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This paper proposes a new type fuzzy neural systems, denoted IT2RFNS-A (interval type-2
recurrent fuzzy neural system with asymmetric membership function), for nonlinear systems
identification and control. To enhance the performance and approximation ability, the triangular
asymmetric fuzzy membership function (AFMF) and TSK-type consequent part are adopted
for IT2RFNS-A. The gradient information of the IT2RFNS-A is not easy to obtain due to the
asymmetric membership functions and interval valued sets. The corresponding stable learning
is derived by simultaneous perturbation stochastic approximation (SPSA) algorithm which
guarantees the convergence and stability of the closed-loop systems. Simulation and comparison
results for the chaotic system identification and the control of Chua’s chaotic circuit are shown to
illustrate the feasibility and effectiveness of the proposed method.

1. Introduction

In the past few decades, the fuzzy neural network (FNN) which provides the advantages
of both neural network and fuzzy system is successfully applied to nonlinear system
identification and control [1–4]. In the FNN, the symmetric and fixed membership functions
(MFs) are commonly adopted to simplify the design procedure. However, a large number of
fuzzy rules should be used to achieve the specified performance [5, 6]. Thus, an asymmetric
fuzzy membership function (AFMF) has been proposed to solve this problem. The AFMF
is discussed and analyzed that it can effectively improve the accuracy and reduce the fuzzy
rules [7, 8].

Recently, the type-2 fuzzy sets (T2 FSs) are gaining more and more in popularity
[9, 10]. The T2 FSs are described by MFs that are characterized by more parameters than the
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type-1 fuzzy sets (T1 FSs). Hence, the T2 FSs provide us with more design degree of freedom.
Nevertheless, due to the computational complexity of using the T2 FS, most people only
the interval type-2 fuzzy sets (IT2 FSs) are proposed [10]. The computations associated with
IT2 FSs are very manageable which makes it quite practical [11]. In our previous research
[12–15], we proposed a type-2 fuzzy neural network with asymmetric membership function
(T2FNN-A)which combines interval type-2 fuzzy logic systemwith neural network. Then, in
order to improve the efficiency of the T2FNN-A, we proposed an interval type-2 fuzzy neural
system with AFMFs (IT2FNS-A)which utilizes several enhanced techniques such as Takagi-
Sugeno-Kang fuzzy logic system (TSK FLS) and embedded type-reduction network layer
[16]. These modifications not only improve the approximation accuracy of the T2FNN-A, but
also achieve the specific performance with fewer fuzzy rules. However, a major drawback of
the IT2FNS-A is that its application domain is limited to static problem due to its feedforward
network structure. Thus, using IT2FNS-A to process dynamic problems is inefficient. Many
results have been shown that recurrent system can learn and memorize information to
provide better performance [2, 17–20]. In this paper, we propose an interval type-2 recurrent
fuzzy neural system with AFMFs (IT2RFNS-A) which provides the memory elements and
extends the basic ability of the IT2FNS-A to include the dynamic problems. In addition, since
the feedback layer captures the dynamic response of the system, the approximation accuracy
of the network is improved.

In training neural networks, the back-propagation (BP) algorithm is widely used.
However, the differential information of system is difficult to obtain due to the piece-wise
continuous property of triangular AFMFs and since there are many adjustable parameters in
the IT2RFNS-A. Herein, we adopt the simultaneous perturbation stochastic approximation
(SPSA) algorithm to derive the update laws of the proposed IT2RFNS-A. The SPSA algorithm
is based on the approximation to gradient information from the measurements of the
objective function [21–23]. Hence, a great deal of computational effort is saved. However, due
to the stochastic characteristic of SPSA algorithm, we cannot guarantee that every searching
step length is appropriate which may lead to the invalid search. To overcome this situation,
we employ the Lyapunov stability analysis to derive the optimal learning step length for
guaranteeing the stability of the closed-loop system. In addition, the efficient training is also
ensured.

The remainder of this paper is organized as follows. In Section 2, the construction of
triangular AFMFs and the SPSA algorithm are introduced. Section 3 illustrates the proposed
IT2RFNS-A and the stable SPSA learning algorithm. The simulation results on chaotic system
identification and control of the Chua’s chaotic circuit are shown in Section 4. Finally, the
conclusion is given.

2. Preliminaries

In this section, we briefly introduce some prerequisite material including the interval
type-2 asymmetric fuzzy membership function (IT2 AFMF) and simultaneous perturbation
stochastic approximation (SPSA) algorithm.

2.1. Interval Type-2 Asymmetric Fuzzy Membership Function (IT2 AFMF)

The interval type-2 membership function (IT2 MF) is considered to be a special case of
a general type-2 membership function (T2 MF) which simplifies the computational effort
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Figure 1: Construction of interval type-2 asymmetric fuzzy membership function.

significantly [10, 11]. In general, the symmetric MF is used for simplification. However, the
symmetric MF only holds either uncertain mean or uncertain variance. In addition, tuning
the parameter of MFs symmetrically may result in low precision. The AFMF can treat these
problems.

In this paper, the triangular fuzzy MFs are used to construct the interval type-2
asymmetric fuzzy membership functions (IT2 AFMFs) due to their lower computational
effort. Each IT2 AFMF consists of upper and lower MFs, as shown in Figure 1. The upper
MF is defined as
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where a, b, and c denote the positions of three corners satisfying a ≤ b ≤ c. Similarly, the
lower MF is defined as
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where a, b, and c denote the positions of three corners satisfying a ≤ b ≤ c and λ denotes
the magnitude of lower MF which should be limited between 0.5 and 1 to avoid the invalid
result (a small firing strength). As above description, the following restrictions should be
constrained to avoid unreasonable IT2 AFMFs: a ≤ b ≤ c, a ≤ b ≤ c, a ≤ a, c ≤ c, a+λ(b− a) ≤
b ≤ c − λ(c − b).

2.2. Simultaneous Perturbation Stochastic Approximation (SPSA) Algorithm

This section introduces the SPSA algorithm briefly. The detailed description can be found in
literature [23]. Consider the optimization problemwith an objective function f(W), the SPSA
algorithm updatesW by

W(k + 1) = W(k) − akg(W(k)), (2.3)

where g(·) is the estimated gradient result of objective function f(·)with respect toW, that is,
∂f(W)/∂W ≈ g(W). ak denotes the learning step length which is decreased over iterations
with ak = a/(k +A)α, where a, A, and α are positive configuration coefficients [23]. The
SPSA approach estimates the gradient, g(·), using the following method. Assume that the
dimension of parameter W is p. Let Δk = [Δk1Δk2 · · ·Δkp] be a p-dimensional vector whose
element is mutually independent zero-mean random variable. Then, the estimation of the
gradient at kth iteration can be computed by

g(W(k)) =
f(W(k) + ckΔk) − f(W(k))

ck

[

Δ−1
k1Δ

−1
k2 · · ·Δ−1

kp

]T
, (2.4)

where ck is gain sequence that is also decreased with ck = c/(k + 1)γ , where c and γ
are nonnegative configuration coefficients [23]. Obviously, all elements of W are perturbed
simultaneously and only two measurements of the objective function are needed to estimate
the gradient. In addition, Δk is usually obtained using Bernoulli ±1 distribution with equal
probability for each value.

In general, the gradient information of neural fuzzy system is not easy to obtain due
to the piecewise continuous property of AFMFs and large number of adjustable parameters.
Herein, we adopt the SPSA algorithm to derive the stable learning for guaranteeing the
convergence and stability of the closed-loop systems.

3. Interval Type-2 Recurrent Fuzzy Neural System with Asymmetric
Membership Function (IT2RFNS-A)

3.1. Fuzzy Reasoning of IT2RFNS-A

The proposed IT2RFNS-A realizes the fuzzy inference into the network structure. Assume
that an IT2RFNS-A system hasM rules and n inputs, the jth rule can be expressed as

Rj : if u1j is ˜F1j , . . . , unj is ˜Fnj , then Yj = Cj0 + Cj1x1 + Cj2xj + · · · + Cjnxn, (3.1)
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where uij is input linguistic variable of the jth rule, ˜Fij are interval type-2 antecedent fuzzy
sets, Cji are consequent interval fuzzy set, xi is the network input, and Yj is the output of
the jth rule. Note that the input linguistic variable uij has the system input term and the
past information which is introduced in Section 3.2. As the above description of T2 FLSs,
the membership grade is an interval valued set which consists of the lower and upper
membership grades, that is,

μ
˜Fij

(

uij

)

=
[

μ
˜Fij

(

uij

)

μ
˜Fij

(

uij

)]

(3.2)

and the consequent part is

Cji =
[

cji − sji cji + sji
]

, (3.3)

where cji denotes the center of Cji and sji denotes the spread of Cji. Therefore, using the
product t-norm, the firing strength associated with the jth rule is

Fj(u) =
[

f
j
(u) fj(u)

]

, (3.4)

where f
j
(u) = μ

˜F1j
(u1j) × · · · × μ

˜Fnj

(unj) and fj(u) = μ
˜F1j
(u1j) × · · · × μ

˜Fnj
(unj). Thus, the

consequent part of the jth rule is
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∣
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∣
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(3.5)

By applying the Extension principle [24], the output of the FLS is

YTSK(u) =
[

ylyr
]

=

∫

y1∈[yl
1 yr

1]
· · · ∫yM∈[yl

M yr
M]

∫

f1∈[f
1
f1]

· · · ∫fM∈[f
M

fM] 1
∑M

j=1 fjyj/
∑M

j=1 fj
. (3.6)

To compute YTSK(u), we need to compute its two end-points yl and yr by type-reduction
operation. Karnik and Mendel developed an iterative algorithm which is known as KM
algorithm to compute these two end-points [24, 25]. A type reducer combines all fired-rule
output sets in some way, just like a type-2 defuzzifier combines the type-1 rule output sets,
which leads to a T1 FS that is called a type-reduced set. Herein, we need to compute the
left-end point yl and right-end point yr by utilizing the KM algorithm [24, 25]. In the KM
algorithm, the left-end and right-end points are represented as

yl =

∑L
i=1 fiyi +

∑M
L+1 fi

yi

∑L
i=1 fi +

∑M
L+1 fi

, yr =

∑R
i=1 fi

yi +
∑M

R+1 fiyi

∑R
i=1 fi

+
∑M

R+1 fi
. (3.7)
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Then, we have to find the proper switch point value L and R by iterative procedure where
more detail can be referred to [24, 25]. However, this iterative procedure for finding switch
point values is time wasting. Hence, in the proposed IT2RFNS-A, a simple weight-average
method is used to approximate the L and R so that the iterative procedure is unnecessary.
That is, we can calculate the left-most and right-most point of firing strength by

fl
j =

ωl
jfj +ωl

jfj

ωl
j +ωl

j

, fr
j =

ωr
j fj +ωr

j fj

ωr
j +ωr

j

, (3.8)

where ωl
j , ω

l
j , ω

r
j , and ωr

j are adjustable weights. Then, we can obtain the following left-end
point and right-end point of the output of interval type-2 fuzzy inference system

yl =

∑M
j=1 f

l
jy

l
j

∑M
j=1 f

l
j

, yr =

∑M
j=1 f

r
j y

r
j

∑M
j=1 f

r
j

. (3.9)

Note that the above simplified type-reduction technique is adopted in layer 4 (left-most and
right-most layer) and feedback layer of IT2RFNS-A system. This simplifies the computational
effort in type-reduction procedure. Finally, we defuzzify the type-reduced set to get a crisp
output, that is,

y(u) =
yl + yr

2
. (3.10)

3.2. Network Structure of IT2RFNS-A

The proposed IT2RFNS-A consists of six feed-forward layers and a feedback one. Layer 1
accepts input variables. Layer 2 is used to calculate the IT2 AFMF grade. The feedback layer
embedded in Layer 2 is used to store the past information. Layer 3 forms the fuzzy rule
base. Layer 4 introduces the simplified type-reduction scheme, called left-most and right-
most layer. The TSK-type consequent part is implemented into Layer 5. Layer 6 is the output
layer.

Next, we indicate the signal propagation and the operation functions of the node
in each layer. For convenience, the multi-input-single-output case is considered here. The
schematic diagram of the proposed IT2RFNS-A is shown in Figure 2. In the following
description, O(l)

i denotes the ith output node in layer l.

Layer 1: Input Layer

For the ith node of layer 1, the net input and output are represented as

O
(1)
i = xi, (3.11)
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Figure 2: Diagram of the proposed IT2RFNS-A system.

where xi represents the ith input to the ith node. The nodes in this layer only transmit input
to the next layer directly.

Layer 2: Membership Layer

In this layer, each node performs a triangular IT2 AFMF, that is,

O
(2)
ij = μ

˜Fij

(

O
(1)
i +O

(f)
i

)

=
[

O
(2)
ij O

(2)
ij

]T

=
[

μ
˜Fij

(

O
(1)
i +O

(f)
i

)

μ
˜Fij

(

O
(1)
i +O

(f)
i

)
]T

,

(3.12)

where the subscript ij indicates the jth term of the ith input and μ
˜Fij

is an IT2 AFMF as
shown in Figure 1 and (3.2). Note that the output of layer 2 and the feedback weight are
interval values. According to the above description and the results of literature [26], the type
reduction is embedded in the network. Herein, the output of feedback layer is expressed as

O
(f)
i (k) =

O
(2)
ij (k − 1) · θij +O

(2)
ij (k − 1) · θij

θij + θij

, (3.13)
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where θij and θij denote the link weight of the feedback layer. Clearly, the input of this layer

contains the memory termsO(2)
ij (k −1) andO

(2)
ij (k −1)which store the past information of the

network.

Layer 3: Rule Layer

This layer is used for computing firing strength of fuzzy rule. From (3.4), we obtain

f
j
= μ

˜F1j

(

O
(1)
1 +O

(f)
1

)

× · · · × μ
˜Fnj

(

O
(1)
n +O

(f)
n

)

,

fj = μ
˜F1j

(

O
(1)
1 +O

(f)
1

)

× · · · × μ
˜Fnj

(

O
(1)
n +O

(f)
n

)

,

(3.14)

where μ
˜Fij

(·) and μ
˜Fij
(·) are the lower and upper membership grades. Therefore, the operation

function in this layer is

O
(3)
j =

[

f
j
fj

]T
=
[

O
(3)
j O

(3)
j

]T
=

[

n
∏

i=1

O
(2)
ij

n
∏

i=1

O
(2)
ij

]T

. (3.15)

Layer 4: Left-Most & Right-Most layer

Similar to the feedback layer, the type reduction is integrated into the network structure
by calculating their left-most and right-most values. That is, the complicated type-reduction
method such as KM algorithm can be reduced as

O
(4)
j =

[

O
(4)
jl
O

(4)
jr

]T
=

⎡

⎢

⎣

ωl
jO

(3)
j +ωl

jO
(3)
j

ωl
j +ωl

j

ωr
jO

(3)
j +ωr

jO
(3)
j

ωr
j +ωr

j

⎤

⎥

⎦

T

, (3.16)

where the link weights are ωl = [ωl
1 · · ·ωl

M]
T
, ωl = [ωl

1 · · ·ωl
M]T , ωr = [ωr

1 · · ·ωr
M]T , and

ωr = [ωr
1 · · ·ωr

M]T . These link weights are adjusted by the proposed stable SPSA learning
algorithm. Note that ωl

j < ωl
j and ωr

j < ωr
j .

Layer 5: TSK Layer

From (3.5), the TSK-type consequent part is

Tj =
[

Tl
j T

r
j

]T

=

[(

cj0 +
n
∑

i=1

cjixi

)

−
(

sj0 +
n
∑

i=1

sji|xi|
)(

cj0 +
n
∑

i=1

cjixi

)

+

(

sj0 +
n
∑

i=1

sji|xi|
)]T

.

(3.17)
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Then, the output of this layer is

O(5) =
[

O
(5)
l O

(5)
r

]T
=

⎡

⎣

∑M
j=1 O

(4)
jl
T l
j

∑M
j=1 O

(4)
jl

∑M
j=1 O

(4)
jr T

r
j

∑M
j=1 O

(4)
jr

⎤

⎦

T

. (3.18)

Layer 6: Output Layer

Layer 6 is the output layer which is used to implement the defuzzification operation.
Therefore, the crisp output is

O(6) =
O

(5)
l +O

(5)
r

2
. (3.19)

Obviously, the total design parameters of IT2RFNS-A are a, b, c, a, b, c, λ, ωl
j , ω

l
j , ω

r
j , ω

r
j ,

cji, and sji. These parameters are adjusted by the proposed stable SPSA learning algorithm
which guarantees the convergence of IT2RFNS-A systems.

3.3. Training of IT2RFNS-A by the Stable SPSA Algorithm

Consider the nonlinear control problem, our goal is to generate a proper control sequence
u(k) such that the system output y(k) follows the desired trajectory yr(k), where k is
the discrete-time index. The IT2RFNS-A with the stable SPSA algorithm plays the role
of controller for nonlinear plant, the adaptive control scheme is shown in Figure 3. For
convenience, we consider the single-output case and the tracking error is defined as

e(k) = yr(k) − y(k). (3.20)

Then, we define the objective function (error cost function) as

E(k) =
1
2
e2(k) =

1
2
(

yr(k) − y(k)
)2
. (3.21)
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The control objective is to generate the control signal u(k) such that the tracking error
approaches to zero, that is, to minimize the objective function E(k). From the well-known
gradient descent method, the parameter update law can be written as

W(k + 1) = W(k) + ΔW(k) = W(k) + ak

(

−∂E(k)
∂W

)

, (3.22)

where W is the tuning parameters of IT2RFNS-A. Then,

∂E(k)
∂W

= −e(k)∂e(k)
∂W

. (3.23)

Herein, we adopt the SPSA algorithm to reduce the computational complexity. The
parameters update laws can be represented as

W(k + 1) = W(k) + ake(k)g(W(k)), (3.24)

where

g(W(k)) =
e(W(k) + ckΔk) − e(W(k))

ck

[

Δ−1
k1Δ

−1
k2 · · ·Δ−1

kp

]T
, (3.25)

where e(W(k) + ckΔk) denotes the tracking error between the desired output and system
output resulted by the IT2RFNS-A with perturbed tuning parameters. Note that (3.25) does
not calculate the system sensitivity or gradient functions; this simplifies the computational
effort.

Note that, in training neural networks, it may not be possible to update all estimated
parameters with a single gradient approximation function (3.25). Thus, we should partition
the estimated parameters W into several parts, that is, each kind of parameter has its
corresponding estimated parameter (e.g.,Wθ as the estimated link weight of feedback layer).
Then, the estimated parameters are updated separately by the SPSA algorithm.

Remark 3.1. As the previous results of [1, 2, 4], the adaptive control laws can be obtained by
multiplying system sensitivity ∂y/∂u, that is,

∂E(k)
∂W

= e(k)
∂
(

yr(k) − y(k)
)

∂W
= e(k)(−1)∂y(k)

∂W
= e(k) · (−1) · ∂y

∂u
· ∂u

∂W
, (3.26)

where u is the control input produced by the IT2RFNS-A, that is, u = O(6). Hence, the gradient
of the IT2RFNS-A should be calculated. However, an additional identifier (using a FNN or
an IT2RFNS-A) should be developed to find the unknown system’s sensitivity (details can be
found in [1, 2]). In this way, the approximation accuracy should be guaranteed for training
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Figure 4: Series-parallel training architecture for system identification.

the IT2RFNS-A controller and the computational effort is complex and huge. Therefore, an
approximation term of ∂E(k)/∂W ∼= −(e + Δe)∂u/∂W and the optimal learning step length
are derived to enhance the efficiency and guarantee the stability, where Δe denotes ė and
e(k) − e(k − 1) for continuous and discrete time case, respectively.

Remark 3.2. Our proposed approach is also valid for the nonlinear system identification. The
series-parallel architecture shown in Figure 4 is adopted. Hence, the inputs of IT2RFNS-A are
u and y(k − 1) and the IT2RFNS-A output is the estimated output ŷ(k). The parameters of
IT2RFNS-A are tuned by the proposed stable SPSA algorithm. Thus, the parameter update
law is

W(k + 1) = W(k) + ak

[

y(k) − ŷ(k)
] · O

(6)(W(k) + ckΔk) −O(6)(W(k))
ck

[

Δ−1
k1Δ

−1
k2 · · ·Δ−1

kp

]T
,

(3.27)

where O(6)(W(k) + ckΔk) denotes the output of the IT2RFNS-A with perturbed tuning
parameters.

3.4. Stability Analysis

In this section, the convergence theorem for selecting appropriate learning step length ak

is introduced. The choice of learning step length is very important for convergence. If a
small value is given for the learning step length, then the convergence of the IT2RFNS-A
is guaranteed. However, the convergent speed may be slow. On the other hand, if a large
value is selected, then the system may be unstable. Hence, we employ the Lyapunov stability
approach to have the condition for convergence and find the optimal learning step length for
IT2RFNS-A.
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Theorem 3.3. Let ak be the learning step length of tuning parameters for the IT2RFNS-A controller.
Consider the nonlinear control problem using IT2RFNS-A (shown in Figure 3), the asymptotic
convergence of the closed-loop system is guaranteed if the learning step length is chosen satisfying

0 < ak <
2

∣

∣g(k)
∣

∣

2 , ∀k, (3.28)

where g(W(k)) = −(e + Δe/e) · (O(6)(W(k) + ckΔk) − O(6)(W(k))/ck)[Δ−1
k1Δ

−1
k2 · · ·Δ−1

kp
]T is the

gradient estimation using SPSA approach. In addition, the faster convergence can be obtained by the
following optimal time-varying learning step length

a∗
k =

1
∣

∣g(k)
∣

∣

2 . (3.29)

Proof. First, we define the discrete-time Lyapunov function as follows:

V (k) = E(k) =
1
2
e2(k) =

1
2
(

yr(k) − y(k)
)2
, (3.30)

where e(k) represents the tracking error. Then, the change of the Lyapunov function is

ΔV (k) = V (k + 1) − V (k) =
1
2

(

e2(k + 1) − e2(k)
)

. (3.31)

According to the Lyapunov stability theorem, if the change of the positive definite Lyapunov
function, denoted ΔV (k), satisfies the condition ΔV (k) < 0, for all k, then the asymptotical
stability is guaranteed [1, 2, 27]. Hence, our objective is to select the proper learning step
length such that ΔV (k) < 0, for all k. This implies that V (k) will converge to zero when k
approaches to infinity. By [1, 2, 28], the error difference can be represented as

Δe(k) = e(k + 1) − e(k) ∼=
[

∂e(k)
∂W

]T

ΔW, (3.32)

where ΔW denotes the change ofW . From (3.22) and (3.24), we obtain

ΔW ≡ −ake(k)
∂e(k)
∂W

∼= ake(k)g(k). (3.33)
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Thus,

ΔV (k) =
1
2

[

e2(k + 1) − e2(k)
]

=
1
2
[e(k + 1) − e(k)] · [e(k + 1) + e(k)]

=
1
2
Δe(k) · [2e(k) + Δe(k)]

= Δe(k) ·
(

e(k) +
1
2
Δe(k)

)

=
[

∂e(k)
∂W

]T

ake(k)g(k) ·
{

e(k) +
1
2

[

∂e(k)
∂W

]T

ake(k)g(k)

}

= −ake
2(k)

∣

∣g(k)
∣

∣

2
(

1 − 1
2
ak

∣

∣g(k)
∣

∣

2
)

.

(3.34)

Note that P(k) is positive for all k > 0, and let P(k) = ak|g(k)|2. Thus,

ΔV (k) = −e2(k)P(k)
(

1 − 1
2
P(k)

)

. (3.35)

Recall that the asymptotical stability of the IT2RFNS-A is guaranteed if ΔV (k) < 0, for all
k > 0. Thus, (1 − (1/2)P(k)) should be positive such that ΔV (k) < 0, for all k. Therefore, we
obtain the stability condition for ak:

0 < ak <
2

∣

∣g(k)
∣

∣

2 . (3.36)

The asymptotic stability is guaranteed if ak is chosen to satisfy (3.36). In addition, we would
like to find a condition for ak that guarantees the fast convergence. From (3.34) and (3.35),
we have

e2(k + 1) = e2(k) − e2(k)P(k)(2 − P(k))

= e2(k)
[

1 − 2P(k) + P 2(k)
]

= e2(k)[P(k) − 1]2.

(3.37)
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The minimum of e2(k + 1) is achieved when P(k) = 1. Hence, the time-varying optimal
learning step length is

a∗
k =

1
∣

∣g(k)
∣

∣

2 . (3.38)

For the system identification problem, a similar convergence theorem can be obtained.

Theorem 3.4. Let aIk be the learning step length of tuning parameters for the IT2RFNS-A. Consider
the nonlinear identification problem by series-parallel architecture using IT2RFNS-A (shown in
Figure 4), and the parameters update laws are shown in (3.27). The asymptotic convergence of the
IT2RFNS-A system is guaranteed if the chosen learning step length is satisfied:

0 < aIk <
2

∣

∣gI(k)
∣

∣

2 , ∀k, (3.39)

where gI(k) = (O(6)(W(k) + ckΔk) −O(6)(W(k))/ck)[Δ−1
k1Δ

−1
k2 · · ·Δ−1

kp]
T
is the gradient estimation

of IT2RFNS-A by SPSA approach. In addition, the faster convergence can be obtained by using the
following optimal time-varying learning step length:

a∗
Ik =

1
∣

∣gI(k)
∣

∣

2 . (3.40)

Proof. Herein, we omitted it due to that the proof of Theorem 3.4 is similar to the proof of
Theorem 3.3. Only the express of the estimated gradient function g(k) is replaced by gI(k).

Remark 3.5. As above description, the SPSA algorithm has the stochastic property in the
estimation of gradient functions g(k) and gI(k) due to the random values ck and Δk.
Therefore, the stability conditions (3.28) and (3.39) are important for training. In addition,
the time-varying optimal learning step lengths a∗

k
and a∗

Ik
, shown in (3.29) and (3.40), have

the ability of guaranteeing the high-speed convergence. This reduces the effect of random
values. Simulation results in Section 4 demonstrate the performance of our approach.

4. Simulation Results

Simulation results and comparisons, including the nonlinear system identification and the
control of nonlinear system, are introduced to verify the performance of our proposed
approach.

4.1. Example 1: Nonlinear System Identification of Chaotic System

Consider a nonlinear system described as

y(k) = f
(

y(k − 1), . . . , y(k − n);u(k − 1), . . . , u(k −m)
)

, (4.1)
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Figure 5: Phase plane plot of (a) the chaotic system and (b) the result of IT2RFNS-A with optimal learning
step length.

where u denotes the input, y is the output, m and n are positive integers, and f(·) is the
unknown function f : �n+m → �. Our purpose is to identify the nonlinear system (4.1)
using IT2RFNS-A with the proposed stable SPSA algorithm. From literature [2], the chaotic
system is described as

y(k + 1) = −P · y2(k) +Q · y(k − 1) + 1.0, (4.2)

where P = 1.4 and Q = 0.3 and produces a chaotic strange attractor as shown in Figure 5(a).
We first choose 1000 pairs training data randomly from the system over the interval [−1.5
1.5] and the initial point is set to[y(1) y(0)] = [0.4 0.4]. Then, the IT2RFNS-A is used
to approximate the chaotic system using the stable SPSA algorithm with the following
coefficients listed in Table 1. After training for 100 epochs, the phase plane of the chaotic
system is shown in Figure 5(b). In order to show the superiority of using optimal learning
step length, the same simulation is done without using optimal learning step length for
comparison. In addition, we also compare it with other neural networks such as fuzzy
neural network (FNN) [1], recurrent fuzzy neural network (RFNN) [2], and interval type-2
fuzzy logic system with asymmetric membership function (IT2FNS-A) [16]. For statistical
analysis, the learning process is repeated for 10 independent runs. The descending trend of
the mean square error (MSE) is shown in Figure 6, solid-black line: IT2RFNS-A with the
optimal learning step length a∗

Ik
; solid-red line: IT2RFNS-A without the optimal learning

step length; dashed line: IT2FNS-A; dotted line: RFNN; dash-dotted line: FNN. The worst,
average, and best MSE that each neural network achieved are shown in Table 2. Obviously,
the IT2RFNS-A with optimal learning step length achieves the best performance and if we
focus on using optimal learning step length or not, then we can find that there is a great
improvement. From Figure 6, we can observe that using optimal learning step length results
in better performance in convergence. Hence, we accumulate the number of epochs that MSE
decreased in 100 epochs and listed in Table 3. The result, evidently, shows that the optimal
learning step length can guarantee the efficient training of IT2RFNS-A.
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Table 1: Configuration coefficients for Example 1: system identification.

FNN RFNN IT2FNS-A IT2RFNS-A IT2RFNS-A

SPSA
configuration
coefficients

a 0.1 0.1 0.01 0.01
optimal learning
step length (3.40)α 0.602 0.602 0.602 0.602

A 10 10 10 10
c 0.1 0.1 0.1 0.1 0.1
γ 0.101 0.101 0.101 0.101 0.101

Neural network
coefficient rule number 8 8 2 2 2

epochs 100

Table 2: Comparison results in MSE for Example 1.

MSE FNN RFNN IT2FNS-A IT2RFNS-A IT2RFNS-A (optimal a∗
Ik
)

Worst 0.0048 0.0017 6.9579 × 10−5 1.9464 × 10−5 5.0267 × 10−6

Average 0.0028 6.6921 × 10−4 3.4154 × 10−5 4.8760 × 10−6 1.3319 × 10−6

Best 0.0018 2.2731 × 10−4 1.1265 × 10−5 6.0900 × 10−8 1.0091 × 10−27

4.2. Nonlinear System Control of Chua’s Chaotic Circuit

Consider an nth-order nonlinear dynamic system in the companion form or controllability
canonical from

x(n) = f(x) + g(x)u + d,

y = x,

(4.3)

where u and y are the control input and output of the nonlinear system, f(·) and g(·) are
unknown nonlinear and continuous functions, and d is the external disturbance or system
uncertainty. Our purpose is to develop an IT2RFNS-A controller to generate the proper
control signal such that the system output y can follow a given reference trajectory yr .

In this paper, we consider the typical Chua’s chaotic circuit which consists of one
inductor, two capacitors, one linear resistor, and one piecewise-linear resistor [29, 30]. It
has been shown that this circuit holds very rich nonlinear dynamics such as chaos and
bifurcations. The dynamic equation of Chua’s circuit are described as

dvC1

dt
= (C1)−1

(

vC2 − vC1

R
− γ

)

,

dvC2

dt
= (C2)−1

(

vC1 − vC2

R
− iL

)

,

diL
dt

= (L)−1(−vC1 − ROiL),

(4.4)
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Table 3: Comparison results of using optimal learning step length (number of epochs that MSE decreases
in 100 epochs, 10 independent runs).

Number of epochs IT2RFNS-A IT2RFNS-A with optimal a∗
Ik

Worst 38 68
Average 36 89
Best 55 98
Total epochs 100

0 10 20 30 40 50 60 70 80 90 100
10−30

10−25
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10−15

10−10

10−5

100

Epoch

M
SE

FNN RFNNIT2FNS-A
IT2RFNS-A without optimal learning step length
IT2RFNS-A with optimal learning step length

Figure 6: Comparison results in MSE of Example 1.

where voltages vC1 , vC2 and current iL are state variables, RO is a constant, and γ denotes the
nonlinear resistor which is a function of voltage across two terminals of C1. γ is defined as a
cubic function as

γ = aVC1 + c(vC1)
3 (a > 0, c < 0). (4.5)

According to [30], (4.4) can be transferred into the canonical form as

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0

0 0 1

0 0 0

⎤

⎥

⎥

⎦

·

⎡

⎢

⎢

⎣

x1

x2

x3

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0

0

1

⎤

⎥

⎥

⎦

· (f + g · u + d
)

,

y =
[

1 0 0
] ·

⎡

⎢

⎢

⎣

x1

x2

x3

⎤

⎥

⎥

⎦

,

(4.6)

where f = (14/1805)x1−(168/9025)x2+(1/38)x3−(2/45)((28/361)x1 + (7/95)x2 + x3)
3, g = 1,

and d is the external disturbance and is assumed to be a square-wave with amplitude ±0.5
and period 2π . Herein, the objective is to track the reference trajectory yr = 1.5 sin(t). We
choose the initial state value as x(0) = [ 0 0 1 ]T and sampling time as 0.01 second.

For comparison, the same simulations are done by using IT2FNS-A and the case
without optimal learning step length. The used coefficients are listed in Table 4. The
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Table 4: The selected coefficients for Example 2.

FNN RFNN IT2FNS-A IT2RFNS-A IT2RFNS-A

SPSA
configuration
coefficients

a 0.01 0.01 0.01 0.01
optimal learning
step length (3.29)α 0.602 0.602 0.602 0.602

A 200 200 200 200
c 1 1 1 1 1
γ 0.101 0.101 0.101 0.101 0.101

Neural network
coefficient rule number 12 12 4 4 4

Time (sec.) 20

Table 5: Comparison results of control performance for Example 2.

MSE FNN RFNN IT2FNS-A IT2RFNS-A IT2RFNS-A (optimal ak)
Worst 2.6046 2.5321 0.3906 0.7264 0.0682
Average 1.2580 1.2005 0.3146 0.2768 0.0476
Best 0.7599 0.6532 0.2605 0.0713 0.0307

simulation results of trajectories are shown in Figure 7. Figure 7(a) shows the phase plant
trajectory after being controlled; Figures 7(b)–7(d) shows the state trajectories x1, x2, and
x3, respectively (solid line: actual system output; dashed line: reference trajectory). Figure 8
depicts the control effort of the IT2RFNS-A controller. We can observe that the proposed
method is valid to control a nonlinear dynamic system. The comparison results are shown
in Table 5 which is obtained by 10 independent runs. From Table 5, we can easily find that
the IT2RFNS-A performs better than others. This result shows that the IT2RFNS-A has ability
to cope with dynamic problems. Observe the performance of the case with optimal learning
step length from Table 5, we again demonstrate that adopting optimal learning step length
guarantees the efficient training of IT2RFNS-A.

5. Conclusion

In this paper, we have proposed an interval type-2 recurrent fuzzy neural system with
triangular asymmetric membership functions (IT2RFNS-A) and its training scheme using the
proposed stable SPSA algorithm. We adopt the Lyapunov theorem to derive the appropriate
range of learning step length for SPSA to guarantee the stability of the closed-loop system for
nonlinear control and guarantee the convergence of IT2RFNS-A for system identification.
In addition, we also obtain the optimal learning step length that ensures the efficient
training for IT2RFNS-A. The feasibility and the effectiveness of the proposed method have
been demonstrated by two illustration examples. The simulations on the chaotic system
identification and the control of the Chua’s chaotic circuit are done, and both of them show
the following advantages of proposed approach, (a) the IT2RFNS-A having few rules can
achieve the specific performance or even better; (b) the IT2RFNS-A can catch the dynamic
response of the system; that is, it is capable of coping with dynamic problems; (c) by using
the proposed stable SPSA algorithm, the gradient information is unnecessary. In other words,
a great deal of computational effort is saved; (d) for control problems, the proposed method
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Figure 7: Simulation results of Example 2: (a) phase plant trajectory of IT2RFNS-A, (b) state x1 and
reference trajectory yr , (c) state x2 and reference trajectory ẏr , and (d) state x3 and reference trajectory
ÿr .
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Figure 8: Control effort of IT2RFNS-A controller of Chua’s chaotic circuit.

avoids approximating the system sensitivity which leads to inaccuracy; (e) adopting optimal
learning step length improves the performance of training IT2RFNS-A.
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