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We investigate the global bifurcations and multipulse chaotic dynamics of a simply supported lam-
inated composite piezoelectric rectangular thin plate under combined parametric and transverse
excitations. We analyze directly the nonautonomous governing equations of motion for the
laminated composite piezoelectric rectangular thin plate. The results obtained here indicate that
the multipulse chaotic motions can occur in the laminated composite piezoelectric rectangular
thin plate. Numerical simulations including the phase portraits and Lyapunov exponents are used
to analyze the complex nonlinear dynamic behaviors of the laminated composite piezoelectric
rectangular thin plate.

1. Introduction

Piezoelectric materials can be used as the actuators and sensors in engineering structures
[1]. With the increased use of composite laminated piezoelectric plates in engineering
structures, for example, in airplane and launch vehicles, research works and development
on the responses of laminated composite piezoelectric plates have experienced tremendous
growth in the last two decades. For instance, Ye and Tzou [2] developed a new piezoelectric
composite finite element and gave a comparison between finite element solutions of a
laminated composite piezoelectric plate and experimental data. Shen [3] analyzed nonlinear
bending of a simply supported, shear deformable cross-ply laminated plate with piezoelectric
actuators and subjected to a transverse uniform or sinusoidal load combined with electrical
loads and thermal environments based on higher-order shear deformation plate theory
and perturbation technique. Recently, Zhang et al. [4] established the nonlinear governing
equations of motion for a simply supported laminated composite piezoelectric rectangular
plate under combined parametric and transverse excitations and studied the periodic and
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chaotic dynamics in the case of one-to-two internal resonance. The linear and geometrically
nonlinear forced vibrations of laminated composite plates with piezoelectric materials were
studied through numerical approach by Tanveer and Singh [5]. Torres and Mendonca [6]
developed a formulation for laminated plates with extensional distributed piezoelectric
sensors and the analytical solutions for simply supported square laminates with piezoelectric
layers.

Laminated composite plates with piezoelectric materials can undergo large oscillating
deformation, which leads to nonlinear oscillations of plates. However, little research deals
with the complex nonlinear dynamics of laminated composite piezoelectric plates, such as
the bifurcations and multipulse chaotic dynamics. We investigate chaotic phenomena in such
systems in order that we can control the system through the piezoelectric change. With the
development of the theories of nonlinear dynamics and chaos, prediction, understanding,
and control become possible for more complicated nonlinear phenomena in laminated
composite piezoelectric plates. Kovacic and Wiggins [7] developed a new global perturbation
method which may be used to detect the Shilnikov-type single-pulse homoclinic and
heteroclinic orbits of four-dimensional autonomous ordinary differential equations. Camassa
et al. [8] proposed an extended Melnikov method to study the multipulse jumping of
homoclinic and heteroclinic orbits in a class of perturbed Hamiltonian systems. Zhang
et al. [9] improved the extended Melnikov method given by Camassa et al. [8] and
employed it to study the multipulse Shilnikov-type chaotic dynamics for a nonautonomous
buckled rectangular thin plate. Zhang et al. [10] presented an extended Melnikov method to
nonautonomous nonlinear dynamical systems in mixed coordinates. The multipulse chaotic
dynamics of a simply supported laminated composite piezoelectric rectangular thin plate
under the combination of the parametric and transverse excitations was investigated by the
proposed method.

However, in paper [10], the normal form theory is used to simplify the equations of
the laminated composite piezoelectric plate. In this paper, the multipulse chaotic dynamics of
the simply supported laminated composite piezoelectric rectangular plate under combined
parametric and transverse excitations is investigated by using the extended Melnikov method
improved in paper [9]. The nonlinear terms, which were missing through simplification
by normal form theory in paper [10], are retained in this paper and added small positive
parameter.

2. Analysis on Multipulse Chaotic Dynamics of the Plate

In this section, we investigate the multipulse chaotic dynamics for the simply supported
laminated composite piezoelectric rectangular thin plate under combined parametric and
transverse excitations. The two-degree-of-freedom governing equation of motion for the plate
in dimensionless nonautonomous nonlinear system is shown in (2.1), and the details about
the equation can be seen in paper [4]:
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where αi and βi (i = 1–4) are nondimensional coefficients. In (2.1), the coefficients for ω1,
ω2, F1, F2, αi, βi (i = 1–4), and fj (j = 1–6) are presented in [4]. Figure 1 is a sketch on
the model of the simply supported laminated composite piezoelectric rectangular thin plate
under combined parametric and transverse excitations and the coordinate system.

We introduce the following transformations on (2.1):

x1 = w1, x2 = ẇ1, x3 = w2, x4 = ẇ2. (2.2)

Then, the following equivalent form of (2.1) is obtained:

ẋ1 = x2,
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(2.3)

The parameters of the damping and the forces in (2.3) are considered as perturbation
parameters the unperturbed system is as follows:

ẋ1 = x2,
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ẋ3 = x4,

ẋ4 = −ω2
2x3 − β1x

2
1x3 − β2x1x

2
3 − β3x

3
3 − β4x

3
1.

(2.4)

Executing the Maple program given by Zhang et al. [11], we can obtain the 3-order normal
form of unperturbed system (2.4) as follows:
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where m1 = 1/(3 + 2ω4
1 + 3ω8

1), m2 = 1/(3 + 2ω4
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Comparing (2.4) with (2.5), we can conclude that the parameters of normal form (2.5)
are independent of parameters α2, α4, β2, and β4; that is to say, the four terms α2x

2
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3
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β2x1x
2
3, and β4x

3
1 in (2.4) can only have influence on the terms which are higher than cubic
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Figure 1: The model of plate subjected to its plane and transverse excitations.

of normal form (2.5). Therefore, the four terms forenamed have little contribution on 3-
order normal form (2.5), which means that these four nonlinear terms affect unperturbed
system (2.4) to a lesser extent compared with other terms of the system. On the other hand,
the analytical solution can be obtained if there are not the four terms forenamed in (2.4).
With these in mind and in order to obtain the homoclinic orbits of the unperturbed system,
we add the small positive parameter ε on the four terms except the perturbed parameters
aforementioned—the parameters of the damping and the forces.

We consider the unperturbed system (2.3), firstly, we introduce the following transfor-
mations on (2.3):

x1 = u1, x2 = u2, x3 = v1, x4 = c2v1 + c2v2. (2.6)

Then, the following equivalent form of (2.3) is obtained:
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(2.7)

where ω2
2 = 2c2 +ω2

2/c2, βi = βi/c2, i = 1, 2, 3, 4, fj = fj+3/c2, j = 1, 2, 3, F2 = F2/c2.
The frequencies Ωi (i = 1, 2, 3, 4) of the forces in (2.7) are rationally related, which have

the following relations Z1φ = Ω1t, Z2φ = Ω2t, φ = Ω3t, Z4φ = Ω4t, where Z1, Z2, and Z4 are
all nonnegative integers. Next, we add small parameter ε on the four terms aforementioned
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and the parameters of the damping and the forces in (2.7). Therefore, the following system
can be obtained as follows:

u̇1 = u2,

u̇2 = −ω2
1u1 − α1u1v

2
1 − α3u

3
1 − εα2u

2
1v1 − εα4v

3
1 − εc1u2 + εF1 cosφ

− ε
(
f1 cosZ1φ + f2 cosZ2φ + f3 cosZ4φ

)
u1,

v̇1 = εc2v1 + εc2v2,

v̇2 = −ω2
2v1 − β1u

2
1v1 − β3v

3
1 − εβ2u1v

2
1 − εβ4u

3
1 − 2εc2v2 + εF2 cosφ

− ε
(
f1 cosZ1φ + f2 cosZ2φ + f3 cosZ4φ

)
v1.

(2.8)

Consider the cross-section of the phase space [9]

Σφ0 =
{(
u1, u2, v1, v2, φ

)
| φ = φ0

}
. (2.9)

In the following analysis, we consider the system on the cross-section Σφ0 firstly. Then, let φ
vary throughout the circle S1, see [9] for details.

Let ε = 0 in (2.8); the new unperturbed system is of the form

u̇1 = u2,

u̇2 = −ω2
1u1 − α1u1v

2
1 − α3u

3
1,

v̇1 = 0,

v̇2 = −ω2
2v1 − β1u

2
1v1 − β3v

3
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The Hamiltonian for space of u = (u1, u2) is of the form
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1
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It is noticed that system (2.10) is an uncoupled two-degree-of-freedom nonlinear
system. The v1 variable appears in (u1, u2) components of system (2.10) as a parameter since

v̇1 = 0. We set v1 =
√
ω2

2/β3. Consider the first two decoupled equations

u̇1 = u2,

u̇2 = −ω2
1u1 − α1u1v

2
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3
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(2.12)

Let R = −ω2
1 − α1v

2
1, and consider R > 0, α3 > 0. Therefore, (2.12) has three singular

points: one is (u1, u2) = (0, 0), it is a saddle point, and the other two are centers:
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(u1, u2) = (±
√
R/α3, 0); therefore, (2.12) can exhibit homoclinic bifurcations. The homoclinic

orbits which connect the saddle point (u10, u20) = (0, 0) are obtained as

u1 = ±

√
2R
α3

sech
√
Rt,

u2 = ±

√
2
α3
R sech

√
Rt tanh

√
Rt.

(2.13)

It is known from foregoing analysis that the condition R = −ω2
1 − α1v

2
1 > 0 holds; in

conclusion, the system considered here satisfies the following conditions:

β3ω
2
1 < α1ω

2
2 < 0, α3 > 0. (2.14)

It is known from analysis in paper [9] that the first pulse Melnikov function is given
by the integral

M
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)
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It can be seen easily that (2.8) can be written as the following form:
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where u = (u1, u2) ∈ R2, v = (v1, v2) ∈ R2, μ ∈ Rp denotes the parameters of the system, and
J is a symplectic matrix
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(
0 1

−1 0
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. (2.17)

Then, the vectors n and g in (2.15) are of the following form:
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The k-pulse Melnikov function Mk (k = 1, 2, . . .) is defined as
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Based on (2.15), the 1-pulse Melnikov function is computed as follows:
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Based on (2.19) and the foregoing analysis, the k-pulse Melnikov function is obtained
as follows:
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If the k-pulse Melnikov function Mk has simple zero points, then we obtain
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It is known that the following holds:
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Equation (2.24) can be rewritten as follows:
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For k ∈ N, we may choose proper parameters in (2.26) so that the value of the following
formula:
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is a nonnegative integer. Based on analysis in [9], the stable manifold Ws(Mφ0
ε ) and unstable

manifold Wu(Mφ0
ε ) of system (2.8) intersect transversely, which means that the multipulse

chaotic motions exist in the simply supported laminated composite piezoelectric rectangular
thin plate. To verify the analytical results obtained above, numerical method will be utilized
to indicate that the multipulse chaotic motions occur for the laminated composite piezoelec-
tric plate.

3. Numerical Simulations

In this section, the nonlinear dynamic behaviors of the simply supported laminated compos-
ite piezoelectric rectangular thin plate under combined parametric and transverse excitations
are presented by using Matlab programs.

We choose parameters of (2.3) under condition (2.14) to do numerical simulations. The
parameters are chosen as follows: ω1 = 5.6, α1 = 2.8, α2 = −2.5, α3 = 10.2, α4 = 1.8, μ1 = 0.18,
f1 = 10, f2 = 12, f3 = 20, F1 = 10, Ω1 = 1, Ω2 = 2, Ω4 = 1.2, ω2 = 6.1, β1 = 2.2, β2 = 8.3, β3 = −3,
β4 = 2.4, μ2 = 0.19, f4 = 12, f5 = 11, f6 = 28, F2 = 2, Ω3 = φ = 1. The initial values are given
by Matlab stochastically as follows: x10 = −0.1465, x20 = 0.1909, x30 = 0.1892, x40 = −0.0376.
Figure 2 demonstrates chaotic motions of the laminated composite piezoelectric plate. Figures
2(a) and 2(c) present the waveform on the planes (t, x1) and (t, x3). Figures 2(b) and 2(d)
give the phase portraits on the planes (x1, x2) and (x3, x4). Multipulse jumping motions of
system (2.3) can be obtained apparently from phrase portraits of Figures 2(e) and 2(f) in
three-dimensional spaces (x1, x2, x3) and (x3, x4, x1).

The largest Lyapunov exponents are calculated for the laminated composite piezo-
electric plate. Figure 3 represents the largest Lyapunov exponents of (2.3) with variations of
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Figure 2: Chaotic motions of the laminated composite piezoelectric plate.

parametric excitation f3 which dependent on piezoelectric excitation. Figure 4 is the largest
Lyapunov exponents via frequency Ω3 = φ of external force.

4. Conclusions

New and valuable results of analysis and computation have been achieved during the course
of present study. According to our analysis, the extended Melnikov method is attributed to
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Figure 4: The largest Lyapunov exponents via φ.

the nonautonomous ordinary differential equations of motion for the laminated composite
piezoelectric rectangular plate by introducing the cross-section Σφ0 .

We minimize the simplification processes on the system at the best possibility so that
a better understanding of the nature and behavior of high-dimensional nonlinear systems
can be acquired. By virtue of the theory of normal form, some nonlinear terms in the
governing equations of the laminated composite piezoelectric rectangular plate have less
effect than other terms on the system. Therefore, these nonlinear terms are retained herein
and added with small positive parameters to analyze the complex nonlinear dynamics of
the laminated composite piezoelectric rectangular plate. We obtain the simple zero point
of the k-pulse Melnikov function, which means that there exist k-pulse chaotic motions
for the laminated composite piezoelectric rectangular plate. The chaotic dynamics are
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also numerically investigated by means of the phase portraits and the largest Lyapunov
exponents.
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