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A new set of formulas for calculating the self andmutual impedances of coils on straight and closed
laminated ferromagnetic cores of circular cross-section has been derived. The obtained formulas
generalize the well-known formulas for impedances of coils on homogeneous ferromagnetic cores,
for the case of laminated cores, and improve the previously known formulas for laminated cores.
The obtained formulas are fully consistent with Maxwell’s equations and, therefore, offer an
excellent accuracy. The perturbation theory and the average field technique are used to solve
Maxwell’s equations inside and outside the core. The solution inside the core can also be used
in the analysis of thermal effects occurring inside the laminated core.

1. Introduction

Analytic calculation of the self and mutual impedances for coils on ferromagnetic cores
is not a new topic [1–7]. A rigorous analytic solution of Maxwell’s equations with the
relevant boundary conditions is the natural basis for deriving accurate formulas for the coil
impedances. In this approach, eddy currents induced into a laminated core and the frequency
dependence of the impedance due to skin effect are properly represented. The mathematical
complexity of the approach is related with the geometry and structure of the ferromagnetic
core, so, rigorous analysis of a realistic case may become complicated. Nevertheless, the
problem may be solved to any required degree of accuracy by using different approximate
techniques and modern computational methods.
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In the paper, an analytic study of electromagnetic field in a transformer with an
infinitely long laminated ferromagnetic core of circular cross-section is presented. The
formula for self andmutual impedance for filamentary turns is derived. Due to the laminated
structure of the ferromagnetic core, some of the parameters involved in the Maxwell’s
equations, such as magnetic permeability, permittivity, and electrical conductance, are
discontinuous functions. As a result, the electromagnetic field becomes discontinuous, it loses
the axial symmetry, and the use of numerous boundary conditions on the surface between
each lamination and dielectric is required. The problem becomes too complicated.

In this paper, a new approach to the impedance calculation for transformers, which
considers the laminated core as a whole, is presented. In order to simplify the problem,
preserving a good accuracy, the use of the average electromagnetic field is proposed. In this
approach, the problem becomes similar to the case of a uniform but anisotropic ferromagnetic
core, where the magnetic permeability, permittivity, and electrical conductance are slightly
different in theX and Y directions. In turn, it means that there exists a small parameter which
can be taken, for example, as the relation between the difference of the magnetic permeability
in the Y and X directions and the magnetic permeability of the uniform ferromagnetic core.
Then, Maxwell’s equations can be solved by employing the perturbation theory [8, 9]. In
this approach, every function involved in Maxwell’s equations is considered as a power
series in the small parameter. The leading term of this series is the solution of the exactly
solvable problem with the axial symmetry. The higher-order terms are the corrections that
complement the leading term to the full solution of Maxwell’s equations. An approximate
solution of the full problem is obtained by truncating the series, keeping only the first
two terms of the power series. The higher orders become successively less important, and,
therefore, they can be neglected.

2. Equations for the Average Electromagnetic Field

In Figure 1, a ferromagnetic laminated core with filamentary turns is presented. The
ferromagnetic core is taken to be infinitely long; each lamination is of permeability μ2 and
conductivity σ2. The laminations are separated by a dielectric of permittivity ε2. The medium
around the core is of permittivity ε1 and permeability μ1. The core radius is R. An energizing
coil of N filamentary turns of radius r1, placed at the coordinates z = nτ , is considered. The
ferromagnetic lamination width is a, and the distance between two near laminations is b.

The permeability, permittivity, and electrical conductance can be modeled by
introducing the function Δ(x) presented in Figure 2, such that Δ(x) = 1 inside and Δ(x) =
0 outside the ferromagnetic lamination. Once the function Δ(x) is defined, the electrical
conductance in the whole space can be represented in the following form:

σ
(
x, y
)
= σ2θ(R − r)Δ(x), (2.1)

where θ(R−r) is the Heaviside step function [10], such that θ(R−r) = 1 inside and θ(R−r) = 0
outside the core (the medium 1 is nonconducting).

The permittivity in terms of the function Δ(x) can be modeled as follows:

ε
(
x, y
)
= θ(R − r)[ε2(1 −Δ(x)) + ε1Δ(x)] + ε1θ(r − R), (2.2)
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Figure 1: Filamentary turns on an infinite ferromagnetic core.
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Figure 2: Function Δ(x).

and the permeability takes the form:

μ
(
x, y
)
= θ(R − r)

[
μ1(1 −Δ(x)) + μ2Δ(x)

]
+ μ1θ(r − R). (2.3)

The mutual impedance between the energizing turn and a second filamentary turn of
radius r, as well as the self impedance of a nonfilamentary turn of small cross-section, follows
directly from the solution for the electric field intensity. We assume that the electromagnetic
field is quasistationary, and all capacitive effects may be taken into account separately.

As it has been mentioned before, the problem has not cylindrical symmetry. Moreover,
due to unhomogeneities of the ferromagnetic core, the structure of Maxwell’s equations
becomes complicated. In order to avoid such difficulty, we consider the electromagnetic field
averaged with respect to the X direction over l = a + b. The procedure of transforming the
exact electromagnetic fields to the average fields comprises having on hand, for example,
a bump function p(ξ) [9], that is, compactly supported smooth (in the sense of p(ξ) ∈ C∞)
function, such that

(a) p(ξ) ≥ 0 for 0 ≤ ξ ≤ l;

(b) p(ξ) = 0 for ξ < 0 and ξ > l;

(c)
∫+∞
−∞ p(ξ)dξ = 1.

Let f(x, y, z) be one of the components of the electromagnetic field. Then, the averaged
component 〈f(x, y, z)〉 is obtained as the following integral:

〈
f
(
x, y, z

)〉
=
∫+∞

−∞
f
(
x + ξ, y, z

)
p(ξ)dξ. (2.4)
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As a result, the averaged function 〈f(x, y, z)〉 has derivatives of all orders

dn

dxn

〈
f
(
x, y, z

)〉
= (−1)n

∫+∞

−∞
f
(
x + ξ, y, z

) dn

dξk
p(ξ)dξ. (2.5)

The averagedMaxwell’s equations in the quasistationary approximation together with
the continuity equation take the form

∇ × 〈H〉 = 〈σE〉 + 〈j〉,

∇ × 〈E〉 = −
〈
μ
∂H
∂t

〉
,

∇ · 〈εE〉 =
〈
ρ
〉
,

∇ · 〈μH〉 = 0,

∂
〈
ρ
〉

∂t
+∇ · 〈σE〉 = 0,

(2.6)

where the averaged current density 〈j〉 in the energizing coil is modeled by using the Dirac
delta-function [10] as follows:

〈j〉 =
(−y, x, 0)Iφ

r
δ(r − r1)

N∑

n=1

δ(z − nτ), (2.7)

where r =
√
x2 + y2. The energizing filamentary turn carries a sinusoidal current Iφ(t) =

Iφe
iωt.

The system of (2.6) is not closed due to the presence of the correlation functions 〈σE〉,
〈εE〉, and 〈μH〉. In the medium 1, the parameters σ = 0, ε = ε1, μ = μ1 are constants. Then,
these correlation functions take the following simple form: 〈σE〉 = 0, 〈εE〉 = ε1〈E〉, 〈μH〉 =
μ1〈H〉. In the medium 2, the correlation functions are to be estimated.

Let us approximate the bump function p(ξ) by the following discontinuous function:

p(ξ) =

⎧
⎨

⎩

1
l

for 0 ≤ ξ ≤ l,

0 otherwise.
(2.8)

Then, we obtain

〈σEx〉 =
1
l

∫ l

0
σ
(
x + ξ, y

)
Ex

(
x + ξ, y

)
dξ =

aσ2

l
〈Ex〉a, (2.9)
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where 〈Ex〉a is the average electric field intensity inside the ferromagnetic lamination, which
is given by the equation

〈Ex〉a =
1
a

∫a

0
Ex

(
x + ξ, y

)
dξ. (2.10)

Similarly, the average electric field intensity in the dielectric medium between the
laminations is

〈Ex〉b =
1
b

∫a+b

a

Ex

(
x + ξ, y

)
dξ. (2.11)

Applying the boundary condition for the average components 〈Ex〉a and 〈Ex〉b, we
can approximately write

ε1〈Ex〉a = ε2〈Ex〉b. (2.12)

On the other hand, the full average electric field intensity has the following form:

〈Ex〉 =
a

l
〈Ex〉a +

b

l
〈Ex〉b. (2.13)

Equations (2.12) and (2.13) form a system of equations which may be elementary
solved with respect to the average 〈Ex〉a. Substituting 〈Ex〉a into (2.9), we finally obtain
approximately

〈σEx〉 =
ε2a

ε2a + ε1b
σ2〈Ex〉 = 〈σ2〉〈Ex〉 + b

l

a(ε2 − ε1)
ε2a + ε1b

σ2〈Ex〉, (2.14)

where 〈σ2〉 = aσ2/l. The rest of the correlation functions can be calculated similarly by using
the appropriate boundary conditions between a lamination and the dielectric. As a result,
we obtain, that after averaging, the medium 2 becomes anisotropic, and the permeability,
permittivity, and electrical conductance of the laminated ferromagnetic core acquire tensor
properties, that is, 〈σE〉 = σ · 〈E〉, 〈εE〉 = ε · 〈E〉, and 〈μE〉 = μ · 〈E〉, where

σ =

⎛

⎜⎜
⎝

ε2a

ε2a + ε1b
σ2 0 0

0 〈σ2〉 0

0 0 〈σ2〉

⎞

⎟⎟
⎠, ε =

⎛

⎜⎜⎜
⎝

ε1ε2l

ε2a + ε1b
0 0

0 〈ε2〉 0

0 0 〈ε2〉

⎞

⎟⎟⎟
⎠

,

μ =

⎛

⎜⎜⎜
⎝

μ1μ2l

μ1a + μ2b
0 0

0
〈
μ2
〉

0

0 0
〈
μ2
〉

⎞

⎟⎟⎟
⎠

.

(2.15)
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Finally, for both mediums, the tensors σ, ε, and μ can be represented in the forms

σ = 〈σ〉I +
(
b

l

)
χσQ,

ε = 〈ε〉I +
(
b

l

)
χεQ,

μ =
〈
μ
〉
I +
(
b

l

)
χμQ,

(2.16)

where

(a) for medium 1, 〈σ〉 = 0, 〈ε〉 = ε1, 〈μ〉 = μ1 and χσ = χε = χμ = 0;

(b) for medium 2,

〈σ〉 = 〈σ2〉, 〈ε〉 = 〈ε2〉 =
(ε1a + ε2b)

l
,

〈
μ
〉
=
〈
μ2
〉
=

(
μ2a + μ1b

)

l
,

χσ =
a(ε2 − ε1)
ε2a + ε1b

σ2, χε = −a(ε1 − ε2)2

ε2a + ε1b
, χμ = −a

(
μ1 − μ2

)2

μ1a + μ2b
.

(2.17)

I is the identity matrix, and the tensor Q has the following form:

Q =

⎛

⎜⎜
⎝

1 0 0

0 0 0

0 0 0

⎞

⎟⎟
⎠. (2.18)

Then, after averaging, the system of Maxwell’s equations (2.6) takes the following
form:

∇ × 〈H〉 = σ · 〈E〉 + 〈j〉,

∇ × 〈E〉 = −μ · ∂〈H〉
∂t

,

∇(ε · 〈E〉) = 〈ρ〉,
∇(μ · 〈H〉) = 0,

∂
〈
ρ
〉

∂t
+∇(σ · 〈E〉) = 0.

(2.19)
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3. The Zero-Order Perturbation Theory

The perturbation theory is an asymptotic method of solving differential equations [8, 9].
This method is commonly used in quantum mechanics [11, 12]. In order to develop
the perturbation theory for the system of (2.19), the relation b/l 	 1 is taken as a small
parameter. Then, the average electromagnetic field components should be expanded in a
power series in (b/l) as follows:

〈E〉 = 〈E〉0 +
∞∑

k=1

(
b

l

)k

〈E〉k,

〈H〉 = 〈H〉0 +
∞∑

k=1

(
b

l

)k

〈H〉k,
(3.1)

where 〈E〉0 and 〈H〉0 are the leading terms of the series (3.1), 〈E〉k and 〈H〉k are the k-order
terms of the perturbation theory. In this paper, we were limited only to the first order of the
perturbation theory.

Substituting the expansions (3.1) into the system of (2.19), we obtain for the zero-order
perturbation theory in the frequency domain

∇ × 〈H〉0 = 〈σ〉〈E〉0 + 〈j〉, (3.2)

∇ × 〈E〉0 = −jω〈μ〉〈H〉0, (3.3)

∇(〈ε〉〈E〉0) =
〈
ρ
〉
0,

∇(〈μ〉〈H〉0
)
= 0,

jω
〈
ρ
〉
0 +∇(〈σ〉〈E〉0) = 0.

(3.4)

Equations (3.2)–(3.4) are similar to the Maxwell’s equations for the case of the
homogeneous ferromagnetic core with the core permeability 〈μ2〉, conductivity 〈σ2〉 and
permittivity 〈ε2〉. This problem carries axial symmetry, whichmakes the use of the cylindrical
coordinates appropriate. Maxwell’s equations for coils on homogeneous ferromagnetic cores
are solved in [1]. The complete solution of the system of (3.2)–(3.4) for the electric field
intensity can be represented in the form

〈
Êφ

〉

0
=
〈
Êφ1

〉

0
θ(r − R) +

〈
Êφ2

〉

0
θ(R − r), (3.5)

where 〈Êφ〉0 is the Fourier-transform of the electric field intensity 〈Eφ〉0 with respect to the
z-coordinate

〈
Êφ(r, kz)

〉

0
=
∫+∞

−∞

〈
Eφ(t, r, z)

〉
0e

−jkzzdz. (3.6)
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The electric field intensities outside and inside the core, that is, 〈Êφ1〉0 and 〈Êφ2〉0, are
given by the following equations:

〈
Êφ1

〉

0
= −jωμ1r1

[
θ(r1 − r)I1(kzr)K1(kzr1) + θ(r − r1)I1(kzr1)K1(kzr) +K1(kzr)K1(kzr1)

× I0(kzR)
K0(kzR)

1 − (μ1/
〈
μ2
〉)
(αI0(αR)I1(kzR)/kzI1(αR)I0(kzR))

1 +
(
μ1/
〈
μ2
〉)
(αI0(αR)K1(kzR)/kzI1(αR)K0(kzR))

]

× Iφ
N∑

n=1

e−jkznτ ,

(3.7)

〈
Êφ2

〉

0
= −jωμ1

〈
μ2
〉
kzr1K1(kzr1)I1(αr)

× I0(kzR)K1(kzR) + I1(kzR)K0(kzR)
μ1αI0(αR)K1(kzR) +

〈
μ2
〉
kzI1(αR)K0(kzR)

Iφ
N∑

n=1

e−jkznτ ,

(3.8)

where α2 = kz
2 + jω〈μ2〉〈σ2〉, and I0, I1, K0 and K1 are the well-known Bessel functions [13].

The difference between the solutions (3.5), (3.7), and (3.8) and the results obtained in [1]
is that (3.5), (3.7), and (3.8) contain the averaged core parameters 〈μ2〉 and 〈σ2〉, which are
smaller than the ferromagnetic parameters μ2 and σ2.

The solutions (3.5), (3.7), and (3.8) are going to be used in the solution of equations
for the first-order perturbation theory.

4. The First-Order Perturbation

In the first-order perturbation theory, we obtain from the system of (2.19) in the frequency
domain

∇ × 〈H〉1 = 〈σ〉〈E〉1 + χσQ · 〈E〉0,

∇ × 〈E〉1 = −jω(〈μ〉〈H〉1 + χμQ · 〈H〉0
)
,

∇(〈ε〉〈E〉1 + χεQ · 〈E〉0
)
=
〈
ρ
〉
1,

∇(〈μ〉〈H〉1 + χμQ · 〈H〉0
)
= 0,

jω
〈
ρ
〉
1 +∇(〈σ〉〈E〉1 + χσQ · 〈E〉0

)
= 0.

(4.1)

Equations (4.1) are equivalent to Maxwell’s equations for a polarized medium with
the electric current density J, magnetization M, and the polarization density P, given by
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the following equations:

J = χσQ · 〈E〉0 = χσex〈Ex〉0,
M = χμQ · 〈H〉0 = χμex〈Hx〉0,
P = χεQ · 〈E〉0 = χεex〈Ex〉0,

(4.2)

where ex is the unit vector codirectional with the X axis. These vector fields are calculated
based on the solutions for the zero-order perturbation theory, and, therefore, in the first-order
perturbation theory, they are considered as given functions. The contribution of the vectors J
and P to the fields 〈E〉1 and 〈H〉1 can be taken into account in a future research.

From the definition of the coefficients χσ and χε given above it follows, that in the case
ε1 = ε2, these two constants are zero, that is, χσ = χε = 0. As a result, the vector fields J and P
become zeros, and therefore, the fields 〈E〉1 and 〈H〉1 are caused only by the magnetization
M. Further, only this case, in which the permittivities ε1 and ε2 are very close or equal, will
be analyzed.

Substituting J = P = 0 into (4.1), we obtain

∇ × 〈H〉1 = 〈σ〉〈E〉1,
∇ × 〈E〉1 = −jω(〈μ〉〈H〉1 +M

)
,

∇(〈ε〉〈E〉1) =
〈
ρ
〉
1,

∇(〈μ〉〈H〉1 +M
)
= 0,

jω
〈
ρ
〉
1 +∇(〈σ〉〈E〉1) = 0,

(4.3)

where 〈ε2〉 = ε1 ≡ ε0 is the vacuum permittivity. From (4.3) it follows that 〈ρ〉1 = 0. Then,
excluding the field 〈H〉1 from (4.3), we can obtain the equations for the electric field intensity
〈E〉1 for mediums 1 and 2, respectively,

Δ〈E1〉1 = 0,

Δ〈E2〉1 − jω
〈
μ2
〉〈σ2〉〈E2〉1 = jω∇ ×M.

(4.4)

Equation (4.4) is to be solved with the evident boundary condition at the core surface

〈
Eφ1
〉
1

∣∣∣
r=R

=
〈
Eφ2
〉
1

∣∣∣
r=R

,

〈Hz1〉1|r=R = 〈Hz2〉1|r=R.
(4.5)
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The calculation of mutual impedance between the inducing coil and the filamentary
turn, which is the aim of this paper, requires of the angular component 〈Eφ1(r, z, φ)〉 of the
intensity 〈E〉, integrated over the turn of the radius r[1], that is,

Z =
− ∫2π0

〈
Eφ1
(
r, z, φ

)〉
rdφ

Iφ
= Z0 +

(
b

l

)
Z1 + · · · , (4.6)

whereZ0 is themutual impedance in the zero-order approximation, which can be represented
in the following form [1]:

Z0 = jωμ1r1r

∫+∞

−∞
dkz

[
θ(r1 − r)I1(kzr)K1(kzr1)

+ θ(r − r1)I1(kzr1)K1(kzr) +K1(kzr)K1(kzr1)

× I0(kzR)
K0(kzR)

1 − (μ1/
〈
μ2
〉)
(αI0(αR)I1(kzR)/kzI1(αR)I0(kzR))

1 +
(
μ1/
〈
μ2
〉)
(αI0(αR)K1(kzR)/kzI1(αR)K0(kzR))

]

×
N∑

n=1

ejkz(z−nτ)

(4.7)

and Z1 is the first-order perturbation of the whole mutual impedance. Let us denote the
component 〈Eφ1(r, z, φ)〉1 of the electric field intensity 〈E〉1, averaged over all the directions
φ, as 〈〈Eφ1(r, z)〉〉, where

〈〈
Eφ1(r, z)

〉〉
=

1
2π

∫2π

0

〈
Eφ1(r, z, φ)

〉
1dφ. (4.8)

Then, the first-order perturbation term Z1 of the full mutual impedance can be
calculated as follows:

Z1 = −2πr
〈〈
Eφ1(r, z)

〉〉

Iφ
. (4.9)

Let us apply the averaging procedure (4.8) to (4.4). The advantage of the use of the
averaging (4.8) is that the equations for 〈〈Eφ〉〉 acquire axial symmetry, that is, this averaged
component loses the dependence on the angle φ. Then, after averaging procedure (4.8) and
(4.4) can be written in the cylindrical coordinates as follows:

(a) for medium 1,

1
r

∂

∂r

(

r
∂
〈〈
Eφ1
〉〉

∂r

)

+
∂2
〈〈
Eφ1
〉〉

∂z2
−
〈〈
Eφ1
〉〉

r2
= 0; (4.10)
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(b) for medium 2,

1
r

∂

∂r

(

r
∂
〈〈
Eφ2
〉〉

∂r

)

+
∂2
〈〈
Eφ2
〉〉

∂z2
−
〈〈
Eφ2
〉〉

r2
− jω

〈
μ2
〉〈σ2〉

〈〈
Eφ2
〉〉

= jω
1
2π

∫2π

0
eφ(∇ ×M)dφ,

(4.11)

where the right-hand side of (4.11) can be easily calculated as follows:

1
2π

∫2π

0
eφ(∇ ×M)dφ =

χμ

2π

∫2π

0

∂〈Hr2〉0
∂z

cos2φdφ =
χμ

2
∂〈Hr2〉0

∂z
. (4.12)

The magnetic field in the zero-order perturbation theory in virtue of (3.3) can be
obtained from the solution for medium 2 (3.8) in the form

〈Hr2〉0 = − 1
jω
〈
μ2
〉
∂
〈
Eφ2

〉

0

∂z
. (4.13)

Then, (4.10) and (4.11) become

∂2
〈〈

Êφ1

〉〉

∂r2
+
1
r

∂
〈〈

Êφ1

〉〉

∂r
−
(
k2
z +

1
r2

)〈〈
Êφ1

〉〉
= 0, (4.14)

∂2
〈〈

Êφ2

〉〉

∂r2
+
1
r

∂
〈〈

Êφ2

〉〉

∂r
−
(
α2 +

1
r2

)〈〈
Êφ2

〉〉
=

χμk
2
z

2
〈
μ2
〉
〈
Êφ2

〉

0
, (4.15)

where the Fourier transform 〈〈Êφ〉〉 of the field 〈〈Eφ〉〉 with respect to the z-coordinate is
taken. Equations (4.14) and (4.15) are to be complemented with the averaged boundary
conditions at the core surface

〈〈
Eφ1
〉〉∣∣

r=R =
〈〈
Eφ2
〉〉∣∣

r=R,

〈〈Hz1〉〉|r=R = 〈〈Hz2〉〉|r=R.
(4.16)

The solution of (4.14), taking into account the limit requirement 〈〈Êφ1〉〉 → 0 as r →
∞, takes the following form:

〈〈
Êφ1

〉〉
= C1K1(kzr). (4.17)
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Equation (4.15) can be solved by means of the method of variation of constants. The
solution of (4.15), after applying the condition 〈〈Êφ2〉〉 → 0 as r → 0, is the following:

〈〈
Êφ2

〉〉
= C2I1(αr) + f(kz)

×
{
(αr)2

(
I1

2(αr) − I0(αr)I2(αr)
)[

I1(αr) +
2j
π
K1(αr)

]

−2α2I1(αr)
∫ r

R

I1
(
αη
)
[
I1
(
αη
)
+
2j
π
K1
(
αη
)
]
ηdη

}
,

(4.18)

where

f(kz) = −πχμωμ1r1k
3
z

8α2
K1(kzr1)

× I0(kzR)K1(kzR) + I1(kzR)K0(kzR)
μ1αI0(αR)K1(kzR) +

〈
μ2
〉
kzI1(αR)K0(kzR)

Iφ
N∑

n=1

e−jkznτ .

(4.19)

The integral in the right-hand side of (4.18) can be calculated giving as a result the
Meijer G-function [13]

∫ r

R

I1
(
αη
)
[
I1
(
αη
)
+
2j
π
K1
(
αη
)
]
ηdη

=
1
2

(
η2
[
I21(αη) − I0(αη)I2(αη)

]
+

j

π3/2α2
G22

24

(
1,3/2

1,2,0,0

∣∣∣
(
αη
)2
))∣∣∣∣

r

R

.

(4.20)

The constants C1, C2 are obtained from the boundary conditions (4.16). Substituting
(4.17) and (4.18) into (4.16), we get

C1 = − jωχμμ
2
1k

2
zr1

4
K1(kzr1)

× I21(αR) − I0(αR)I2(αR)
[
μ1αI0(αR)K1(kzR) +

〈
μ2
〉
kzI1(αR)K0(kzR)

]2 Iφ
N∑

n=1

e−jkznτ
(4.21)

and

C2 =
K1(kzR)
I1(αR)

C1 − f(kz)(αR)2
(
I1(αR) − I0(αR)I2(αR)

I1(αR)

)

×
(
I1(αR) +

2jK1(αR)
π

)
.

(4.22)
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Substituting constant C1 into (4.17) and then, the inverse Fourier transform of the field
〈〈Êφ1〉〉 into (4.9), we obtain as a result the correction for the mutual impedance

Z1 =
jωχμμ1

2r1r

4

∫+∞

−∞
dkzkz

2K1(kzr1)K1(kzr)

× I1
2(αR) − I0(αR)I2(αR)

[
μ1αI0(αR)K1(kzR) +

〈
μ2
〉
kzI1(αR)K0(kzR)

]2

N∑

n=1

ejkz(z−nτ).

(4.23)

Finally, the whole mutual impedance of coils on laminated ferromagnetic core is
obtained by substituting (4.7) and (4.23) into (4.6).

Note that both terms Z0 and Z1 take into account the laminated structure of the core.
Formulas (4.6), (4.7), and (4.23) generalize the results of [1] in the sense that the result

for the mutual impedance obtained in [1] is a particular case of the formulas obtained in the
present paper.

The self impedance of a coil of N turns of small cross section can be obtained from
(4.6), (4.7), and (4.23) by taking r and z successively to coincide with the point on the surface
of each turn of the coil and then summing the results for each turn of the coil. The self
impedance of a single turn is a particular case which can be obtained by substituting N = 1
into the formula for self impedance of a coil.

5. Special Cases

5.1. Closed Cores

An approximate formula for the mutual impedance for turns on a closed toroidal core can be
obtained by placing the finite-length core between two infinite plates of perfect magnetic
materials, that is, infinite permeability and conductance [1], with respective boundary
conditions. In order to provide a reasonable accuracy to this approximation, the core is to
be sufficiently long (τ � R), and the turns should be taken close to the core surface. In
practice, these assumptions are equivalent to the case of an infinitely long core with an infinite
number of energizing turns distributed periodically along the core surface [1]. The formulas
(4.6), (4.7), and (4.23) are still applicable in this case, provided that the number of turns N
becomes infinite, τ is the closed core length, and the Fourier transform is to be replaced by
a Fourier series, due to the periodical structure of the problem. Formally, the transition from
the Fourier transform to the Fourier series in (4.7) and (4.23) can be fulfilled by substituting
[1]

+∞∑

n=−∞
exp
(−jkznτ

)
=

2π
τ

+∞∑

k=−∞
δ

(
kz − 2πk

τ

)
. (5.1)

As a result, the formula for the complete mutual impedance takes the form

Z = jωLA + ZC0 +
(
b

l

)
Z1 + · · · , (5.2)
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Figure 3: Contours of constant Lm at 1MHz.

where

LA = μ1r1r
2π
τ

+∞∑

k=−∞

[
θ(r1 − r)I1

(
βkr
)
K1
(
βkr1
)
+ θ(r − r1)I1

(
βkr1
)
K1
(
βkr
)]
ejβkz (5.3)

is the inductance in air [1] and

ZC0 = jωμ1r1r
2π
τ

+∞∑

k=−∞
K1
(
βkr
)
K1
(
βkr1
)

× I0
(
βkR
)

K0
(
βkR
)
1 − (μ1/

〈
μ2
〉)(

αkI0(αkR)I1
(
βkR
)
/kzI1(αkR)I0

(
βkR
))

1 +
(
μ1/
〈
μ2
〉)(

αI0(αkR)K1
(
βkR
)
/kzI1(αkR)K0

(
βkR
))ejβkz,

Z1 =
jωχμμ1

2r1r

4
2π
τ

+∞∑

k=−∞
βk

2K1
(
βkr1
)
K1
(
βkr
)

× I1
2(αkR) − I0(αkR)I2(αkR)

[
μ1αI0(αkR)K1(βkR) +

〈
μ2
〉
kzI1(αkR)K0(βkR)

]2 e
jβkz,

(5.4)

and βk = 2πk/τ and αk
2 = βk

2 + jω〈μ2〉〈σ2〉.
In Figures 3 and 4, contours of constant Lm = ImZ(ω)/ω are presented for different

frequencies and as a function of z and r. For illustrative purposes, the following parameters
values have been taken: σ = 1.667 × 106 S/m, μ1 = μ0, μ2 = 4045μ0, R = 0.1m, r1 = 0.11m,
τ = 1.4m, b = 106μm, and a = 248μm. Figure 3 represents contours of constant Lm(ω) at
the frequency 1MHz. Figure 4 illustrates contours of constant inductive part of the mutual
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Figure 4: Contours of constant Lm at 60Hz.
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Figure 5: Contours of constant ReZ1 at 1MHz.

impedance at ω = 2π60 rad/s. The mutual inductance Lm(ω) increases from the dark parts
to the light regions. Figures 3 and 4, respectively, illustrate the effects of different ranges of
flux penetration into the core. The behavior of the resistive part Rm = ReZ(ω) of the mutual
impedance is somewhat similar, and therefore, the respective figures have been omitted.
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Figure 6: Contours of constant ImZ1/ω at 1MHz.
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Figure 7: Contours of constant ReZ1 at 60Hz.

In Figures 5, 6, 7, and 8, the behavior of the correction term Z1 at different frequencies
is presented. At 60Hz, the resistive part of the correction impedance Z1 brings a negative
contribution to the complete mutual impedance near the energizing filamentary turn,
whereas at 1MHz it is positive.
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Figure 8: Contours of constant ImZ1/ω at 60Hz.
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Figure 9: |Rm − Rmh|/Rmh curve versus frequency.

From Figures 3 and 4 and [1], we can see that the behavior of the mutual impedance
of turns on homogeneous and laminated ferromagnetic cores is somewhat similar. In order
to compare the mutual impedance of coils on a laminated ferromagnetic core Lm and on
a homogeneous ferromagnetic core Lmh, and to estimate the maximum contribution of the
laminated core to the mutual impedance, let us plot the relative increment of the mutual
impedance and resistance. The core parameters are the same as those in Figures 3–8.

In Figure 9, the |Rm − Rmh|/Rmh curve versus the frequency is shown at r = 0.1112m
and z = 0.7m. A maximum difference (up to 66%) under the conditions mentioned above
occurs at the limit ω → 0.
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In Figure 10, the (Lm − Lmh)/Lmh curve at r = 0.1112m and z = 0.7m is shown.
The maximum contribution (17.5%) of the laminated structure of the core, for the given
conditions, occurs at approximately 16.5 kHz.

5.2. Coils on an Infinite Core

The mutual and self impedance for coils on an infinite core can be obtained under the same
assumptions that are given in [1]. We consider two coils of the radius r1 and r2, widths w1

and w2, thicknesses h1 and h2, and the turn numbers N1 and N2. The distance between two
coils is z. Then, the mutual impedance caused by the laminated ferromagnetic core is the
following:

ZC = ZC0 +
(
b

l

)
Z1 =

2N1N2

h1h2w1w2

×
∫∞

0
P1(kz(r1 + h1), kzr1)P1(kz(r2 + h2), kzr2)

×Q1(kzw2, kzw1)G(kz) cos(kzz)dkz,

(5.5)

where

G(kz) = jωμ1

[
I0(kzR)
K0(kzR)

1 − (μ1/
〈
μ2
〉)
(αI0(αR)I1(kzR)/kzI1(αR)I0(kzR))

1 +
(
μ1/
〈
μ2
〉)
(αI0(αR)K1(kzR)/kzI1(αR)K0(kzR))

+
b

l

χμμ1kz
2

4
I1

2(αR) − I0(αR)I2(αR)
[
μ1αI0(αR)K1(kzR) +

〈
μ2
〉
kzI1(αR)K0(kzR)

]2

]

,

P1
(
x, y
)
=

1
k2
z

[
p1(x) − p2

(
y
)]
,

Q1
(
x, y
)
=

4
k2
z

sin
(x
2

)
sin
(y
2

)
,

p1(x) =
πx

2
(K1(x)L0(x) +K0(x)L1(x)),

(5.6)

where Lν(x) is the modified Struve function [13]

Lν(x) =
∞∑

m=0

(x
2

)ν+2m+1 1
Γ(m + 3/2)Γ(ν +m + 3/2)

. (5.7)

In the case of the self impedance calculations of a coil on an infinite ferromagnetic
laminated core we should put: r1 = r2, w1 = w2, h1 = h2 and N1 = N2.
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Figure 10: (Lm − Lmh)/Lmh curve versus frequency.

5.3. Coils on a Closed Core

For the case of coils on a closed core, we can fulfill the same considerations that have been
done in the previous section. Then, the formula for the mutual impedance for two coils on a
ferromagnetic laminated toroidal core takes the form

Z = jωLA + ZC, (5.8)

where

ZC =
π

τ
N1N2

{

C +
4

h1h2w1w2

∞∑

k=1

Q1
(
βkw2, βkw1

)

×P1
(
βk(r1 + h1), βkr1

)
P1
(
βk(r2 + h2), βkr2

)
G
(
βk
)
cos
(
βkz
)
}

,

(5.9)

C = jωR2

⎛

⎜
⎝

2
〈
μ2
〉
I1
(√

jω
〈
μ2
〉〈σ2〉R

)

√
jω
〈
μ2
〉〈σ2〉RI0

(√
jω
〈
μ2
〉〈σ2〉R

) − μ1

⎞

⎟
⎠. (5.10)

In Figures 11 and 12, the theoretical curves and experimental points for the resistive
(Figure 11) and inductive (Figure 12) components of self impedance in the frequency range
102 Hz to 1MHz for test coil on an outer limb of the 25 kVA core are presented. The
experimental data and the core and coil parameters were taken from [3]: σ = 97.0874Ω−1,
a = 0.27μm, b = 0.02μm, μ1 = μ0, μ2 = 843μ1, τ = 0.976m, R = 0.047m, and the test core
has 12 turns of heavy-gauge wire, and so forth. The inductance in air is calculated following
the recommendations given in [3]. Both theoretical curves show a good agreement between
measurements and calculations, which confirms once again the idea expressed in [3] about
the validity of treating the laminated core as solid.

Also, in [3] it has been expressed that in spite of a good accuracy of obtained formulas,
the prediction of transient behavior of transformer under general conditions requires some
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Figure 11: Resistive component of self impedance (test coil on an outer limb of the 25 kVA core). Dashed
line corresponds to the solid core and the continuous line represents the laminated core.
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Figure 12: Inductive component of self impedance (test coil on an outer limb of the 25 kVA core). Dashed
line corresponds to the solid core and the continuous line represents the laminated core.

more accurate considerations. In particular, the consideration of the differential mutual
impedanceΔZ(ω) = Z11(ω)−Z12(ω) = ΔR(ω)+ jωΔL(ω) is required. Any substantial errors
obtained in the calculated quantities ΔR(ω) and ΔL(ω) for the solid core (dotted lines in
Figures 13 and 14) may result in significant errors in transient oscillations. Therefore, it is
important to keep these errors small.

To improve these results, it was proposed in [3] to enhance the core resistivity.
This proposal seems reasonable because this is that really occurs inside the core. Indeed,
the averaged conductivity, that is, presented in (5.9), is smaller than the conductivity
of lamination, that is, 〈σ2〉 = aσ2/l < σ2, and therefore, the core resistivity increases.
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Figure 13: Resistive component of differential impedance between two test coils (coils on outer limb of the
25 kVA core at separation of 0.2m). Dotted line corresponds to the solid core, the continuous line represents
the laminated core with one parameter calculated χμ and the dashed line is for two calculated parameters
χμ and χε.
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Figure 14: Inductive component of differential impedance between two test coils (coils on outer limb of the
25 kVA core at separation of 0.2m). Dotted line corresponds to the solid core, the continuous line represents
the laminated core with one parameter calculated χμ and the dashed line is for two calculated parameters
χμ and χε.

Nevertheless, on the contrary, a simple numerical analysis shows that the reduction of
the averaged conductivity results in a larger error between the theoretical and experimental
results. To corroborate this, it is enough to substitute χμ = 0 in (5.6) and plot the differential
resistivity and inductance curves. Therefore, a simple change of the core resistivity cannot
improve the agreement between the theoretical and experimental results.
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On the other hand, taking into account the first-order perturbative term, that is,
assuming χμ /= 0, improves the theoretical results only a little. A reasonable explanation of
this fact can lie in how the correlations 〈σE〉, 〈εE〉, and 〈μH〉 have been calculated. The
correct calculation of these correlations implies having on hand the solutions for E and
H before solving Maxwell’s equations, which is impossible. Then, there are two possible
ways to deal with these terms. Both methods consider the parameters χσ , χε, and χμ as
unknown constants. In the first one, these parameters should be recalculated after solving
the exact Maxwell’s equations. The second way is to calculate these constants by comparing
the theoretical and the experimental results. However, the first way is not feasible in this
particular case because the technique proposed in this paper has the purpose of avoiding
the necessity of calculating the exact fields E and H. Then, the second program should be
carried out.

In Figures 13 and 14, the theoretical and experimental behavior of the differential
resistivity and inductance, respectively, is presented. The dotted line shows the theoretical
behavior of the differential impedance in the case of the solid core [3]. The continuous line
represents the theoretical differential impedance for the laminated core with the parameter
χμ calculated to obtain a good agreement with the experimental differential inductance.
In this case, to obtain the parameter χμ, one experimental point as a reference is enough.
However, to obtain the best result, the least squares method can be used. The obtained result
is χμ = 32.06H, and the theoretical result obtained with this parameter value shows an
excellent agreement with the experimental data in the case of the differential inductance,
and a better approximation for the differential resistance.

In turn, in this method, the rest of parameters, that is, χε and χσ cannot be taken as
zero, and therefore, the impedance terms corresponding to the vectors J and P, cannot be
neglected. Figures 13 and 14 show the differential resistivity and inductance calculated (the
dashed line), taking into account the terms J and P in the first-order perturbation theory
(the corresponding contribution of these terms to the impedance is calculated similarly
as the contribution corresponding to the term M). The parameters χμ = 33.24H, χε =
−1.30282 × 10−9 F/m, and χσ = 4764.1Ω−1 are calculated to obtain a better correlation with
the experimental data by using the least squares method. We can see that, involving the
vectors J and P into the differential impedance calculation, we obtain a better approximation
of the theoretical differential resistivity to the measured data, especially in the high frequency
range.

In [3], it was proposed to adjust the theoretical results with measurements by
introducing an additional empiric term in the formula for the differential impedance. On the
contrary, the formulas obtained in this paper are theoretical and completely consistent with
Maxwell’s equations. Therefore, it seems more logical and consistent to compare our results
with the experimental data and the respective theoretical results for the solid core [3], which
has been carried out in this section.

6. Conclusions

New formulas for calculating the self and mutual impedances of coils on laminated
ferromagnetic cores of circular cross-section have been derived. These formulas generalize
the previously established formulas for the homogeneous ferromagnetic cores [1], for the case
of the laminated cores. In the limit b → 0 and a → l, the obtained formulas are transformed
into the well-known formulas for the self and mutual impedances for coils on homogeneous
ferromagnetic cores published in [1].
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The obtained result for the frequency-dependent self and mutual impedances for coils
on laminated core is compared with the experimental and theoretical results for coils on a
practical transformer core, published in [3]. The presented numerical results show a very
good correspondence of the new formulas to the measured data. These new formulas do not
require introducing the additional empiric terms in order to obtain a better correspondence
to the experimental points; all the new terms, involved in the impedance formula, are fully
consistent with Maxwell’s equations. Moreover, the accuracy, reached in the new formulas, is
not the limit; it can be improved by a more thin analysis of the correlation terms 〈σE〉, 〈εE〉,
and 〈μH〉. Thus, all the stated above can be considered as a method for further theoretical
research.

As the proposed method implies the strict solving of Maxwell’s equations, it can be
used not only for impedance calculation, but also for the electromagnetic fields analysis inside
the core. For example, substituting (4.22) into (4.18), we can obtain the averaged electric
field intensity inside the core, which, in turn, can be used in the analysis of the laminated
core heating. In turn, it calls for numerical evaluation of different special functions such as
the Meijer G-function [13]. However, with available computers and established numerical
techniques, this is no longer a problem [1]. The programming of the Meijer G-function is not
a great obstacle; this function can be calculated with any required degree of accuracy, which
is not particularly time consuming.

Further theoretical work could be done to establish the exact formulas for the toroidal
cores and cores of different geometries. Also, it is of interest the theoretical analysis of the
thermal effects occurring inside the laminated core during the transformer operation. The
proposed methods, taken as a principle for solving this problem, make possible such type of
analysis.
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