See Table 1.
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[31] K. Hedrih (Stevanović), “The mass moment vectors at n-dimensional coordinate system,” Tensor, vol.
54, pp. 83–87, 1993.
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[47] K. Hedrih (Stevanović), “Some interpretations of the rigid body kinetic parameters,” Tehnika,
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[59] O. A Goroško and K. Hedrih (Stevanović), “Construction of the Lagrange’s mechanics of the
hereditary systems,” Facta Universitatis, Series Mechanics, Automatic Control and Robotics, vol. 6, no.
1, pp. 1–22, 2007.
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[65] K. Hedrih (Stevanović), “Transversal creep vibrations of a beam with fractional derivative
constitutive relation order, first part: partial fractional-differential equation . part second: stochastic
stability of the beam dynamic shape, under axial bounded noise excitation,” in Proceedings of 4th
International Conference on Nonlinear Mechanics (ICNM ’04), W. Z. Chien, Ed., vol. 10 of Applied
Mechanics in Americas, pp. 584–595, Shanghai, China, August 2002.

[66] K. Hedrih (Stevanović), “The transversal creeping vibrations of a fractional derivative order
constitutive relation of nonhomogeneous beam,” Mathematical Problems in Engineering, vol. 2006, no.
5, Article ID 46236, 18 pages, 2006.
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