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Steady heat transfer through a pin fin is studied. Thermal conductivity, heat transfer coefficient,
and the source or sink term are assumed to be temperature dependent. In the model considered,
the source or sink term is given as an arbitrary function. We employ symmetry techniques to
determine forms of the source or sink term for which the extra Lie point symmetries are admitted.
Method of separation of variables is used to construct exact solutions when the governing equation
is linear. Symmetry reductions result in reduced ordinary differential equations when the problem
is nonlinear and some invariant solution for the linear case. Furthermore, we analyze the heat flux,
fin efficiency, and the entropy generation.

1. Introduction

Fins play an important role in increasing the efficiency of heating systems which is achieved
by increased (extended) surface area. In particular, fins are used in power generators,
air conditioning, semiconductors, refrigeration, cooling of computer processor, exothermic
reactors, andmany other devices in which heat is generated andmust be transported. Theory,
solutions and applications of problems on extended surfaces may be found in texts such as
[1].

One-dimensional steady state numerical analysis have been considered, for example,
by [2–5], and exact solutions were constructed via symmetry techniques in [6]. The transient
one-dimensional fin problem has attracted sizeable interest from the Lie symmetry analysts
(see, e.g., [7–11]). Two-dimensional transient analysis have been carried out for fins without
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Figure 1: Schematic representation of pin fin.

heat source or sink in [12]. Solutions for two-dimensional fin models exist for the constant
thermal conductivity (see e.g., [13–16]). Recently, heat transfer and entropy generation in
two-dimensional orthotropic pin fin has been studied in [17]. In [18], the authors combined
the Laplace transformation and the finite difference methods to determine solutions for the
two-dimensional pin fins with nonconstant base heat flux. A search for exact and numerical
solutions for heat transfer in extended surfaces continues to be of scientific interest. perhaps
the interest is instilled by frequent encounters in many engineering applications. To cite a few,
some other contributions of heat flow particularly in pin fins may be found, for example, in
[19, 20].

In this paper, we consider the steady heat flow through a two-dimensional pin fin
with a temperature-dependent internal heat generating or extracting function and thermal
conductivity. Furthermore, heat is transferred at the boundary through the temperature-
dependent heat transfer coefficient. Symmetry analysis is employed to determine all
possible forms of the source or sink term for which the problem is at least reducible to
ordinary differential equations. The paper is arranged as follows: in Section 2, we provide
mathematical formulation of the problem. Section 3 deals with the symmetry analysis, and
exact solutions are constructed in Section 4. The fin efficiency and heat flux are given in
Section 5. Entropy analysis is carried out in Section 6. Lastly, we provide the discussions in
Section 7 and concluding remarks in Section 8.

2. Mathematical Formulation

We consider a two-dimensional pin fin with length L and radius R. The fin is attached to a
base surface of temperature (Tb − T∞)g(R) and extended into the fluid of temperature T∞.
The tip of the fin is insulated (i.e., heat transfer at the tip is negligibly small). The fin is
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measured from the tip to the base. A schematic representation of a pin fin is given in Figure 1.
We assume that the heat transfer coefficient along the fin is nonuniform and temperature
dependent and that the fin has internal heat source or sink. Furthermore, the temperature-
dependent thermal conductivity is assumed to be the same in both radial and axial directions.
The base temperature is assumed to be nonconstant (see, e.g., [19, 20]). The energy balance
equation is written as

1
R

∂

∂R

(
RK(T)

∂T

∂R

)
+

∂

∂X

(
K(T)

∂T

∂X

)
= S(T). (2.1)

The boundary conditions are

∂T

∂X
= 0, X = 0, 0 ≤ R ≤ Ra,

T − T∞ = (Tb − T∞)g(R), X = L, 0 ≤ R ≤ Ra,

∂T

∂R
= 0, R = 0, 0 ≤ X ≤ L,

K(T)
∂T

∂R
= −H(T)[T − T∞], R = Ra, 0 ≤ X ≤ L.

(2.2)

Here, Ra is radial distance from the center to the surface of the pin fin.
Introducing the dimensionless variables

θ =
T − T∞
Tb − T∞

, x =
X

L
, r =

R

Ra
, k =

K

Ka
, E2 =

(
L

Ra

)2

,

s(θ) =
L2S(T)

Ka(Tb − T∞)
, h =

H

hb
,

(2.3)

we obtain

E2 1
r

∂

∂r

(
rk(θ)

∂θ

∂r

)
+

∂

∂x

(
k(θ)

∂θ

∂x

)
= s(θ), (2.4)

and the boundary conditions are

∂θ

∂x
= 0, x = 0,

θ = g(r), x = 1,

∂θ

∂r
= 0, r = 0,

k(θ)
∂θ

∂r
= −Bih(θ)θ, r = 1,

(2.5)
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where E is the fin extension factor, hb is the fin base heat transfer coefficient, and Bi is the Biot
number given by

Bi =
hbRa

Ka
. (2.6)

Three physically realistic functions of thermal conductivity are (i) K linearly
dependent on temperature, (ii) the power law case, and (iii) the exponential case. We focus
on two cases: (i) K(T) depending linearly on temperature; that is,

K(T) = Ka

(
1 + β(T − T∞)

)
, (2.7)

and (ii) K(T) is given by the power law (nonlinear)

K(T) = Ka

(
T − T∞
Tb − T∞

)n

. (2.8)

In dimensionless variables, we have

(i) k(θ) = 1 + Bθ, (ii) k(θ) = θn, (2.9)

where B = β(Tb −T∞). Here,Ka is the thermal conductivity of the fin at ambient temperature,
β is the thermal conductivity gradient, n is an exponent, and B is the thermal conductivity
parameter. Applying the Kirchoff’s transformation (see, e.g., [16]),

w(x, r) =
∫θ

0
k(θ∗)dθ∗. (2.10)

The boundary value problem reduces to

E2 1
r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂x2
= s(w), (2.11)

∂w

∂x
= 0, x = 0, (2.12)

w(1, r) = g(r) +
B

2
(
g(r)

)2 = F(r), given k = 1 + Bθ, (2.13)

or

w(1, r) =
g(r)n+1

n + 1
= G(r), given k = θn, n/= − 1, (2.14)

∂w

∂r
= 0, r = 0, (2.15)

∂w

∂r
= −Biw, r = 1, (2.16)
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where in

h(θ) = 1 +
B

2
θ, when k(θ) = 1 + Bθ,

h(θ) =
θn

n + 1
, when k(θ) = θn, n/= − 1.

(2.17)

Note that w = ln θ when n = −1 so that (2.4) holds.

3. Classical Lie Point Symmetry Analysis

In brief, a symmetry of a differential equation is an invertible transformation of the dependent
and independent variables that leaves the original equation invariant (unchanged).
Furthermore, a symmetry of differential equations maps an arbitrary solution to another
solution of the same differential equation. Symmetries depend continuously on a parameter
and form a group, the one-parameter group of transformations. The classical Lie groups of
point invariance transformations act on the system’s graph space that is coordinated by the
independent and dependent variables. This group may be determined algorithmically (by
Lie’s classical method), and there are a number of computer algebraic packages developed
to construct symmetries (see, e.g., [21–23]), or one may use interactive packages such as
REDUCE [24].

Differential equations arising in modelling real-world problems often involve one or
more functions depending on either the independent variable or on the dependent variables.
It is possible by symmetry techniques to determine the cases which allow the equation in
question to admit extra symmetries. The exercise of searching for the forms of arbitrary
functions for which extra symmetries are admitted is called group classification. The notion
of group classification is pioneered by Lie [25].

The theory and applications of symmetry analysis may be found in excellent text such
as those of [26–29]. We adopt the direct methods in [27] (which exclude explicit equivalence
transformation analysis) to determine possible forms of the source term for which (2.11)
admits extra point symmetries.

In essence, determining classical Lie point symmetries for the governing Equation
(2.11) implies seeking transformation of the form

r∗ = r + εξ1(r,x,w) +O
(
ε2
)
,

x∗ = x + εξ2(r,x,w) +O
(
ε2
)
,

w∗ = w + εη(r,x,w) +O
(
ε2
)
,

(3.1)

generated by the vector field

Γ = ξ1(r,x,w)
∂

∂r
+ ξ2(r,x,w)

∂

∂x
+ η(r,x,w)

∂

∂w
, (3.2)

which leaves the governing equation invariant. Note that we seek symmetries that leave
the single (2.11) invariant rather than the entire boundary value problem. This is because
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the number of symmetries admitted by the governing equation and the imposed boundary
conditions is less than for those admitted by the single governing equation. One may apply
the boundary condition to the obtained invariant solutions.

The action of Γ is extended to all the derivatives appearing in the governing equation
through the second prolongation

Γ[2] = Γ + ζx
∂

∂wx
+ ζr

∂

∂wr
+ ζxx

∂

∂wxx
+ ζrr

∂

∂wrr
+ · · · , (3.3)

where

ζx = Dx

(
η
) −wrDx

(
ξ1
) −wxDx

(
ξ2
)
,

ζr = Dr

(
η
) −wrDr

(
ξ1
) −wxDr

(
ξ2
)
,

ζxx = Dx(ζx) −wxrDx

(
ξ1
) −wxxDx

(
ξ2
)
,

ζrr = Dr(ζr) −wrrDr

(
ξ1
) −wrxDr

(
ξ2
)
,

(3.4)

with

Dr =
∂

∂r
+wr

∂

∂w
+wrr

∂

∂wr
+wxr

∂

∂wx
+ · · · ,

Dx =
∂

∂x
+wx

∂

∂w
+wxx

∂

∂wx
+wxr

∂

∂wr
+ · · · ,

(3.5)

being the operators of total derivatives. The generator Γ is a Lie point symmetry of (2.11), if

Γ[2]
(
Equation (2.11)

)|Equation (2.11) = 0. (3.6)

The invariance condition (3.6) yields the determining equations

−E2 1
r2
wrξ

1 + E2 1
r
ζr + E2ζrr + ζxx = ηs′(w), (3.7)

on solutions of (2.11). Here prime implies differentiation with respect to w. Since the
coefficient of Γ (the infinitesimals) does not involve the derivatives of the dependent variable,
we can separate (3.7)with respect to these derivatives and solve the resulting overdetermined
system of linear homogeneous partial differential equations. Further calculations are omitted
at this stage since they were facilitated by the freely available interactive computer algebra
package REDUCE [24].

In the initial symmetry analysis of (2.11) where s is arbitrary, we obtained nothing
beyond translation in x. The cases of the sink or source term for which the principal Lie
algebra is extended are listed in Table 1. Wherever they appear in Table 1, a, b, p, and q are
arbitrary constants.
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Table 1: Extra point symmetries admitted by (2.11).

s(w) Symmetries

0 Γ2 = −(x∂x + r∂r), Γ3 = w∂w − 2x∂x − 2r∂r , Γ4 = xw∂w + (r2 − x2)∂x − 2xr∂r , Γ5 = F(r,x)∂w,
where Frr + (Fr/r) + Fxx = 0.

w Γ2 = −w∂w, Γ3 = F(r,x)∂w, where Frr + Fr/r + Fxx = 0.
wp, p /= 5 Γ2 = 1/(p − 5)(2w∂w + (1 − p)x∂x + (1 − p)r∂r)
p = 5 Γ3 = −xw∂w + (x2 − r2)∂x + 2xr∂r
epw Γ2 = (1/p)∂w − (x/2)∂x − (r/2)∂r
(a + bw)q Γ2 = 1/(q − 5)((2(a + bw)/n)∂w + (1 − q/q − 5)x∂x + ((1 − q)/(q − 5))r∂r)
q = 5 Γ3 = −(r(a + bw)/2n)∂w + ((x2 − r2)/2)∂x + xr∂r

4. Exact Solutions

In this section we construct exact solutions, first using method of separation of variables
and secondly using symmetry techniques. Note that s = 0 and s = w renders (2.11) linear
and hence solvable by method of separation of variable. In fact, the solutions have been
constructed, for example, in [16]when s = 0 (source or sink term is neglected).

4.1. Exact Solutions by Separation of Variables

We consider (2.11) with a linear source term. Three cases arise for the separation constant, σ.
Note that σ = 0 leads to trivial solutions.

4.1.1. Case σ = −λ2, λ > 0

Exact solution to (2.11) is given by

w(x, r) =
∞∑

m=1

dm cosh(λmx)J0(δmr), (4.1)

where eigenvalues λm satisfy

δmJ1(δm) = −BiJ0(δm), (4.2)

with δm =
√
λ2m − 1/E,λ2m /= 1, for all m = 1, 2, 3, . . ., and

dm =

∫1
0 rF(r)J0(λmr)dr

cosh(λm)
∫1
0 rJ

2
0 (λmr)dr

, (4.3)

given boundary condition (2.13); otherwise, F(r)may simply be replaced byG(r) if condition
(2.14) is given. Here, J0 and J1 are Bessel functions of order 0 and 1, respectively [30]. Solution
(4.1) is depicted in Figures 2, 3, 4, 5, 6, 7, 8, and 9. In Figures 2–5, we have plotted solution
(4.1) given thermal conductivity which is linearly dependent on temperature, whereas in
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Figure 2: Temperature distribution using 550 terms of solution (4.1) with E = 2,Bi = 0.2 and g(r) = r2.
Here, k is linear in θ.
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Figure 3: Temperature profile at r = 0 using 550 terms of the series (4.1) with E = 2, Bi = 0.2 and g(r) = r2.
Here, k is linear in θ.

Figures 6–9, we considered a power law thermal conductivity. Note that for all λ2m = 1, we
obtain trivial solutions.

4.1.2. Case σ = λ2, λ > 0

In this case, we obtain the exact solution

w(x, r) =
∞∑

m=1

cm cos(λmx)I0(αmr), (4.4)

where eigenvalues λm satisfy

αmI1(αm) = −BiI0(αm), (4.5)



Mathematical Problems in Engineering 9

0 0.2 0.4 0.6 0.8 1

−0.0002

0

0.0002

0.0004

0.0006

r

θ
(x
,r
)

Figure 4: Temperature profile at x = 0 using 550 terms of the series (4.1). Here, we used parameters E = 2,
Bi = 0.2 and g(r) = r2. Here, k is linear in θ.
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Figure 5: Temperature profile at x = 1 using 550 terms of the series (4.1)with E = 2, Bi = 0.2 and g(r) = r2.
Here, k is linear in θ.
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Figure 6: Temperature distribution using 550 terms of solution (4.1) with E = 2, Bi = 0.2 and g(r) = r2.
Here, k is given by the power law.
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Figure 7: Temperature profile at r = 0 using 550 terms of the series (4.1) with E = 2, Bi = 0.2 and g(r) = r2.
Here, k is given by the power law.
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Figure 8: Temperature profile at x = 1 using 550 terms of the series (4.1)with E = 2,Bi = 0.2 and g(r) = r2.
Here, k is given by the power law.
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Figure 9: Temperature profile at x = 0 using 550 terms of the series (4.1). Here, we used parameters
E = 2,Bi = 0.2 and g(r) = r2. Here, k is given by the power law.
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with αm =
√
1 + λ2m/E and

cm =

∫1
0 rF(r)I0(λmr)dr

cos(λm)
∫1
0 rI

2
0(λmr)dr

. (4.6)

Here, I0 and I1 are modified Bessel functions of order 0 and 1, respectively [30]. We omit
further analysis of solution 25, since similar observations to solution 24 are obtained. Note
that in terms of the original variables, we obtain solutions

θ =
−1 ±

√
1 + 2Bw
B

given k(θ) = 1 + B,

θ = w1/(n+1) given k(θ) = θn, n/= − 1,

θ = ewn = −1.

(4.7)

with w given in Sections 4.1.1 and 4.1.2.

4.2. Symmetry Reductions and Invariant Solutions

If a differential equation is invariant under a Lie point symmetry, then one can reduce
the order of the ordinary differential equation or the number of variables of the partial
differential equation by one. The reduced equation may or may not be solved exactly. The
exact (similarity) solutions obtained via symmetries are referred to as invariant solutions. In
this section, we consider two cases as illustrative examples.

4.2.1. Linear Sink Term

We consider the linear combination of the symmetry generators Γ1 and Γ2; namely,

Γ1 ± α1Γ2 =
∂

∂x
± α1w

∂

∂w
, α1 /= 0. (4.8)

The basis for the invariants is constructed by the corresponding characteristic
equations in Pfaffian form

dw

w
= ±α1

dx

1
=

dr

0
. (4.9)

Thus, we obtain the functional form of the solution

w = e±α1xU(r), (4.10)
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where U(r) satisfy

E2U′′ + E2 1
r
U′ +

(
±α2

1 − 1
)
U = 0, (4.11)

where prime indicates the derivative with respect to r. The general exact solution to (4.11) is
given by

U(r) = a1J0

⎛
⎜⎝

√
±α2

1 − 1

E
r

⎞
⎟⎠ + a2Y0

⎛
⎜⎝

√
±α2

1 − 1

E
r

⎞
⎟⎠, (4.12)

where a1 and a2 are arbitrary constants and J0 and Y0 are Bessel J and Y functions of order 0,
respectively. In terms of the transformed variable w, we obtain the general exact solution

w = a1e
±α1xJ0

(
γr

)
, with γJ1

(
γ
)
+ BiJ0

(
γ
)
= 0, γ =

√
±α2

1 − 1

E
, (4.13)

for (2.11) with s = w. We observe that this solution does not satisfy the boundary conditions
at x = 0 and x = 1. One may consider semifinite fins where the temperature gradient vanishes
at large x values and with a appropriate choice of F, a1 may be given by an exponential
constant. Note that α1 = 1 leads to trivial solutions.

4.2.2. Nonlinear Sink Term

The power law source term s = wp, p /= 1 renders (2.11) nonlinear and separation of variables
is inapplicable. Following the techniques outlined in Section 4.2.1, we observe that the
symmetry generator Γ2 listed in Table 1 leads to the reduction

w = x2/1−pG
(
γ
)
, where γ =

x

r
and G satisfy the O.D.E. (4.14)

(
1 + E2γ2

)
G′′ +

{
E2γ +

(
4

1 − p

)
1
γ

}
G′ +

{(
2

1 − p

)(
2

1 − p
− 1

)
1
γ2

}
G − 1

γ2
Gp = 0, p /= 1.

(4.15)

We observe that (4.15) is harder to solve exactly. Furthermore, the boundary conditions are
not invariant under Γ2 given a nonlinear source term.
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5. Fin Efficiency and Heat Flux

5.1. Heat Flux

The heat transfer from the fin base may be constructed by evaluating heat conduction rate at
the base (see, e.g., [31])

qb = 2π
∫Ra

0
K(T)

∂T

∂X

∣∣∣∣
X=L

RdR =
2πR2

a(Tb − T∞)Ka

L

∫1

0
k(θ)

∂θ

∂x

∣∣∣∣
x=1

rdr. (5.1)

The dimensionless heat transfer rate from the base of the fin is defined by [31]

Q =
qbL

2πKa(Tb − T∞)R2
a

=
∫1

0
k(θ)

∂θ

∂x

∣∣∣∣
x=1

rdr. (5.2)

5.2. Fin Efficiency

Fin efficiency (overall fin performance) is defined as the ratio of the actual heat transferred
from the fin surface to the surrounding fluid to the heat which would be transferred if the
entire fin area were kept at the base temperature [2, 32]. For the pin fin, analogous to the
definition in [33], the local fin efficiency is defined by

η =
qb
Qi

=

(
2πR2

a(Tb − T∞)Ka/L
) ∫1

0 k(θ)(∂θ/∂x) |x=1rdr
2πRahb(Tb − T∞)L

, (5.3)

or simply

η =
1

E2Bi

∫1

0
k(θ)

∂θ

∂x

∣∣∣∣
x=1

rdr. (5.4)

5.2.1. Flux and Fin Efficiency Given (4.1)

Given the solution (4.1)with linear thermal conductivity k = 1+Bθ as an example, we obtain
heat flux for w

Q =
∫1

0

∂w

∂x

∣∣∣∣
x=1

rdr =
∞∑

m=1

dmλm sinh(λm)J1(δm)
δm

, (5.5)

and fin efficiency

η =
1

E2Bi

∫1

0

∂w

∂x

∣∣∣∣
x=1

rdr =
1

E2Bi

∞∑
m=1

dmλm sinh(λm)J1(δm)
δm

. (5.6)
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6. Entropy Generation Analysis

Entropy generation results from the nonequilibrium conditions arising due to the exchange
of energy within the fluid (in case of a flow between two plates) and the solid boundaries
[34]. In fact, entropy generation analysis has been limited to vertical cylindrical annulus (or
channels) (see, e.g., [35–37]), and studies in pure conduction may be found in the literature
such as in [38–40]. The local volumetric rate of entropy generation is given in dimensionless
variable (see, e.g., [17])

NL =
(
∂θ

∂r

)2

+
(
∂θ

∂x

)2

. (6.1)

The total dimensionless entropy generated in a pin fin is given by [17]

NT =
∫∫1

0

[(
∂θ

∂r

)2

+
(
∂θ

∂x

)2
]
rdrdx. (6.2)

Given k = 1 + Bθ, we have in terms of w

NL =
(

1
1 + 2Bw

){(
∂w

∂r

)2

+
(
∂w

∂x

)2
}
,

NT =
∫∫1

0

(
1

1 + 2Bw

)[(
∂w

∂r

)2

+
(
∂w

∂x

)2
]
rdrdx.

(6.3)

7. Discussions

We follow the analysis in [17]. The number of eigenvalues required to calculate the
temperature distribution, heat flux, and fin efficiency accurately depend on the Biot number
Bi. We observe in Table 2 below that Biot number is inversely proportional to the eigenvalues.
The expression for the temperature distribution is given explicitly in (4.1) and (4.4). However,
in further analysis, we focus on solution (4.4). The temperature distribution depends on a
number of variables including Bi, eigenvalues, and the arbitrary function of r describing the
temperature at the base of the fin. We may choose any function g such that g ′(0) = 0. In fact,
the nonuniform base temperature is modeled by cosine function of r, namely, 1 + p cos r for
some parameter p [13], and base temperature may be given in general [41] by the power law
1 + p cosκr, κ being an exponent (see also Chapter 15 in [1]). In Figure 2, not surprisingly, we
observe that the temperature is higher at the center of the pin, that is, at r = 0. Figure 3 depicts
the temperature profile along the r = 0, and temperature decreases from the base to the tip of
the fin. We observe in Figures 4 and 5 that the temperature is much higher at the center of the
pin than at its surface. Similar results are recorded in the literature (see, e.g., [17]). Similar
profiles are observed in Figures 6–9, wherein thermal conductivity is assumed to be given by
the power law. We note the difference at surface of the fin tip in Figures 4 and 9. In both cases,
the temperature drops even to the negative values when k is linear in temperature. The drop
in the temperature is due to the presence of the sink term.
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Table 2: Eigenvalues λn for different values of the Biot number with E = 2.

Bi 0.2 0.4 0.6 0.8 1 2
λ1 7.6243 7.5193 7.4141 7.3093 7.2056 6.7249
λ2 14.0098 13.9527 13.8955 13.8384 13.7815 13.5023
λ3 20.3322 20.2928 20.2535 20.2141 20.1748 19.9801
λ4 26.6361 26.6060 26.5760 26.5460 26.5160 26.3667
λ5 32.9322 32.9079 32.8836 32.8593 32.8350 32.7140
λ6 39.2241 39.2037 39.1833 39.1629 39.1425 39.0408
λ7 45.5136 45.4960 45.4784 45.4608 45.4433 45.3556
λ8 51.8016 51.7861 51.7707 51.7552 51.7398 51.6627
λ9 58.0885 58.0747 58.0609 58.0472 58.0334 57.9646
λ10 64.3747 64.3623 64.3498 64.3374 64.3250 64.2629

The classical Lie point symmetry analysis resulted in a number of admitted
symmetries. In general, symmetries yield self-similar or similarity solutions known also as
invariant solutions. It is more difficult to construct invariant (similarity) solutions for the
boundary value problem defined by characteristic length. However, one may consider the
semiinfinite fins (see also [1]), whereby either temperature or temperature gradient vanishes
at large spatial variable. In our case, at large x. Note that construction of invariant solutions
for steady nonlinear one-dimensional problems is easier (see, e.g., [6]). On the other hand,
symmetry techniques may be use to reduce the boundary value problem in partial differential
equation to the boundary value problem in ordinary differential equations, as such the
reduced problem may be solve exactly or easily by numerical schemes.

8. Concluding Remarks

We have considered a steady state problem describing heat dissipation in a pin fin. We have
successfully applied the Kirchoff transformation to partly linearize the resulting nonlinear
diffusion equation. To the best of our knowledge, symmetry methods have not yet been
applied to two-dimensional fin problems. Some cases of the source term for which the
governing equation admits extra symmetries have been obtained. Unfortunately, admitted
symmetries do not leave the entire boundary value problem invariant. Some new solutions
are constructed by separation of variables. Heat transfer analysis is carried out following the
work in [17]. Further analysis into the influence of a larger number of terms may reveal a
more in depth understanding of the underlying dynamics of the system under consideration.
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