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This paper deals with multiobjective optimization techniques for a class of hybrid optimal control
problems in mechanical systems. We deal with general nonlinear hybrid control systems described
by boundary-value problems associated with hybrid-type Euler-Lagrange or Hamilton equations.
The variational structure of the corresponding solutions makes it possible to reduce the original
“mechanical” problem to an auxiliary multiobjective programming reformulation. This approach
motivates possible applications of theoretical and computational results from multiobjective
optimization related to the original dynamical optimization problem. We consider first order
optimality conditions for optimal control problems governed by hybrid mechanical systems and
also discuss some conceptual algorithms.

1. Introduction

Hybrid and switched systems have been extensively studied in the past decade, both in
theory and practice [1–10]. In particular, driven by engineering requirements, there has been
increasing interest in optimal control (OC) of these dynamical systems [1–3, 6, 8, 9, 11–
14]. In this paper, we investigate some specific types of hybrid systems, namely hybrid
systems of mechanical nature, and the corresponding hybrid optimal control problems. The
class of problems to be discussed in this work concerns hybrid systems where discrete
transitions are being triggered by the continuous dynamics. The control objective is to
minimize a cost functional, where the control parameters are usual control inputs. Recently,
there has been considerable effort to develop theoretical and computational frameworks for
complex control problems. Of particular importance is the ability to operate such systems
in an optimal manner. In many real-world applications a controlled mechanical system
presents the main modelling framework and is a strongly nonlinear dynamical system of
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high order [15–17]. Moreover, the majority of applied optimal control problems governed
by sophisticated mechanical systems are problems of hybrid nature. The most real-world
mechanical control problems are becoming too complex to allow analytical solution. Thus,
computational algorithms are inevitable in solving these problems. There is a number of
results scattered in the literature on numerical methods for optimal control problems. One
can find a fairly complete review in [1, 2, 11, 12, 18–20]. The aim of our investigations is to
use the variational structure of the solution to the two-point boundary-value problem for
the controllable hybrid-type Euler-Lagrange or Hamilton equation and to propose a new
computational algorithm for OC problems in mechanics. We consider an optimal control
problem in mechanics in a general setting and reduce the initial OC problem to an auxiliary
multiobjective optimization problem with constraints. This optimization problem provides a
basis for a possible numerical treatment of the original problem.

The outline of our paper is as follows. Section 2 contains some necessary technical facts
from the conventional and hybrid mechanics. In Section 3 we formulate and study our main
OC problem for hybrid mechanical systems. Section 4 deals with the variational analysis of
the optimization problem under consideration. We also briefly discuss the computational
aspect of the proposed approach. Section 5 summarizes our contribution.

2. Preliminaries

Let us consider the following variational problem:

minimize
∫1

0

r∑
i=1

β[ti−1,ti)(t)L̃pi

(
t, q(t), q̇(t)

)
dt

subject to q(0) = c0, q(1) = c1,

(2.1)

where L̃pi are Lagrangian functions of a sequence of noncontrolled mechanical systems,
where pi ∈ P (a finite set of indices), and q(·) (q(t) ∈ R

n) is a continuously differentiable
function. P is called the set of possible locations associated with a given hybrid system.
Moreover, β[ti−1,ti)(·) are characteristic functions of the time intervals [ti−1, ti), i = 1, . . . , r. Note
that a full time interval [0, 1] is assumed to be separated into disjunct subintervals of the
above type for a sequence of switching times: τ := {t0 = 0, t1, . . . , tr = 1}. We refer to [1–
3, 6, 8, 9, 11, 13, 14] for some concrete examples of hybrid systems of the above type. We
consider hybridmechanical systemswhich can be represented by n generalized configuration
coordinates q1, . . . , qn. The components q̇λ(t), λ = 1, . . . , n of q̇(t) are the so-called generalized
velocities. We assume that L̃pi(t, ·, ·) are twice continuously differentiable convex functions.
The necessary optimality conditions for the variational problem (2.1) describe the dynamics
of a mechanical system with variable structure. In this case the system is free from some
possible external influences or forces. This optimality conditions for (2.1) can be written in
the form of the second-order Euler-Lagrange equations (see [21])

d

dt

∂L̃pi

(
t, q, q̇

)
∂q̇

− ∂L̃pi

(
t, q, q̇

)
∂q

= 0,

q(0) = c0, q(1) = c1,

(2.2)
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for all pi ∈ P. The Hamilton Principle (see, e.g., [21]) gives a variational description of the
solution of the two-point boundary-value problem (2.2).

For hybrid mechanical systems with Lagrangians Lpi(t, q, q̇, u), pi ∈ P we also can
consider the equations of motion

d

dt

∂Lpi

(
t, q, q̇, u

)
∂q̇

− ∂Lpi

(
t, q, q̇, u

)
∂q

= 0,

q(0) = c0, q(1) = c1,

(2.3)

where u(·) ∈ U is a control function from the set of admissible controls U. Let

U := {u ∈ R
m : b1,ν ≤ uν ≤ b2,ν, ν = 1, . . . , m},

U :=
{
v(·) ∈ L

2
m([0, 1]) : v(t) ∈ U a.e. on [0, 1]

}
,

(2.4)

where b1,ν, b2,ν, ν = 1, . . . , m are constants. The introduced setU provides a standard example
of an admissible control set. In this specific case we deal with the following set of admissible
controls U⋂

C
1
m(0, 1). Note that Lpi depends directly on the control function u(·). Let us

assume that functions Lpi(t, ·, ·, u) are twice continuously differentiable functions and every
Lpi(t, q, q̇, ·) is a continuously differentiable function. For a fixed admissible control u(·) we
obtain for all pi ∈ P the above hybrid mechanical system with L̃pi(t, q, q̇) ≡ Lpi(t, q, q̇, u(t)).
It is also assumed that Lpi(t, q, ·, u) are strongly convex functions, that is, for any (t, q, q̇, u) ∈
R × R

n × R
n × R

m and ξ ∈ R
n the following inequality

n∑
λ,θ=1

∂2Lpi

(
t, q, q̇, u

)
∂q̇λ∂q̇θ

ξλξθ ≥ α
n∑

λ=1

ξ2λ, α > 0 (2.5)

holds for all pi ∈ P. This natural convexity condition is a direct consequence of the classical
representation for the kinetic energy of a conventional mechanical system. Under the above-
mentioned assumptions, the two-point boundary-value problem (2.3) has a solution for every
admissible control u(·) ∈ U [22]. We assume that every equation of the type of (2.3) has
a unique absolutely continuous solution for every u(·) ∈ U. For an admissible control u(·)
the full solution to the boundary-value problem (2.3) is denoted by qu(·). We call (2.3) the
hybrid Euler-Lagrange control system. Note that the complete trajectory qu(·) of the hybrid
Euler-Lagrange control system introduced above is not obligatory an absolutely continuous
function on [0, 1].

Example 2.1. We consider a variable linear mass-spring system attached to a moving frame
that is a generalization of the corresponding system from [17]. The considered control
u(·) ∈ U⋂

C
1
1(0, 1) is the velocity of the frame. By ωpi we denote the variable masses of

the system. The kinetic energy K = 0.5ωpi(q̇ + u)2 depends directly on u(·). Therefore,
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Lpi(q, q̇, u) = 0.5(ωpi(q̇ + u)2 − κq2), where κ ∈ R+ and

d

dt

∂Lpi

(
t, q, q̇, u

)
∂q̇

− ∂Lpi

(
t, q, q̇, u

)
∂q

= ωpi

(
q̈ + u̇

)
+ κq = 0. (2.6)

By κwe denote here the elasticity coefficient of the spring system.

Note that some important controlled mechanical systems have Lagrangian functions
of the following type (see, e.g., [17]):

Lpi

(
t, q, q̇, u

)
= L0

pi

(
t, q, q̇

)
+

m∑
ν=1

qνuν, m < n. (2.7)

In this special case we easily obtain

d

dt

∂L0
pi

(
t, q, q̇

)
∂q̇λ

−
∂L0

pi

(
t, q, q̇

)
∂qλ

=

⎧⎨
⎩
uλ λ = 1, . . . , m,

0 λ = m + 1, . . . , n.
(2.8)

Note that the control function u(·) is interpreted here as an external force.
Let us now consider the Hamiltonian reformulation for the Euler-Lagrange control

system (2.3). For every location pi from P we introduce the generalized momenta sλ :=
Lpi(t, q, q̇, u)/∂q̇λ and define the Hamiltonian function Hpi(t, q, s, u) as a Legendre transform
applied to every Lpi(t, q, q̇, u), that is,

Hpi

(
t, q, s, u

)
:= sup

q̇

[
n∑

λ=1

sλq̇λ − Lpi

(
t, q, q̇, u

)]
. (2.9)

In the case of hyperregular Lagrangians Lpi(t, q, q̇, u) (see, e.g., [21]) the Legendre transform,
namely, Legpi : (t, q, q̇, u) → (t, q, s, u), is a diffeomorphism for every pi ∈ P. Using the

introduced HamiltonianH(t, q, s, u) and the vector of generalized momenta s := (s1, . . . , sn)
T ,

we can rewrite system (2.3) in the following Hamilton-type form:

q̇λ(t) =
∂Hpi

(
t, q, s, u

)
∂s

,

ṡλ(t) = −Hpi

(
t, q, s, u

)
∂q

,

q(0) = c0, q(1) = c1.

(2.10)

Under the above-mentioned assumptions, the boundary-value problem (2.10) has a solution
for every u(·) ∈ U. We will call (2.10) a Hamilton control system. The main advantage of (2.10)
in comparison with (2.3) is that (2.10) immediately constitutes a control system in standard
state space form with state variables (q, s) (in physics usually called the phase variables).
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Consider the system from Example 2.1, and compute

Hpi

(
q, s, u

)
= sup

q̇

[
sq̇ − 0.5

(
ωpi

(
q̇ + u

)2 − κq2
)]

. (2.11)

The maximization procedure applied to (sq̇ − 0.5ωpi q̇
2 − ωpi q̇u) implies q̇ = s/ωpi −

u,Hpi(q, s, u) = s2/ωpi − su − 0.5s2/ωpi + 0.5κq2. The Hamilton equations can now be written
in the explicit form

q̇ =
∂Hpi

(
q, s, u

)
∂s

=
1
ωpi

s − u,

ṡ = −∂Hpi

(
q, s, u

)
∂q

= −κq.
(2.12)

Note that for Lpi(t, q, q̇, u) = L0
pi(t, q, q̇) +

∑m
ν=1 qν, uν we obtain the associated Hamilton

functions in the form

Hpi

(
t, q, s, u

)
= H0

pi

(
t, q, s

) − m∑
ν=1

qνuν, (2.13)

where H0
pi(t, q, s) is the Legendre transform of L0

pi(t, q, q̇).

3. Optimal Control Processes Governed by Hybrid Mechanical Systems

Let us formally introduce the class of optimal control problems investigated in this paper:

minimize J :=
∫1

0

r∑
i=1

β[ti−1,ti)(t)f
0
pi

(
qu(t), u(t)

)
dt

subject to u(t) ∈ U, t ∈ [0, 1], ti ∈ τ, i = 1, . . . , r,

(3.1)

where f0
pi : [0, 1] × R

n × R
m → R is continuous and convex on R

n × R
m objective functions.

We have assumed that the boundary-value problems (2.3) have a unique solution qu(·) and
that the optimization problem (3.1) also has a solution. Let (qopt(·), uopt(·)) be an optimal
solution of (3.1). Note that we can also use the associated Hamiltonian-type representation
of the initial optimal control problem (3.1). We mainly focus our attention on the application
of direct numerical algorithms to the hybrid optimization problem (3.1). A great amount of
works is devoted to the direct or indirect numerical methods for conventional and hybrid
OC problems (see [11, 18–20] and references therein). Evidently, an OC problem involving
ordinary differential equations can be formulated in variousways as an optimization problem
in a suitable function space and solved by some standard numerical algorithms (e.g., by
applying a first-order method [1, 18]).
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Example 3.1. Using the Euler-Lagrange control system from Example 2.1, we now examine the
following optimal control problem:

minimize J := −
∫1

0

r∑
i=1

β[ti−1,ti)(t)kpi
(
u(t) + q(t)

)
dt

subject to q̈(t) = − κ

ωpi

q(t) = −u̇(t), i = 1, . . . , r,

q(0) = 0, q(1) = 1, u(·) ∈ C
1
1(0, 1), 0 ≤ u(t) ≤ 1 ∀t ∈ [0, 1],

(3.2)

where kpi are given (variable) coefficients associated with every location. The solution qu(·)
of the above boundary-value problem can be written as follows:

qu(t) = Cu
i sin

(
t

√
κ

ωpi

)
−
∫ t

0

√
κ

ωpi

sin

(√
κ

ωpi

(t − l)

)
u̇(l)dl, (3.3)

where t ∈ [ti−1, ti), i = 1, . . . , r, and

Cu
i =

1

sin
√
κ/ωpi

[
1 +

∫1

0

√
κ

ωpi

sin

(√
κ

ω
(t − l)

)
u̇(l)dl

]
(3.4)

is a constant in every location. Consequently, we have

J = −
∫1

0

r∑
i=1

β[ti−1,ti)(t)kpi
[
u(t) + qu(t)

]
dt

= −
∫1

0

r∑
i=1

β[ti−1,ti)(t)kpi

[
u(t) + Cu

i sin

(
t

√
κ

ωpi

)
−
∫ t

0

√
κ

ωpi

sin

(√
κ

ωpi

(t − l)

)
u̇(l)dl

]
dt.

(3.5)

Let now kpi = 1 for all pi ∈ P. Using the Hybrid Maximum Principle (see [2]), we conclude
that the admissible control uopt(t) ≡ 0.5 is an optimal solution of the given optimal control
problem. Note that this result is also consistent with the Bauer Maximum Principle (see, e.g.,
[23]). For uopt(·)we can compute the corresponding optimal trajectory given as follows:

qopt(t) =
sin

(
t
√
κ/ωpi

)

sin
√
κ/ωpi

, t ∈ [ti−1, ti), i = 1, . . . , r. (3.6)

Note that the optimal trajectory obtained above is not an absolutely continuous function.
Evidently we have qopt(t−i )/= qopt(t+i ), and the optimal dynamics is of impulsive nature.
Otherwise, all restrictions of function qopt(·) on every time interval [ti−1, ti) are absolutely
continuous functions.
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As we can see from the above example, an optimal trajectory q(·) is not obligatory
an absolutely continuous function on the full time interval [0, 1]. The Hybrid Maximum
Principle mentioned above guarantees the absolute continuity of trajectories only on the time
intervals associated with the corresponding locations. In general, an optimal hybrid system
of the mechanical nature can has jumps in the state. We refer to [24] for some theoretical and
computational details related to impulsive hybrid systems. Finally, note that a wide family of
classical impulsive control systems can be described by the conventional controllable Euler-
Lagrange or Hamilton equations (see [25]). Thus the impulsive hybrid mechanical systems
can also be incorporated into the above modeling framework (2.3)–(3.1).

4. The Variational Approach to OC Problems and
Some Computational Methods

An effective numerical procedure, as a rule, uses the specific structure of the problem under
consideration. Our aim is to consider the variational structure of the optimal control problem
(3.1) from Section 3. Let

Γi :=
{
γ(·) ∈ C

1
n([ti−1, ti]) : γ(ti−1) = ci−1, γ(ti) = ci

}
, (4.1)

where i = 1, . . . , r, the vectors ci, where i = 1, . . . , r, are defined by the corresponding
switching mechanism of a concrete hybrid system. We refer to [1, 2, 8] for some possible
switching rules determined for various classes of hybrid control systems. We now present an
immediate consequence of the classical Hamilton Principle from analytical mechanics.

Theorem 4.1. Let all Lagrangians Lpi(t, q, q̇, u) be a strongly convex function with respect to q̇i, i =
1, . . . , n. Assume that every boundary-value problem from (2.3) has a unique solution for every u(·) ∈
U⋂

C
1
m(0, 1). A piecewise absolutely continuous function qu(·), where u(·) ∈ U⋂

C
1
m(0, 1), is a

solution of the sequence of boundary-value problems (2.3) if and only if a restriction of this function
on [ti−1ti), i = 1, . . . , r can be found as follows:

qui (·) = argmin
q(·)∈Γi

∫ ti

ti−1
Lpi

(
t, q(t), q̇(t), u(t)

)
dt. (4.2)

For an admissible control function u(·) from U we now introduce the following two
functionals:

Tpi
(
q(·), z(·)) :=

∫ ti

ti−1

[
Lpi

(
t, q(t), q̇(t), u(t)

) − Lpi(t, z(t), ż(t), u(t))
]
dt,

Vpi

(
q(·)) := max

z(·)∈Γi

∫ ti

ti−1

[
Lpi

(
t, q(t), q̇(t), u(t)

) − Lpi(t, z(t), ż(t), u(t))
]
dt,

(4.3)

for all indexes pi ∈ P. Generally, we define every restriction of qu(·) on intervals
[ti−1, ti) as an element of the corresponding Sobolev spaces W

1,∞
n (ti−1, ti), that is, the space

of absolutely continuous functions with essentially bounded derivatives. Let us give a
variational interpretation of the admissible solutions qu(·) to a sequence of problems (2.3).
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Theorem 4.2. Let all Lagrangians Lpi(t, q, q̇, u) be strongly convex functions with respect to q̇i, i =
1, . . . , n. Assume that every boundary-value problem from (2.3) has a unique solution for every u(·) ∈
U⋂

C
1
m(0, 1). A piecewise absolutely continuous function qu(·), where u(·) ∈ U⋂

C
1
m(0, 1), is a

solution of the sequence of problems (2.3) if and only if every restriction of this function on [ti−1ti), i =
1, . . . , r can be found as follows:

qui (·) = argmin
q(·)∈W

1,∞
n (ti−1,ti)

Vpi

(
q(·)). (4.4)

Proof. Let qu(·) ∈ W
1,∞
n (ti−1, ti) be a unique solution of a partial problem (2.3) on the

corresponding time interval, where u(·) ∈ U⋂
C

1
m(0, 1). Using the Hamilton Principle in

every location pi inP, we obtain the following relations:

min
q(·)∈W

1,∞
n (ti−1,ti)

Vpi

(
q(·))

= min
q(·)∈W

1,∞
n (ti−1,ti)

max
z(·)∈Γi

∫ ti

ti−1

[
Lpi

(
t, q(t), q̇(t), u(t)

) −
∫ ti

ti−1
Lpi(t, z(t), ż(t), u(t))

]
dt

= min
q(·)∈W

1,∞
n (ti−1,ti)

∫ ti

ti−1
Lpi

(
t, q(t), q̇(t), u(t)

)
dt − min

z(·)∈Γi

∫ ti

ti−1
Lpi(t, z(t), ż(t), u(t))dt

=
∫ ti

ti−1
Lpi

(
t, qu(t), q̇u(t), u(t)

)
dt −

∫ ti

ti−1
Lpi

(
t, qu(t), q̇u(t), u(t)

)
dt

= Vpi

(
qu(·)) = 0.

(4.5)

If the condition (4.4) is satisfied, then qu(·) is a solution of the sequence of the boundary-value
problem (2.3). This completes the proof.

Theorems 4.1 and 4.2 make it possible to express the initial optimal control problem
(3.1) as a multiobjective optimization problem over the set of admissible controls and
generalized coordinates

minimize J
(
q(·), u(·)), P

(
q(·))

subject to
(
q(·), u(·)) ∈

( ⋃
i=1,...,r

Γi

)
×
(
U
⋂

C
1
m(0, 1)

)
,

(4.6)

or

minimize J
(
q(·), u(·)), V

(
q(·))

subject to
(
q(·), u(·)) ∈

( ⋃
i=1,...,r

Γi

)
×
(
U
⋂

C
1
m(0, 1)

)
,

(4.7)
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where

P
(
q(·)) :=

∫1

0

r∑
i=1

β[ti−1,ti)(t)Lpi

(
t, q(t), q̇(t), uopt(t)

)
dt (4.8)

and V (q(·)) := β[ti−1,ti)(t)Vpi(q(·)). The auxiliary minimizing problems (4.6) and (4.7)
are multiobjective optimization problems (see, e.g., [26, 27]). The set of restrictions Γ ×
(U⋂

C
1
m(0, 1) is a convex set. Since f0(t, ·, ·), t ∈ [0, 1] is a convex function, J(q(·), u(·)) is also

convex. If P(·) (or V (·)) is a convex functional, then we deal with a convex multiobjective
minimization problem (4.6) (or (4.7)).

The variational representation of the solution of the two-point boundary-value
problem (2.3) eliminates the differential equations from the consideration. The minimization
problems (4.6) and (4.7) provide a basis for numerical algorithms to the initial optimal control
problem (3.1). The auxiliary optimization problem (4.6) has two objective functionals. For
(4.6) we now introduce the Lagrange function [27]

Λ
(
t, q(·), u(·), μ, μ3

)
: = μ1J

(
q(·), u(·)) + μ2P

(
q(·))

+ μ3
∣∣μ∣∣ dist

(
⋃

i=1,...,r Γi)×(U
⋂

C
1
m(0,1))

{(
q(·), u(·))}, (4.9)

where dist(⋃i=1,...,r Γi)×(U
⋂

C
1
m(0,1)){·} denotes the distance function

dist
(Γi)×(U

⋂
C

1
m(0,1))

{(
q(·), u(·))}

:= inf

{∥∥(q(·), u(·))−∥∥
C

1
n(0,1)×C

1
m(0,1)

, ∈
( ⋃

i=1,...,r

Γi

)
×
(
U
⋂

C
1
m(0, 1)

)}
, μ :=

(
μ1, μ2

)T ∈ R
2
+.

(4.10)

Note that the above distance function is associated with the following Cartesian product:

( ⋃
i=1,...,r

Γi

)
×
(
U
⋂

C
1
m(0, 1)

)
. (4.11)

Recall that a feasible point (q∗(·), u∗(·)) is called weak Pareto optimal for the multiobjective
problem (4.7) if there is no feasible point (q(·), u(·)) for which

J
(
q(·), u(·)) < J

(
q∗(·), u∗(·)), P

(
q(·)) < P

(
q∗(·)). (4.12)

A necessary condition for (q∗(·), u∗(·)) to be a weak Pareto optimal solution to (4.7) in the
sense of Karush-Kuhn-Tucker (KKT) condition is that for every μ3 ∈ R sufficiently large there
exist μ∗ ∈ R

2
+ such that

0 ∈ ∂(q(·),u(·))Λ
(
t, q∗(·), u∗(·), μ∗, μ3

)
. (4.13)
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By ∂(q(·),u(·)) we denote here the generalized gradient of the Lagrange functionΛ. We refer to [27]
for further theoretical details. If P(·) is a convex functional, then the necessary condition (4.13)
is also sufficient for (q∗(·), u∗(·)) to be a weak Pareto optimal solution to (4.7). Let ℵ be a set
of all weak Pareto optimal solutions (q∗(·), u∗(·)) for problem (4.6). Since (qopt(·)uopt(·)) ∈ ℵ,
the above conditions (4.13) are satisfied also for this optimal pair (qopt(·)uopt(·)).

It is necessary to stress that it is a challenging issue to develop necessary optimality
conditions for the proper Pareto optimal (efficient) solutions. A number of theoretical papers
concerning multiobjective optimization are related to this type of Pareto solutions. One can
find a fairly complete review in [28]. Note that the formulation of the necessary optimality
conditions (4.13) involves the Clarke generalized gradient of the Lagrange function. On
the other hand, there are more effective necessary conditions for optimality based on the
concept of the Mordukhovich limiting subdifferentials [28]. The use of the above-mentioned
Clarke approach is motivated here by the availability of the corresponding powerful software
packages.

When solving constrained optimization based on some necessary conditions for
optimality one is often faced with a technical difficulty, namely, with the irregularity of the
Lagrange multiplier associated with the objective functional [28, 29]. Various supplementary
conditions (constraint qualifications) have been proposed under which it is possible to assert
that the Lagrange multiplier rule holds in “normal” form, that is, that the first Lagrange
multiplier is nonequal to zero. In this case we call the corresponding minimization problem
regular. Examples of the constraint qualifications are the well known Slater (regularity)
condition for classic convex programming and the Mangasarian-Fromovitz regularity
conditions for general nonlinear optimization problems. We refer to [28, 29] for details. In
the case of a multiobjective optimization problem the corresponding regularity conditions
can be given in the form of so-called KKT constraint qualification (see [27] for details). In the
following, we assume that problems (4.6) and (4.7) are regular.

Recall that discrete approximation techniques have been recognized as a powerful tool
for solving optimal control problems [1, 19, 20]. Our aim is to use a discrete approximation
of (4.6) and to obtain a finite-dimensional auxiliary optimization problem. Let N be a
sufficiently large positive integer number and

GN
i :=

{
t00 = ti−1, t1i , . . . , t

N−1
i = ti

}
(4.14)

be a (possible nonequidistant) partition of every time interval [ti−1, ti] such that
max0≤j≤N−1|tj+1i − t

j

i | ≤ ξNi and limN→∞ξNi = 0 for every i = 1, . . . , r. Define Δit
j+1 := t

j+1
i − t

j

i for
j = 0, . . . ,N − 1 and consider the corresponding finite-dimensional optimization problem

minimize JN
(
qN(·), uN(·)

)
, PN

(
qN(·)

)
,

(
qN(·), uN(·)

)
∈
( ⋃

i=1,...,r

ΓNi

)
×
(
UN

⋂
C1
m,N(0, 1)

)
,

(4.15)

where JN and PN are discrete variants of the objective functionals J and P from (4.6).
Moreover, ΓNi is a correspondingly discretized set Γi and C1

m,N(0, 1) is set of suitable discrete
functions that approximate the trajectories set C1

m(0, 1). Note that the initial continuous
optimization problem can also be presented in a similar discrete manner. For example, we
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can introduce the (Euclidean) spaces of piecewise constant trajectories qN(·) and piecewise
constant control functions uN(·). As we can see the Banach space C

1
n(0, 1) and the Hilbert

space L
2
m([0, 1]) will be replaced in this case by some appropriate finite-dimensional spaces.
The discrete optimization problem (4.15) approximates the infinite-dimensional

optimization problem (4.6). We assume that the set of all weak Pareto optimal solution of the
discrete problem (4.15) is nonempty. Moreover, similarly to the initial optimization problem
(4.6)we also assume that the discrete problem (4.15) is regular. If P(·) is a convex functional,
then the discrete multiobjective optimization problem (4.15) is also a convex problem.
Analogously to the continuous case (4.6) or (4.7) we also can write the corresponding
KKT optimality conditions for a finite-dimensional optimization problem over the set of
variables (qN(·), uN(·)). The necessary optimality conditions for a discretized problem (4.15)
reduce the finite-dimensional multiobjective optimization problem to a system of nonlinear
equations. This problem can be solved by some gradient-based or Newton-like methods
(see, e.g., [18]).

Finally, note that the proposed numerical approach uses the necessary optimality
conditions, namely the KKT conditions, for the discrete variant (4.15) of the initial
optimization problem (4.6). It is common knowledge that some necessary conditions of
optimality for discrete systems, for example the discrete version of the classical Pontryagin
Maximum Principle, are noncorrect in the absence of some restrictive assumptions. For a
constructive numerical treatment of the discrete optimization problem it is necessary to apply
some suitable modifications of the conventional optimality conditions. For instance, in the
case of discrete optimal control problems one can use so-called Approximate Maximum
Principle which is specially designed for discrete approximations of general OC problems
[30].

5. Concluding Remarks

In this paper we propose new theoretical and computational approaches to some classes
of hybrid OC problems motivated by general mechanical systems. Using a variational
structure of these nonlinear Euler-Lagrange or Hamilton-type dynamical systems, one can
formulate an auxiliary equivalent problem of multiobjective optimization. This problem and
the corresponding theoretical and numerical optimization techniques can provide a basis for
a numerical treatment of the given hybrid OC problem.

The proofs of our results and the main numerical concepts use some differentiability
and convexity assumptions. These restrictive conditions are motivated by the ”classical”
structure of the mechanical hybrid systems under consideration. On the other hand, the
modern variational analysis proceeds without the above restrictive smoothness assumptions.
We refer to [28, 30] for theoretical details. Evidently, the nonsmooth variational techniques
and numerical algorithms can be considered as a possible mathematical tool for the analysis
of discontinuous and impulsive (nonsmooth) hybrid mechanical systems.

Finally, note that the theoretical approach and the conceptual numerical aspects
presented in this paper need to be extended by some adequate implementable algorithms
and computational schemes. Moreover, some general classes of hybrid OC problems with
additional state and/or mixed constraints can be taken into consideration. In this case one
needs to choose a suitable discretization procedure for the complete constrained OC problem
and to use some sophisticated necessary optimality conditions. It seems also be possible to
apply our theoretical and computational ideas presented in this paper to some practically
motivated nonlinear hybrid and switched OC problems in mechanics, for example, to
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optimization problems of robots dynamics. It is naturaly to assume that applications of
hybrid-type OC methodology to sophisticated mechanical objects can imply more detailed
and precise dynamical behavior of these controllable systems of mechanical nature.
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