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This paper proposes a robust design optimization methodology under design uncertainties of
an aerospace vehicle propulsion system. The approach consists of 3D geometric design cou-
pled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient sta-
tistical approach. The uncertainties are propagated through worst-case deviation using first-order
orthogonal designmatrices. The robustness assessment is measured using the framework of mean-
variance and percentile difference approach. A parametric sensitivity analysis is carried out to
analyze the effects of design variables variation on performance parameters. A hybrid simulated
annealing and pattern search approach is used as an optimizer. The results show the objective func-
tion of optimizing themean performance andminimizing the variation of performance parameters
in terms of thrust ratio and total impulse could be achieved while adhering to the system con-
straints.

1. Introduction

Uncertainties are unavoidable in all real world scientific and engineering problems and prod-
ucts. The products are often encountered with variations in various stages of design, manu-
facturing, service, and/or degradation during storage or operation. In design phase, these
variations present challenges to the design process and have a direct effect on the product
quality, performance, and reliability. The uncertainties arise during design phases are either
aleatory or epistemic. The aleatory or random uncertainties mostly account for initial opera-
ting conditions such as temperature, pressure, velocity, loading conditions, and manufactur-
ing tolerances. The aleatory uncertainties can be represented by well-established and pre-
cisely known probability distribution techniques. On the other hand epistemic uncertainties
account for the model error due to lack of design knowledge or information, numerical
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error, incomplete understanding of the system, or unpredictable behaviour during operation
of some parameters having fix values [1–4]. If unaccounted during design process, these
uncertainties can cause loss in quality, deterioration of performance, and product reliability.
Therefore, uncertainty representation, aggregation, and propagation are the challenges in de-
sign optimization process [1, 2].

The robust design optimization (RDO) strategy accounts for the effects of variation
and uncertainties by simultaneously optimizing the objective function and minimizing per-
formance parameter variations [5]. The RDO does not expunge the uncertainties rather it
makes the product performance insensitive to these variations. The main difficulty in opti-
mization under uncertainty is how to deal with an uncertainty space that is huge and fre-
quently leads to very large-scale optimization models [4]. To guarantee solution quality, ro-
bustness assessment is often used and is considered as a key part of robust optimization [6].
In this paper, we computed variance using first-order Taylor approximation and percentile
difference approach (PDM).

The architecture of aerospace propulsion system consists of a single chamber solid
propellant dual thrust solid rocket motor (DTSRM) having two levels of thrust, namely, boost
phase thrust (Fb) and sustain phase thrust (Fs). Fb is required to accelerate the vehicle from
zero velocity to a certain stabilized velocity and make the vehicle to reach a certain altitude
with high Mach number in quite a short period of time. Then it sustains the vehicle at a
constant velocity for a longer time with low level of thrust, Fs. The performance of such pro-
pulsion system is determined by internal ballistics through either motor grain burnback ana-
lysis with CAD modeling or employing analytical expressions [7, 8]. Literature on single
thrust solid rocket motor design using traditional optimization methods without un-
certainties is inundated. Sforzini used pattern search (PS) technique for automated design of
solid rockets utilizing a special internal ballistics model [9]. Brooks carried out optimization
by generating parametric design data for evaluating several characteristics of the star grain
geometry [10]. Clegern adopted an expert system knowledge-based approach for computer-
aidedmotor design [11]. Anderson used genetic algorithm (GA) for motor optimization [12].
Recently, Kamran and Guozhu proposed a hyperheuristic approach to minimize the motor
mass [13]. Literature on dual grain geometry optimization and design however is scarce. Hu
et al. presented a design study on high thrust ratio approach using single chamber dual-
thrust solid rocket motor [14]. Dunn and Coats suggested use of dual propellant to achieve
dual thrust [15].

2. Robust Design Optimization Methodology

2.1. Robust Design Optimization Methodology

The uncertainty based robust design optimization (UBRDO) is used in the preliminary design
phase to find a robust solution that is insensitive to resulting changes and variations in sub-
sequent design phases without expunging the source of uncertainty. This goal is achieved by
simultaneously “optimizing the mean performance” and “reducing the performance varia-
tion”, subject to the robustness of constraints [16]. The key components of UBRDO method-
ology used in present research are as follows:

(i) objective robustness: maintaining robustness in the objective function,

(ii) feasibility robustness: maintaining robustness in the constraint,

(iii) robustness assessment: estimating variance of the performance parameters,
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Figure 1: Framework of proposed UBRDO.

(iv) optimization approach: to perform the optimization,

(v) sensitivity analysis: parametric analysis of performance response.

The framework of the proposed UBRDO methodology is presented in Figure 1.
The main steps in executing the robust strategy are as follows:

Step 1. Define the design problem in terms of design variables (X).
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Step 2. Initialization of population size by Latin hypercube sampling (LHS), function evalua-
tion and stopping criterion.

Step 3. Decision for next generation subpopulation and its function evaluation.

Step 4. Hybrid optimization through simulated annealing and pattern search to obtain
optimal solution.

Step 5. Execute DTSRM analysis code.

Step 6. Uncertainty propagation by perturbing the upper and lower bounds for the sampled
design variables through worst-case scenario.

Step 7. Execute grain regression at each design point to calculate the effect of variation of
objective function.

Step 8. Run optimization algorithm to obtain robust solution.

Step 9. Robustness assessment of objective function and constraint.

Step 10. Sensitivity analysis of performance parameters.

2.2. Robust Design Optimization Formulation

The generalized form of the optimization problem without considering robust strategy can
be given by

min
x

f(x)

s.t. LB ≤ gi(x) ≤ UB

lb ≤ x ≤ ub,

(2.1)

where f(x) is the objective function, x is the vector of design variables, and gi(x) is the ith
constraint. When considering the robust optimization strategy under uncertainty the objec-
tive function “f(x)” in (2.1) is replaced by mean and standard deviation. It can be formu-
lated as follows:

min
d

f
(
μ, σ

)
=
(
wμf(d) + vσf(d)

)

s.t. LB +
(
kσ

(
gi(d, z)

)) ≤ E
((
gi(d, z)

)) ≤ UB − (
kσ

(
gi(d, z)

)) ∀i,
lbi + (kσ(xi)) ≤ (di) ≤ ubi − (kσ(xi)) for i = 1, 2, . . . , nddv,

lbi ≤ di ≤ ubi for i = 1, 2, . . . , nrdv,

(2.2)

where, μf is the mean value of the objective function; σf the standard deviation of the ob-
jective function; d the vector of deterministic design variables x; d the mean values of the
uncertain design variables x; nrdv the number of the random design variables; nddv the num-
bers of the deterministic design variables; z the vector of nondesign input random vectors;w
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the weighting coefficients objectives μf ; v the weighting coefficients objectives σf ; gi(d, z) the
ith constraint; E(gi(d, z)) the expectation of design mean; σ(gi(d, z)) the standard deviation
of the ith constraint; LB and UB the vectors of lower and upper bounds of constraints gi’s;
lb and ub the vectors of lower and upper bounds of the design variables; σ(xi) the vector of
standard deviations of the random variables; k the adjusting constant.

The focus of this study is to evolve insensitive optimized design in the presence of
aleatory and epistemic uncertainties in the design parameters of dual thrust solid rocket
motor. In the current work, the 3D grain configuration geometry was modeled as an inherent
uncertain variable described with a normal probability distribution. The propellant burning
rate was modeled as epistemic uncertain variable, since its uncertainty originates due to
the lack of knowledge in a physical model, and they were represented as an interval with
specified bounds. The space-filling designs strategies such as Latin hypercube sampling
(LHS) are helpful when there is little or no information about the primary effects of data on
responses, as in the case of epistemic uncertainties. The aim of this sampling technique is to
spread the points as evenly as possible around the operating space. These designs literally fill
out the n-dimensional space with points that are in some way regularly spaced [17]. A dy-
namic penalty function is embedded to handle the violations in weighted sum of costs. A
symbolic problem statement can be expressed as follows:

min f(x) = f(x) + h(kcit)
∑m

i=1
max

{
0, gi(x)

}
, (2.3)

where f(x) is the objective function, h(k) is a dynamically modified penalty value, and kcit is
the current iteration number of the algorithm. The function gi(x) is a relative violated func-
tion of the constraint [18].

2.3. Measuring Robustness Assessment

In RDO, robustness assessment is a measure of solution quality of performance parameters due
to presence of uncertainty in design variables. In present formulation of objective function
modeling, we have considered two robustness assessment measures:

(i) variance by mean and standard deviation,

(ii) percentile difference.

The variance is estimated by a standard first-order Taylor series approximation due to
its simplicity. Using this approximation, the variance of performance function Y = g(X) at
the mean values, μX of X, is given by

σ2
γ
∼=
∑n

i=1

(
∂g

∂Xi

∣∣∣∣
μX

)2

σ2
Xi

+ 2
∑

i<j

∑ ∂g

∂Xi

∣∣∣∣
μX

∂g

∂Xj

∣∣∣∣∣
μX

σ2
XiXj

, (2.4)

where σ2
Xi

is the variance of Xi and σ2
XiXj

is the covariance of Xi and Xj .

If X is mutually independent, the variance σ2
γ of performance function Y is given by:

σ2
γ
∼=
∑n

i=1

(
∂g

∂Xi

∣∣∣∣
μX

)2

σ2
Xi
. (2.5)
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The upper bounds of standard deviation of uncertainty in Y are given by

σγ
∼=
∑n

i=1

(
∂g

∂Xi

∣
∣
∣
∣
μX

)

σXi . (2.6)

The estimation of mean neglecting the second-order sensitivities is given by

μγ = f
(
μx1 , μx2 , . . . , μxn

)
. (2.7)

The worst-case deviation Δw
x1
,Δw

x2
, . . . ,Δw

xn
corresponds to the uncertainties in x1, x2, . . . , xn,

respectively; then the worst-case estimation Δw
Y in Y is given by the absolute sum of

Δw
Y =

∑n

i=1

∣∣∣∣
∂g

∂Xi

∣∣∣∣
∣∣Δw

xi

∣∣. (2.8)

The second method employs percentile difference approximation and is given as

Δyα2
α1

= yα2 − yα1 , (2.9)

where yα1 and yα2 are the two values of performance parameters (Y ) given as

Prob
{
Y ≤ yαi

}
= αi (i = 1, 2). (2.10)

Here α1 is the cumulative distribution function (CDF) of Y at the left tail and its value
is taken as 0.05. α2 is the CDF of Y right tail and its value is taken as 0.95. yαi is the value
of Y that corresponds to CDF αi and such a value is called a percentile value. The vari-
ance by percentile difference depicts broader picture relative to the standard deviation. In
addition to variance, it also provides the skewness of distribution and the probability level
at which design robustness could be achieved. The goal is to reduce the percentile difference
for robustness. Normally, minimizing the mean of objective function can shift the location
of the distribution towards left, while minimizing the percentile performance difference is
conducive to shrinking the range of the distribution [19].

2.4. Uncertainty Propagation Modeling

We integrate a worst-case variation and statistical approach in our UBRDO approach to pro-
pagate the effect of uncertainties. A simulation-based method of First-Order Orthogonal
DesignMatrices (FOODMs) is proposed to propagate uncertainty using the mean and worst-
case estimation of variance. FOODMs of +1’s and −1’s are used whose rows and columns are
orthogonal. The last column is the actual variable settings, while the first column (all ones)
enables us to measure the mean effect in the linear equation:

Y = Xβ + ε. (2.11)
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Table 1: Layout of FOODM.

Control factors (design variables)
Test X1 X2 X3 X4 X5 X6 X7 X8 Xn y

1 +1 +1 +1 +1 +1 +1 +1 +1 · y1

2 +1 −1 +1 −1 +1 −1 +1 −1 · y2

3 +1 +1 −1 −1 +1 +1 −1 −1 · y3

4 +1 −1 −1 +1 +1 −1 −1 +1 · ·
5 +1 +1 +1 +1 −1 −1 −1 −1 · ·
6 +1 −1 +1 −1 −1 +1 −1 +1 · ·
7 +1 +1 −1 −1 −1 −1 +1 +1 · ·
8 +1 −1 −1 +1 −1 +1 +1 −1 · yn

n · · · · · · · · · yn

All control factors are assigned to FOODMs as shown in Table 1. The two levels called “high”
and “low”, denoted by +1 and −1, are worst-case variations (uncertainties) in design variable
that is,Xi+ΔXi andXi−ΔXi, respectively, (i = 1, 2, . . . , n). The high level “+1” corresponds to
upper limit of perturbed variable and correspondingly low level “−1” corresponds to lower
limit of perturbed variable. The response yi is simulation output corresponding to each test
run with perturbed design variables. The output mean is calculated with nominal values of
design variables at current design point. The “worst-case variation” of output is estimated
using simulation runs as

Δw
Y = max

(∣∣yi − y
∣∣), (2.12)

where yi is the current perturbed output and y is the nominal value of the design point.

2.5. Hybrid Optimization Methodology

Simulated Annealing (SA) is a metaheuristics algorithm, analogous to the annealing process-
es of metals to generate succeeding solutions by means of local search procedure. Following
a predefined selection criterion, some of them are accepted while others will be rejected.
Metropolis et al. applied the same idea to simulate atoms in equilibrium. The “Metropolis
Algorithm” has also been applied to solving combinatorial optimization problems [20]. SA
algorithm uses a probabilistically determined sequence on each iteration to decide whether a
new point is selected or not [21–24].

Pattern search (PS) is a direct search-derivative free optimization algorithm that does
not require gradient of the problem to be optimized. Therefore PS can be used on functions
that are not continuous or differentiable. Hooke and Jeeves were the first to propose PS as a
direct line search optimization method [25].

A pattern search algorithm computes a sequence of points that get closer to the optimal
point. At each step, the algorithm searches a set of points, called a mesh, around the current
point, that is, the point computed at the previous step of the algorithm. The algorithm forms
the mesh by adding the current point to a scalar multiple of a fixed set of vectors called a pat-
tern. At each step, the algorithm polls the points in the current mesh by computing their ob-
jective function values. If the algorithm finds a point in the mesh that improves the objective
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function at the current point, the poll is then called successful and that point becomes the
current point at the next step; otherwise the iteration continues.

The hybrid approach, SAPS, is based on exploring and exploiting the local search to
multiple individuals in population in between generations of an SA. The hybridization of SA
and direct search algorithms has shown successful in other difficult optimization problems
[26–28]. In SAPS, a two-stage hybrid method SAPS (Simulated Annealing with Pattern
Search) is investigated. The first stage is explorative, employing a traditional SA to identify
promising areas of the search space. The best solution found by the simulated annealing
(SA) is then refined using a pattern search (PS)method during the second exploitative stage.
The aforementioned optimization methods are incorporated to find the optimal solution that
cannot be considered as robust one [29]. Therefore here we refer to optimal solution (X∗

SAPS)
as nonrobust one. The hybrid SAPS optimization framework is shown in Figure 2.

3. Design Methodology

3.1. Grain Geometry

In this paper, single chamber dual grain geometry is considered for motor test case. The
3D finocyl grain consists of fin geometry in the aft followed by regular hollow tubular
cross-section that runs through the entire length till the forward end of the motor. The two
grain geometries are smoothly interconnected by a transition taper concave fin section (see
Figure 3). Figure 4 shows the geometrical parameters of fin geometry used in this analysis.
The ballistic design analysis of this 3D grain configuration requires parametric evaluation
of burning surface areas including geometrical variables, such as hollow tubular grain inner
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Figure 3: Schematic of dual thrust solid rocket motor.
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Figure 4: Finocyl grain geometry parameters.

diameter (dtu), fin radius (f), inner radius (ri), minimum web (w), maximum web (W), fin
height (l), number of fins (N), and transition section taper angle (φ).

The burning surface area of the 3D grain geometry is calculated by grain regression
analysis through computer program and is given by

Abk =
Vk+1 − Vk

wk+1 −wk
, (3.1)

where k is the web step, V the volume of propellant, and w the web at respective position of
geometry and propellant mass is calculated simply by

mp = Vkρp. (3.2)

3.2. Performance Prediction

Internal ballistic calculation is the core of any propulsion system to evaluate its performance.
The performance of propulsion system utilizing solid rocket motor is calculated using a zero-
dimension ballistic model. The dual levels of thrust are achieved by change in burning areas
of grain geometry during burning. The chamber pressure Pc is calculated by equating mass
generated in the chamber to the mass ejected through nozzle throat using (3.3) [30]:

Pc =
(
ρpac

∗Ab

At

)1/(1−n)
, (3.3)
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where At denotes the throat area, Ab the burning surface area, a the propellant burning rate
coefficient, n the pressure sensitivity index, c∗ the characteristic velocity, and ρp the propellant
density. Thrust is determined by using (3.4) as follows:

F = PcAtCF,

F = AtCF

(
ρpac

∗Ab

At

)1/(1−n)
.

(3.4)

Since At is assumed to be constant during burning, therefore dual thrust is obtained by
change in Ab of the propellant grain. The thrust coefficient (CF) is given by (3.5):

CF =

√√√
√ 2γ2

γ − 1

(
2

γ + 1

)(γ+1)/(γ−1)[

1 −
(
Pe

Pc

)(γ−1)/γ]

+
Pe − Pamb

Pc
ε, (3.5)

where γ is ratio of the specific heat capacity, Pe is nozzle exit pressure, Pamb is ambient pres-
sure and ε is nozzle area expansion ratio. The total impulse is given by

IT = CFc
∗mp. (3.6)

4. Dual Thrust Motor Test Case

4.1. Design Objectives and Constraints

There can be different objective functions depending upon the mission requirements. In case
of solid rocket motor, the designers have always probed for high total impulse, minimum
motormass, and high reliability, and so forth. In our case, the objective function is tominimize
the mean performance of average boost phase to sustain phase thrust ratio (FRave) and total
impulse (It) of the aerospace vehicle propulsion system and their variations.

The context of objective function formulation under uncertainty, the variations in grain
geometric parameters (design variables), and propellant burning rate (nondesign parameter)
are considered as aleatory and epistemic uncertainties respectively. The variations in design
variables are realized as lower and upper bounds whereas nondesign parameter has a fix
value with an attributed tolerance by expert elicitation. The design and nondesign variables
X and Z are given by

X = f
(
dtu, l, f, ri, w,W, η,N, φ

)
,

Z = f
(
rg
)
.

(4.1)
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The formulation of objective function of (4.1) according to (2.2)will be given as

d∗ = argmin
d

(wE(FRave) + (1 −w)σ(FRave)),

d∗ = argmin
d

(wE(It) + (1 −w)σ(It)) for i = 1, 2, . . . , 8,

lb + kσ(x) ≤ (d) ≤ ub − kσ(x),

μ∗
z = argmin

μz

(wE(FRave) + (1 −w)σ(FRave)),

μ∗
z = argmin

μz

(wE(It) + (1 −w)σ(It)) for i = 1,

Zl ≤ μz ≤ Zu,

(4.2)

subject to the following constraints:

Cj(X) ≥ 0
(
j = 1, 2, . . . , 7

)
, Cj(X) ≤ 0

(
j = 8, . . . , 10

)
, (4.3)

where C is given by (4.4) as follows:

C1:FRave ≥ 5.5,

C2: It ≥ 930 kN-sec,

C3:Pb min ≥ 14MPa,

C4:Ps min ≥ 2MPa,

C5: tb ≥ 10.5 sec,

C6:mp ≥ 400 kg,

C7: rg min ≥ 4mm/sec,

C8:Pb max ≤ 16MPa,

C9:Ps max ≤ 3MPa,

C10: rg max ≤ 8.5mm/sec,

(4.4)

and bound to

{
Lower bound = min(Xi)
Upper bound = max(Xi)

}

(i = 1, 2, . . . , 8). (4.5)

The upper bound (UB) and lower bound (LB) of design variables are listed in Table 2.
The propellant properties and nozzle parameters for the ballistics analysis are listed in
Table 3.
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Table 2: LB and UB of design variables.

Parameters LB UB Units

Tubular grain inner diameter (dtu) 105 130 mm
Fin radius (f) 6 18 mm
Inner radius (ri) 50 70 mm
Min. web (w) 15 35 mm
Max. web (W) 75 100 mm
Fin height (l) 90 120 mm
Number of fins (N) 4 12 —
Taper fin angle (φ) 18 25 degree

Table 3: Propellant and nozzle parameters.

Parameters Value Units

Propellant density (ρp) 1745 kg/m3

Grain burning rate (rg) 8.5@7MPa ± 1 mm/sec
Characteristic velocity (c∗) 1560 m/sec
Nozzle throat diameter (dt) 90 mm
Nozzle area expansion ratio (ε) 9 —

5. Results and Discussion

5.1. Comparison of Results

The solid rocket motors are designed to provide required pressure-time (P -t) and thrust-time
(F-t) profiles. The P -t and F-t profiles for DTSRM test case are shown in Figure 5 for the
robust results. The peak pressure during boost phase is within the maximum limit imposed
by the constraint. Tables 4 and 5 show the comparison of robust and nonrobust results
achieved by UBRDO and SAPS hybrid optimization approaches, respectively, for grain de-
sign variables and required motor performance parameters. Table 6 shows the comparison of
robustness assessment for robust and nonrobust optimization approach. The two measures
of variance modeled in Section 2 reveal that the robustness is achieved with minimum dis-
persion and adhering to the targeted mean by the robust approach. The variance of output
mean calculated at current design points with robust solution exhibited very less variance
compared to nonrobust approach of hybrid SAPS. The performance parameters achieved
by the UBRDO strategy are well within the range. All these values have been achieved by
adhering to and obeying the bounds of design variables, propellant properties and nozzle
parameters given in Tables 2 and 3, and constraints imposed by (4.4). The nonrobust result
however shows violation for the maximum boost pressure constraint limit.

Beside mean-variance framework, robustness is also measured using percentile dif-
ference plots of performance parameters. It provides the extent to which the probability level
of the design robustness is achieved. The comparison of data in Table 6 confirms the robust-
ness in all the performance parameters evaluated through robust approach. The results of per-
centile difference approach are plotted in Figures 6(a)–6(d). On examining the figure,
shrinking and swelling of performance parameter data under uncertainty for robust and non-
robust optimization, respectively, can be seen clearly. The goal of shrinking the data
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Table 4: Comparison of design variables.

Design variables Robust Optimal Units

Tubular grain inner diameter (dtu) 116 120 mm
Fin radius (f) 9 11 mm
Inner radius (ri) 57 60 mm
Min. web (w) 23 25 mm
Max. web (W) 81 86 mm
Fin height (l) 105 110 mm
Number of fins (N) 7 7 —
Taper fin angle (φ) 19 22 deg

Table 5: Comparison of performance parameters.

Parameters Robust Optimal

FRave 5.80 6.11
It (kN-sec) 936.75 965.55
mp (kg) 404.10 420.10
Pb max (MPa) 14.55 15.94

dispersion and shifting the data distribution towards left has been achieved in all perfor-
mance parameters through UBRDO.

Furthermore, to investigate the effects of uncertainties of design variables on per-
formance parameters deviation, Monte Carlo simulation is performed by selecting a sample
of 500 runs on random basis for a worst-case deviation of Δ = ±8%. The scatter plots
are shown in Figures 7(a)–7(d) for FRave, It, Pb max, and mp. The scatter plots reflect the
anarchy of nonrobust solution afflicted due to the presence of uncertainty. The data points
of robust solution have smoothly settled around the mean value confirming the robustness
and insensitivity of the solution.
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Table 6: Robustness assessment by variance.

Method FRave Pb max (MPa) It (kN-sec) mp (kg)
Percentile
difference optimal robust optimal robust optimal robust optimal robust

y0.05 5.93 5.78 15.35 14.41 947.17 938.22 405.17 404.35
y0.95 6.51 5.90 16.48 14.81 978.34 948.69 433.32 407.33
Δy0.05

0.95 0.58 0.12 1.13 0.40 31.17 10.47 28.15 2.98
First-order
Taylor series
σ 0.16 0.05 0.41 0.11 12.75 3.55 13.41 1.45
μ (targeted) 5.5 14.50 930 400

μ (achieved) 6.11 5.80 15.94 14.55 965.55 936.75 420.10 404.10

5.2. Parametric Sensitivity Analysis

Performance parameters sensitivity analysis is used to compute the response of variation of
performance parameters with respect to variation of design variable. The design variables
(dtu, l, f, ri, w,W, η,N, φ) related to grain geometries and nondesign parameters of propellant
burning rate of star and cylindrical grains (rg max, rg min) are considered to analyze the
sensitivity of performance parameters FRave, It,mp, Pb max, and Pb ave. The sensitivity of these
design parameters on performance has been analyzed using the values given in Tables 2 and
3 and the constraints impose on performance parameters given by (4.4). The behavior of
sensitivity is depicted in Figures 8(a)–8(d).
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Figure 7: Scatter plots of performance parameters.

By examining the sensitivity plots, the FRave decreases towards upper bounds of N,
W , and f sharply and slowly with dtu. The It andmp decrease sharply with increase in value
of N, f , and dtu and increase with W . The Pb max increases sharply with increasing W and
dtu, decreases gradually with increases inN and remains unaffected by f .

From performance view point, special focus should be paid on the selection of N and
W as both have influence on FRave and It. The Pb max should be taken care of as it violates
constraint limit towards upper limits of W and dtu.

Sensitivity of Propellant Burning Rate

The propellant burning rate parameter is considered as nondesign parameter. The affect
of burning rate data uncertainty is analyzed by setting a tolerance value of ±1 which is
considered as worst-case deviation. The sensitivity affects burning rate on pressure system of
DTSRM are shown in Figure 9 in detail. Towards higher values, it violates the constraint limit
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Figure 8: Sensitivity plots of performance parameters.
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of Pb max, whereas at lower limits, it violates the constraint limit of Ps min. As higher pressure
leads towards motor bursting and at lower pressure combustion extinguishing phenomenon
can occur, both affects are undesirable for stable working of motor.

6. Conclusion

In this paper, we explored the robust designmethodology based on an integrated approach of
complex design scenario and optimization. The integration of 3D grain design, internal ballis-
tics, hybrid optimization, and worst-case uncertainty formulation supplemented by efficient
statistical methods has shown promising results in optimizing the grain geometry design
variables andmotor performance in the presence of both aleatory and epistemic uncertainties.
The robustness assessment using efficient variance approach and simulation-based uncer-
tainty modeling through worst-case estimation provides an insensitive robust design solu-
tion. The sensitivity analysis helps us in identifying those design variables that contributed
significantly in ameliorating or deteriorating the performance parameters. The hybrid ap-
proach of Genetic Algorithm and Simulated Annealing has shown excellent performance
about the efficacy as well as optimization view point. As expected, the values of performance
parameters achieved by robust design are less than the ones achieved by optimal one but
insensitive to variations. The important achievement that can be associated with proposed
methodology is its ability to evaluate and optimize as well the dual grain design subject to
performance constraints under a complex scenario of both aleatory and epistemic uncertain-
ties. The proposed framework increased reliability and robustness of our design and is useful
for propulsion systems that require both optimality and robustness and in the meanwhile
it allows designers to make reliable decisions when there are uncertainties associated with
design parameters.
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