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A generalized version of the Leslie-Gower predator-prey model that incorporates the prey
population structure is introduced. Our results show that the inclusion of (age) structure in
the prey population does not alter the qualitative dynamics of the model; that is, we identify
sufficient conditions for the “trapping” of the dynamics in a biological compact set—albeit the
analysis is a bit more challenging. The focus is on the study of the boundedness of solutions and
identification of sufficient conditions for permanence. Sufficient conditions for the local stability of
the nonnegative equilibria of the model are also derived, and sufficient conditions for the global
attractivity of positive equilibrium are obtained. Numerical simulations are used to illustrate our
results.

1. Introduction

Lotka-Volterra predator-preymodels have been extensively and deeply investigated [1–5]. In
population biology, we are often interested in identifying potential mechanisms responsible
for either fluctuations or the lack of fluctuations in predator-prey systems. If we let x(t)
denote the density of prey and let y(t) be the density of predator, then the classical Lotka-
Volterra predator-prey model is given by the following system:

x′(t) =
(
r1 − c1y − b1x

)
x,

y′(t) =
(−ε2 + ρ2x

)
y.

(1.1)

It is known that these equations can support population fluctuations when b1 = 0, but,
because the model is not structurally stable, the results have been primarily used as
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ametaphor and as an inspiration formathematical and biological research on themechanisms
responsible for fluctuations (or their lack) in predator-prey systems. The equations in system
(1.1) set no upper limit on the percapita growth rate of the predator (second term of
Model (1.1)) which of course is unrealistic. For example, for mammals, such a limit will
be determined in part by physiological factors (length of the gestation period, the shortest
interval between litters, the maximum average number of daughters per litter, the age at
which breeding first starts, and so on [6, 7]). Leslie modeled the effect of such limitations
via a predator-preymodel, where the “carrying capacity” of the predator’s environment was
assumed to be proportional to the number of prey. Hence, if x(t) denotes the prey density
and y(t) the predators’, then Leslie’s model is given by the following system of nonlinear
differential equations:

x′(t) =
(
r1 − c1y − b1x

)
x,

y′(t) =
(
r2 − c2

y

x

)
y,

(1.2)

where ri, ci, i = 1, 2, and b1 are positive constants. The first equation of System (1.2) is
standard, but the second is not because it contains the so-called Leslie-Gower term, namely,
c2y/x. The rationale behind this term is based on the view that as the prey becomes numerous
(x → ∞) then the percapita growth rate of the predator (dy/ydt) achieves its maximum
r2. Conversely as the prey becomes scarce (x → 0), the predator will go extinct since
the percapita growth rate of the predator goes to −∞. An alternative interpretation of the
Leslie-Gower model concludes that the carrying capacity of the predators’ environment is
proportional to the number of prey available, that is,

y′(t) = r2
(
1 − y

Ax

)
y = r2

(
1 − y

C

)
y, (1.3)

where A = r2/c2 can be interpreted as a prey predators’ conversion factor and C = Ax as the
predators’ carrying capacity (proportional to prey abundance). The Leslie-Gower term y/Ax
has also been interpreted as a measure of the loss in percapita predator’s reproduction rate
due to the relative abundance (per capita y/x) of its “favorite” food (prey x). Model (1.2) is
often referred to as a semi-ratio-dependent predator-prey model [8]. Model (1.2) is different
from the ratio-dependent predator-prey models in the studies by Wang et al. [9] and Hsu et
al. [10].

Scarcity of prey (x) could drive predators (y) to switch to alternative resources of
food. In fact, there is an extensive literature on the evolutionary advantage of specialist
versus generalist when it comes down to predators’ diet [11–16]. Predator’s growth may
also be limited by nutritional factors. In fact, evolutionary forces may lead to the predators
to specialize on the most nutritious prey. The possibility that a predator does not depend on
a single prey type is modelled here in a rather simple way, that is, through the addition of a
positive constant d in the denominator. In fact,

y′(t) = r2
(
1 − y

αx + d

)
y. (1.4)
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A modification of System (1.2) using a Holling-type II functional response for the prey
population has led various researchers [11, 15] to consider the following model:

x′(t) =
(
r1 −

c1y

x + k1
− b1x

)
x,

y′(t) =
(
r2 −

c2y

x + k2

)
y,

(1.5)

where r1 is the percapita growth rate of the prey x, b1 is a measure of the strength of prey
(on prey) interference competition, c1 is the maximum value of the per capita reduction rate
of prey x due to predator y, k1 measures the extent to which the environment provides
protection to prey x (k2 for predator y), r2 gives the maximal percapita growth rate of
predator y, and c2 has a similar meaning to that of c1.

In Aziz-Alaoui [17], a preliminary analysis of a Leslie-Gower model (System (1.2)) is
carried out. In the study by Korobeinikov [18], the global stability of the unique coexisting
interior equilibrium of System (1.2) is established. In the study by Aziz-Alaoui and Daher
Okiye [11], the existence and boundedness of solutions (including that of an attracting set)
are established as well as the global stability of the coexisting interior equilibrium for Model
(1.5). There have been additional extensions, for example, in the study by Letellier and Asis-
Alaoui [13], the studies by Letellier et al. [14] and Upadhyay and Rai [19], a Leslie-Gower
type tritrophic model was introduced and analyzed numerically.

Nindjina et al. considered the following extension of Leslie-Gower (modified with
Holling-type II schemes and time delay τ):

x′(t) =
(
r1 −

c1y

x + k1
− b1x

)
x,

y′(t) =
(
r2 −

c2y(t − τ)
x(t − τ) + k2

)
y,

(1.6)

that is, a single discrete delay τ > 0 is introduced as a negative feedback in the predator’s
density. Some results associated with the global stability analysis of solutions to System
(1.6) have been obtained including the impact of τ on the stability of positive equilibrium
of System (1.6). In fact, researchers found out that the time delay can have a destabilizing
effect on the positive equilibrium of System (1.6) [15].

Most prey species have a life history that includes multiple stages (juvenile and
adults or immature and mature). In the study by Aiello and Freedman [20], the population
dynamics of a single species with two identifiable stages was modeled by the following
system:

x′
1(t) = αx2(t) − γx1(t) − αe−γτx2(t − τ),

x′
2(t) = αe−γτx2(t − τ) − βx2

2(t),
(1.7)

where x1(t), x2(t) denote the immature and mature population densities, respectively. Here,
α > 0 represents the percapita birth rate, γ > 0 is the percapita immature death rate, β > 0
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models death rate due to overcrowding and τ is the “fixed” time to maturity, and the term
αe−γτx2(t − τ) models the immature individuals who were born at time t − τ (i.e., αx2(t −
τ)) and survive and mature at time t. The derivation and analysis of System (1.7) can be
found in the study by Aiello and Freedman [20]. Several additional researchers ([21–23], and
the references therein) have investigated versions of the above single species model under
various stage-structure assumptions.

Liu and Beretta [24] reintroduced the impact of predators. They studied a predator-
prey model with Beddington-DeAngelis functional response and stage-structure on the
predator population. These researchers found that predator and prey coexist if and only
if the predator’s recruitment rate at the peak of prey abundance is larger than its death
rate. If the system is permanent, that is, if for any solution x(t) of the system, there exist
constants M, m > 0 such that m ≤ lim inft→∞x(t) ≤ lim supt→∞x(t) ≤ M then sufficiently
“large” predators’ interference not only stabilizes the system but also guarantees its stability
against increases in the carrying capacity of the prey and increases in the birth rate of the
adult predator. Finally, it was shown (analytically and numerically in the study by Liu and
Beretta [24]) that stability switches of interior equilibrium may occur as the maturation
time delay increases. That is, stability may change from stable to unstable to finally stable,
implying that “small” and “large” delays can be stabilizing. Song et al. [25] considered a ratio-
dependent predator-prey system that incorporated “age” structure for the prey. Their analysis
established boundedness of solutions, looked at the nature of equilibria and permanence as
well as the local stability and global attractivity of the positive equilibrium of themodel. Their
results show that the inclusion of an “age” structure in the prey population does not change
the qualitative dynamics of the model—albeit the analysis is more challenging.

A Leslie-Gowermodel that incorporates the prey’s stage structure is introduced here to
study the combined effects of prey stage structure and within prey interference competitions.
Following Song et al. [25], we assume that the immature prey cannot reproduce and the per
capita birth rate of the mature prey is α > 0, the per capita death rate of the immature prey is
γ > 0, the per capita death rate of the mature prey is proportional to the current mature prey
population with a proportionality constant β > 0, and immature individuals become mature
at age τ . Predators only feed on the mature prey. Using these definitions, we formulate a
modified Leslie-Gower and Holling-type II schemes with stage-structure for prey as follows:

x′
1(t) = αx2(t) − γx1(t) − αe−γτx2(t − τ),

x′
2(t) = αe−γτx2(t − τ) − βx2

2(t) −
c1y(t)x2(t)
x2(t) + k1

,

y′(t) = y(t)
(
r2 −

c2y(t)
x2(t) + k2

)
.

(1.8)

The initial conditions are given by x2(θ) ≥ 0, continuous on θ ∈ [−τ, 0], and x1(0),
x2(0), y(0) > 0, while x1(t), x2(t), and y(t) denote the densities of immature prey, mature prey
and predator, respectively. Please note that our model (1.8) is different from the model in the
study by Song et al. [25] which is based on standard ratio-dependent and symmetric cross
term. Our model (1.8) includes the Leslie-Gower term. The differences between the standard
ratio-dependent formulation and the Leslie-Gower formulation of the predator-prey system
are listed in the following, standard ratio-dependent formulation can be interpreted as the
effect of the predator-population on the prey population and the effect of the prey population
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on the predator-population are both a function of the ratio between the two, however the
Leslie-Gower formulation can be interpreted as the effect of the predator-population on the
prey population is different from the effect of the prey population on the predator-population:
both effects are inversely proportional to the (mature) prey population plus a constant.

From the first equation of system (1.8) we can see that

x1(t) =
∫ t

t−τ
αe−γ(t−s)x2(s)ds, (1.9)

x1(0) =
∫0

−τ
αeγsx2(s)ds. (1.10)

The last two equations in (1.8) do not contain x1(t). Hence, if we know the properties of x2(t)
then the properties of x1(t) can be easily obtained from (1.8) and (1.9). Hence, we only need
to consider the following system:

x′
2(t) = αe−γτx2(t − τ) − βx2

2(t) −
c1y(t)x2(t)
x2(t) + k1

,

y′(t) = y(t)
(
r2 −

c2y(t)
x2(t) + k2

)
,

(1.11)

with initial conditions x2(θ) ≥ 0 (continuous on θ ∈ [−τ, 0]) and x2(0), y(0) > 0.
The main purpose of this paper is to study the global dynamics of System (1.11). The

paper is organized as follows. In Section 2, we establish the conditions that determine the
permanence of the system and obtain positiveness and boundedness results. Section 3 focuses
on the study of the local stability of the nonnegative equilibria. Section 4 derives sufficient
conditions for the global asymptotic stability of boundary equilibrium and for the global
attractivity of positive equilibrium, and in the Section 5, these results are illustrated through
simulations and their relevance is briefly discussed.

2. Permanence of Solutions

To prove the permanence of System (1.11), we need the following lemma, which is a direct
application of Theorem 4.9.1 in the study by Kuang [26], see also Song et al. [25] and Liu et
al. [27].

Lemma 2.1. Consider the following equation:

x′(t) = ax(t − τ) − bx(t) − cx2(t), (2.1)

where a, b, c, τ > 0 and x(t) > 0, for −τ ≤ t ≤ 0.

(i) If a > b, then limt→∞x(t) = (a − b)/c.

(ii) If a < b, then limt→∞x(t) = 0.

Following the proof of Song et al. [25] and Liu et al. [27], we can obtain the following
lemma.
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Lemma 2.2. Suppose x2(θ) ≥ 0 is continuous on θ ∈ [−τ, 0], and x2(0), y(0) > 0, then the solution
of System (1.11) satisfies x2(t), y(t) > 0 for all t > 0.

First, we establish a condition for the boundedness of the solutions of System (1.11).

Theorem 2.3. Suppose x2(θ) ≥ 0 is continuous on θ ∈ [−τ, 0], and x2(0), y(0) > 0, then the
solutions of (1.11) are bounded for all large t.

Proof. From the first equation of (1.11), we have

x′
2(t) ≤ αe−γτx2(t − τ) − βx2

2(t). (2.2)

According to Lemma 2.1 and the standard comparison principle [28], there exists a T1 > 0
and ε1 > 0 such that

x2(t) ≤ αe−γτ

β
+ ε1 = M1, for t > T1 + τ. (2.3)

By the second equation of (1.11) and above inequality, we get

y′(t) ≤ y(t)
(
r2 −

c2y(t)
M1 + k2

)
, for t > T1 + τ. (2.4)

From the comparison principle, there exists a T2 > T1 such that, for any sufficiently small ε2,

y(t) ≤ (M1 + k2)r2
c2

+ ε2 = M2, for t > T2 + τ. (2.5)

The proof is complete.

Now, we show that System (1.11) is permanent.

Theorem 2.4. Suppose that

αe−γτ − c1M2

k1
> 0, (2.6)

whereM2 is defined by (2.5), then System (1.11) is permanent.

Remark 2.5. Comparing the above permanent result with that results for model in Nindjin
et al. [15] and model in Song et al. [25], we see the inclusion of an extra term e−γτ in our
permanence condition (2.6); that is, the surviving probability of each immature prey becomes
mature must be taken into account.

Proof. From the second equation of system (1.11), we have

y′(t) ≥ y(t)
(
r2 −

c2y(t)
k2

)
. (2.7)
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It then follows that

lim
t→∞

inf y(t) ≥ k2r2
c2

= m2 > 0. (2.8)

Using the first equation of System (1.11) and Theorem 2.3, for sufficiently large T , we have

x′
2(t) ≥ αe−γτx2(t − τ) − βx2

2(t) −
c1y(t)x2(t)

k1

≥ αe−γτx2(t − τ) − βx2
2(t) −

c1M2x2(t)
k1

.

(2.9)

By Lemma 2.1 and the comparison principle, we have that

lim
t→∞

infx2(t) ≥ αe−γτ − c1M2/k1
β

= m1 > 0. (2.10)

Therefore, the above calculations and Theorem 2.3 imply that there exist Mi, mi > 0, i = 1, 2,
such that

0 < m1 ≤ lim
t→∞

inf x2(t) ≤ lim
t→∞

sup x2(t) ≤ M1,

0 < m2 ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤ M2.
(2.11)

The proof is complete.

3. Analysis of Equilibria

System (1.11) has the following nonnegative equilibria:

E0 = (0, 0), E1 =
(
αe−γτ

β
, 0
)
, E2 =

(
0,

k2r2
c2

)
, E3 =

(
x∗
2, y

∗), (3.1)

where

x∗
2 =

(
αe−γτ − βk1 − c1r2/c2

)
+
√(

αe−γτ − βk1 − c1r2/c2
)2 − 4β((c1r2/c2)k2 − αe−γτk1)

2β
,

y∗ =
k2r2 + r2x

∗
2

c2
.

(3.2)
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We see that the positive equilibrium E3 exists if

αe−γτ >
c1k2r2
c2k1

. (3.3)

The characteristic equation at equilibrium E0 is

(
λ − αe−γτe−λτ

)
(λ − r2) = 0, (3.4)

and, consequently, since it has a positive eigenvalue λ = r2, E0 is unstable.
The characteristic equation at equilibrium E1 is given by the transcendental equation

(
λ −
(
−2αe−γτ + αe−γτe−λτ

))
(λ − r2) = 0. (3.5)

Again, λ = r2 is a positive eigenvalue, so E1 is also unstable.
The analysis of the stability of E2 requires a little more work. We have the following

results.

Theorem 3.1. Let

�0 =
c2k1
c1k2r2

αe−γτ , (3.6)

then equilibrium E2 is

(i) unstable if �0 > 1,

(ii) linearly neutrally stable if �0 = 1,

(iii) locally asymptotically stable if �0 < 1.

Proof. (i) The characteristic equation of equilibrium E2 is given by

(
λ +

c1k2r2
c2k1

− αe−γτe−λτ
)
(λ + r2) = 0, (3.7)

clearly, one characteristic root is λ = −r2 < 0, others are the roots of

F(λ) = λ +
c1k2r2
c2k1

− αe−γτe−λτ = 0. (3.8)

Assume that �0 > 1, therefore < αe−γτ then F(0) < 0 and F(+∞) = +∞. Hence F(λ) has at
least one positive root and E2 is unstable.

(ii) Since�0 = 1, that is, c1k2r2/c2k1 = αe−γτ , F(0) = 0, so λ = 0 is a root of F(λ) = 0. As
F ′(λ) = ταe−γτe−λτ + 1, we have F ′(0) > 0. The root λ = 0 is simple. If other roots are of form
a + iω, for some a and ω in R, they satisfy

(
a + αe−γτ

)2 +ω2 =
(
αe−γτ

)2
e−2aτ . (3.9)
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Then, we must have a ≤ 0; that is, all other roots have nonpositive real parts. Hence E2 is
linearly neutrally stable.

(iii) If �0 < 1, then c1k2r2/c2k1 > αe−γτ . Assume that there exists an eigenvalue λwith
Re λ ≥ 0, then we have

Re λ = −c1k2r2
c2k1

+ αe−γτe−(Re λ)τ cos(τ Imλ)

≤ αe−γτe−(Re λ)τ − c1k2r2
c2k1

< 0.

(3.10)

It is a contradiction, so Re λ < 0. This shows that all roots of F(λ) = 0 must have negative real
parts, hence, the equilibrium E2 is locally asymptotically stable.

The proof of the theorem is complete.

Remark 3.2. Note that when the predator reaches its steady state ŷ = k2r2/c2 in the absence
of prey, αe−γτ can be interpreted as the per capita recruitment rate of prey and c1k2r2/c2k1 =
c1ŷ/k1 approximates the per capita death rate of the prey. Therefore,�0 = αe−γτc2k1/c1k2r2 is
the basic demographic number of preywhen the predator’s population size reaches its steady
state ŷ in the absence of prey x. When �0 > 1, the population size of prey will increase, thus
E2 is unstable. Similarly we can interpret (ii) and (iii) in Theorem 3.1.

Remark 3.3. The sufficient condition given by (2.6) for the permanence of System (1.11) can
be rewritten in the following form

�0 > 1 +
αe−γτ

k2β
.= p0. (3.11)

So a “large” basic demographic number (�0 > p0 > 1) for the prey when the predator’s
population size reaches its steady state in the absence of prey can guarantee the permanence
of System (1.11).

Now, we consider the local stability of the interior equilibrium E3 = (x∗
2, y

∗). Recall
there exists E3 when (3.3) holds, that is, when τ is in the interval I = [0, τ∗), where

τ∗ =
1
γ
ln

c2αk1
c1r2k2

. (3.12)

The characteristic equation at E3 is

D(λ, τ) = λ2 +

(

r2 + 2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2

)

λ + r2

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2

)

+
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2 +
(
r2 − λ − 2c2y∗

k2 + x∗
2

)
αe−γτe−λτ = 0.

(3.13)
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Let

P(λ, τ) = λ2 + P1(τ)λ + P0(τ),

Q(λ, τ) = λQ1(τ) +Q0(τ),
(3.14)

where

P1(τ) = r2 + 2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 ,

P0(τ) = r2

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2

)

+
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2 ,

Q1(τ) = −αe−γτ , Q0(τ) = −r2αe−γτ .

(3.15)

Then the characteristic equation at E3 becomes

D(λ, τ) = P(λ, τ) +Q(λ, τ)e−λτ = 0. (3.16)

First, we will prove

P(0, τ) +Q(0, τ)/= 0, (3.17)

that is, λ = 0 cannot be a root of (3.16) for any τ ∈ I.
In fact, by the definition of (x∗

2, y
∗), we have

D(0, τ) = P0(τ) +Q0(τ) = P(0, τ) +Q(0, τ)

= r2

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2

)

+
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2 − r2αe
−γτ

= r2

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 − αe−γτ
)

+
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2

= r2

⎛

⎝−βk1 − c1r2
c2

+

√(
αe−γτ − βk1 − c1r2

c2

)2

− 4β
(
c1r2
c2

k2 − αe−γτk1

)
⎞

⎠

> 0.

(3.18)

Therefore, λ = 0 is not a root of (3.16).
The characteristic equation (3.16) at τ = 0 is

P(λ, 0) +Q(λ, 0) = 0, (3.19)
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that is,

λ2 + (P1(0) +Q1(0))λ + P0(0) +Q0(0) = 0. (3.20)

Then,

λ2 +

(

r2 + 2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 − α

)

λ + r2

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 +
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2 − α

)

= 0.

(3.21)

Since P0(τ) +Q0(τ) > 0 for all τ ∈ [0, τ∗), then P0(0) +Q0(0) > 0. Notice that

P1(0) +Q1(0) = r2 + 2βx∗
2 +

c1k1y
∗

(
k1 + x∗

2

)2 − α. (3.22)

If P1(0)+Q1(0) > 0, then (3.20) has two solutions with negative real parts. Hence, E3 is locally
asymptotically stable at τ = 0. If P1(0) +Q1(0) < 0, then E3 is unstable at τ = 0.

To determine the local stability of the interior equilibrium E3 = (x∗
2, y

∗), we proceed as
follows [29].

Assume that λ = ±iω(τ), ω(τ) > 0 satisfy (3.16), we have

P(iω, τ) = −ω2 + iωP1(τ) + P0(τ),

PR(iω, τ) = P0(τ) −ω2, PI(iω, τ) = ωP1(τ),

Q(iω, τ) = iωQ1(τ) +Q0(τ),

QR(iω, τ) = Q0(τ), QI(iω, τ) = ωQ1(τ).

(3.23)

The first step is to look for the positive roots ω(τ) > 0 of

F(ω, τ) = |P(iω, τ)|2 − |Q(iω, τ)|2 = 0 (3.24)

in I = [0, τ∗). Since

F(ω, τ) = ω4 +ω2
(
−2P0(τ) + P 2

1 (τ) −Q2
1(τ)
)
+ P 2

0 (τ) −Q2
0(τ), (3.25)

we have

F(ω, τ) = ω4 + b(τ)ω2 + c(τ) = 0,

b(τ) = −2P0(τ) + P 2
1 (τ) −Q2

1(τ),

c(τ) = P 2
0 (τ) −Q2

0(τ).

(3.26)
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Depending on the signs of b(τ) and c(τ), System (3.26) may have no positive real roots, or
the root

ω+(τ) =
[
1
2

(
−b(τ) +

√
b(τ)2 − 4c(τ)

)]1/2
, τ ∈ I+ ⊆ I, (3.27)

or otherwise the root

ω−(τ) =
[
1
2

(
−b(τ) −

√
b(τ)2 − 4c(τ)

)]1/2
, τ ∈ I− ⊆ I, (3.28)

or, as the last case, bothω+(τ) andω−(τ). Note that if System (3.26) has no positive rootsω(τ)
in I, then no stability switches can occur.

From the structure of P1(0) + Q1(0), a sufficient condition for E3 at τ = 0 to be locally
asymptotically stable is given by

α − 2βk1 − 2c1
r2
c2

> 0, (3.29)

which implies P1(0) + Q1(0) > 0. Stability switches for increasing τ in I = [0, τ∗) may occur
only with a pair of roots λ = ±iω(τ) (ω(τ) real positive) that cross the imaginary axis.

Next, we state the following theorem on the local asymptotic stability of equilibrium
E3.

Theorem 3.4. The positive equilibrium E3 of System (1.11) is locally asymptotically stable if

α − 2βk1 − 2c1
r2
c2

> 0, c2 − 2c1 > 0. (3.30)

Remark 3.5. From (3.30), we know that if the birth rate of immature prey (α) is sufficiently
large and the maximum value of the per capita reduction rate of x due to y is smaller than
the maximumvalue of the per capita reduction rate of y due to x then the positive equilibrium
E3 is locally asymptotically stable.

Proof. We only need to prove that E3 has no stability switches as τ increases and that E3 is
stable at τ = 0. Consider the roots of (3.20), by the above discussion, we know if (3.30) holds
then

P1(0) +Q1(0) = r2 + 2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 − α > 0. (3.31)

So the roots of (3.20)must have negative real parts, hence E3 is stable at τ = 0. Next, we prove
that E3 has no stability switches as τ increases in [0, τ∗). We only need to prove that System
(3.26) has no positive roots ω(τ) in I.

From (3.26), we have

c(τ) = P 2
0 (τ) −Q2

0(τ) = (P0(τ) +Q0(τ))(P0(τ) −Q0(τ)). (3.32)
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We know that P0(τ) +Q0(τ) > 0 and

P0(τ) −Q0(τ) = r2

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 + αe−γτ
)

> 0. (3.33)

So c(τ) > 0.
By (3.26), we also have

b(τ) = −2P0(τ) + P 2
1 (τ) −Q2

1(τ)

= −2
( 2c2y∗

k2 + x∗
2
− r2

)(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2

)

− 2
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2

+

(

−r2 +
2c2y∗

k2 + x∗
2
+ 2βx∗

2 +
c1k1y∗
(
k1 + x∗

2

)2

)2

− α2e−2γτ

=
( 2c2y∗

k2 + x∗
2
− r2

)2

+

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2

)2

− 2
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2 − α2e−2γτ

=
(

c2y∗

k2 + x∗
2

)2

− 2
c1c2x

∗
2y

∗2

(
k1 + x∗

2

)(
k2 + x∗

2

)2

+

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 + αe−γτ
)(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 − αe−γτ
)

>

(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 + αe−γτ
)(

2βx∗
2 +

c1k1y∗
(
k1 + x∗

2

)2 − αe−γτ
)

+
c22y

∗2
(
k2 + x∗

2

)2 − 2c1c2y∗2
(
k2 + x∗

2

)2

> 0,
(3.34)

the last inequality holds because (3.30) and therefore we have that b(τ) > 0 and c(τ) > 0.
Hence F(ω, τ)/= 0 for all τ ∈ I = [0, τ∗), that is, there are no stability switches for τ ∈ I =
[0, τ∗). The proof is complete.

4. Global Stability and Attractiveness

In this section, we establish conditions for the global stability of equilibria E2 = (0, k2r2/c2)
and E3 = (x∗

2, y
∗) of System (1.11). The following theorems hold.

Theorem 4.1. Suppose that

M1 + k1
c1m2

αe−γτ < 1, (4.1)
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wherem2 = k2r2/c2,M1 = αe−γτ/β + ε1, then the equilibrium E2 = (0, k2r2/c2) of System (1.11) is
globally asymptotically stable.

Remark 4.2. From (4.1), we also find that γτ has a positive effect on the extinction of prey in
that a proper increase of γτ (which is defines as the “degree of stage structure” by Liu et al.
[27]) can drive the prey into extinction, regardless of how large other coefficients were.

Remark 4.3. Inequality (4.1) is equivalent to

�0 <
1

1 + αe−γτ/βk1
.= p1. (4.2)

That is, a small basic demographic number (�0 < p1 < 1) for the prey (when the predator’s
population size reaches its steady state in the absence of prey) can guarantee the prey’s
extinction (E2 is globally stable).

Proof. From Theorem 3.1, we know that E2 is locally asymptotically stable. Now, we only
need to prove global attractiveness of E2. By the first equation of System (1.11), the proof of
Theorems 2.3 and 2.4, and x2(t) is nonegative, we have that

x′
2(t) = αe−γτx2(t − τ) − βx2

2(t) −
c1y(t)x2(t)
x2(t) + k1

≤ αe−γτx2(t − τ) − βx2
2(t) −

c1m2x2(t)
M1 + k1

.

(4.3)

From Lemma 2.1 and (4.1), we obtain that

lim
t→∞

x2(t) = 0. (4.4)

Then, there is a T0 such that, for t > T0, we have −ε < x2(t) < ε, where ε is sufficiently small.
From the second equation of System (1.11), we have that

y′(t) ≤ y(t)
(
r2 −

c2y(t)
ε + k2

)
, (4.5)

and, by the comparison principle, we conclude that

y(t) ≤ (k2 + ε)r2
c2

, (4.6)

and consequently limt→∞ infy(t) ≥ k2r2/c2. Hence, we have that

lim
t→∞

y(t) =
k2r2
c2

. (4.7)

The proof is complete.
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Next, we study the global attractivity of the interior equilibrium E3 of System (1.11).
Consider the following system:

v′(t) = a4v(t − τ) − a3v
2(t) − a1v(t)

v(t) + a2
,

v(t) = ϕ(t) ≥ 0, for t ∈ [−τ, 0],
v(0) > 0,

(4.8)

where ai > 0, i = 1, 2, 3, 4. A similar reasoning using Lemma 2.2 gives that v(t) > 0 for all
t ≥ 0. From Theorem 4.9.1 in Kuang [26] we conclude by the following lemma.

Lemma 4.4. System (4.8) has a unique positive equilibrium

v∗ =

(
a4 − a2a3 +

√
(a4 − a2a3)2 + 4a3(a2a4 − a1)

)

2a3
(4.9)

which is globally asymptotically stable if a2a4 − a1 > 0.

Finally, we have the following result.

Theorem 4.5. Suppose that

αe−γτk1 − r2

(
c1
(
k2β + αe−γτ

)

c2β

)

> 0, β > 1,

αe−γτ − βk1 − c1
r2
c2

> 0,

(4.10)

then the positive equilibrium E3 in System (1.11) is globally attractive.

Remark 4.6. From (4.10), we know that γτ has a negative effect on the global attractivity of
positive equilibrium; that is, an increase in the value of γτ can destroy Condition (4.10).

Remark 4.7. Comparing Theorems 4.1 and 4.2 with Theorems 4.1 and 4.2 in Song et al. [25], we
also see the inclusion of an extra term e−γτ in our condition, that is, the surviving probability
of each immature prey becomes mature must be taken into account.

Proof. By the first equation of System (1.11), we have

x′
2(t) ≤ αe−γτx2(t − τ) − βx2

2(t), (4.11)

then by Lemma 2.1 and the comparison principle, for sufficiently small ε > 0, there is a T1 > 0
such that

x2(t) <
αe−γτ

β
+ ε = u1 (4.12)
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for t ≥ T1 + τ . Replacing this inequality into the second equation of (1.11), we have

y′(t) ≤ y(t)
(
r2 −

c2y(t)
u1 + k2

)
, t ≥ T1. (4.13)

Again by the comparison principle, there is a T2 > T1 + τ > 0 such that

y(t) <
(u1 + k2)r2

c2
+ ε = ν1, t ≥ T2. (4.14)

Substituting (4.14) into the first equation of (1.11), we have

x′
2(t) ≥ αe−γτx2(t − τ) − βx2

2(t) −
c1ν1x2(t)
x2(t) + k1

. (4.15)

Consider the following equation:

z′(t) = αe−γτz(t − τ) − βz2(t) − c1ν1z(t)
z(t) + k1

. (4.16)

From the first inequality of (4.14) and Lemma 4.4, we see that (4.16) has a unique positive

equilibrium z∗ = (αe−γτ − βk1 +
√
(αe−γτ − βk1)2 + 4β(αe−γτk1 − c1ν1))/2β which is globally

asymptotically stable. Using the comparison principle, for sufficiently small ε > 0, we see
that there is a T3 > T2 + τ such that

x2(t) > z∗ − ε = u1 > 0. (4.17)

Plugging (4.17) into the second equation of (1.11), we have that

y′(t) ≥ y(t)

(

r2 −
c2y(t)
u1 + k2

)

, t ≥ T3. (4.18)

By the comparison principle, there is T4 > T3 such that

y(t) >

(
u1 + k2

)
r2

c2
− ε = ν1, t ≥ T4. (4.19)

Hence, we have

u1 < x(t) < u1, ν1 < y(t) < ν1, t ≥ T4. (4.20)
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By replacing (4.19) in the first equation of (1.11) we see that

x′
2(t) ≤ αe−γτx2(t − τ) − βx2

2(t) −
c1ν1x2(t)
x2(t) + k1

. (4.21)

From a similar use of the comparison principle, we conclude that there is T5 > T4+τ such that

x2(t) < z∗1 + ε = u2 > 0, t ≥ T5, (4.22)

where z∗1 = (αe−γτ − βk1 +
√
(αe−γτ − βk1)2 + 4(αe−γτk1 − c1ν1)β)/2β > 0 is the positive

equilibrium for the equation

z′(t) = αe−γτz(t) − βz2(t) − c1ν1z(t)
z(t) + k1

. (4.23)

From (4.10), we have

u2 < u1. (4.24)

Substituting (4.22) into the second equation in (1.11), we have that

y′(t) ≤ y(t)
(
r2 −

c2y(t)
u2 + k2

)
, t ≥ T5. (4.25)

A similar discussion (as above) implies that for sufficiently small ε > 0, there is a T6 > T5 such
that

y(t) <
(u2 + k2)r2

c2
+ ε = ν2. (4.26)

Since u2 < u1, we get

ν2 < ν1. (4.27)

Plugging (4.26) into the first equation of (1.11) leads to

x′
2(t) > αe−γτx2(t − τ) − βx2

2(t) −
c1ν2x2(t)
x2(t) + k1

, t ≥ T6. (4.28)

From (4.10), Lemma 4.4 and the comparison principle, we see that for sufficiently small ε > 0,
there is a T7 > T6 + τ such that

x2(t) > z∗2 − ε = u2 > 0, t ≥ T7, (4.29)
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where z∗2 = (αe−γτ − βk1 +
√
(αe−γτ − βk1)2 + 4(αe−γτk1 − c1ν2)β)/2β > 0 is the positive

equilibrium for the equation

z′(t) = αe−γτz(t) − βz2(t) − c1ν2z(t)
z(t) + k1

. (4.30)

Moreover, since ν2 < ν1 we have that u2 > u1.
Replacing (4.22) in the second equation of (1.11) leads to

y′(t) ≥ y(t)

(

r2 −
c2y(t)
u2 + k2

)

, t ≥ T7. (4.31)

Arguments similar to those used above guarantee the existence of a T8 > T7 such that

y(t) >

(
u2 + k2

)
r2

c2
− ε = ν2, t ≥ T8, (4.32)

from which we get that ν2 > ν1.
Repeating the above process leads to the construction of the sequences (un)

∞
n=1, (un)

∞
n=1,

(νn)
∞
n=1, (νn)

∞
n=1, and T4n > 0. For t ≥ T4n, we have that

0 < u1 < u2 < · · · < un < x2(t) < un < · · · < u2 < u1,

0 < ν1 < ν2 < · · · < νn < y(t) < νn < · · · < ν2 < ν1.
(4.33)

Hence, the limits of (un)
∞
n=1, (un)

∞
n=1, (νn)

∞
n=1, (νn)

∞
n=1 exist. Denote that

u = lim
t→∞

un, ν = lim
t→∞

νn, u = lim
t→∞

un, ν = lim
t→∞

νn, (4.34)

then u ≥ u, ν ≥ ν. To complete the proof, we only need to show u = u, ν = ν.
By the definition of νn and νn, we have

νn =

(
un + k2

)
r2

c2
− ε, νn =

(un + k2)r2
c2

+ ε, (4.35)

thus

νn − νn =
r2
c2

(
un − un

)
+ 2ε. (4.36)



Mathematical Problems in Engineering 19

According to the definitions of un, un and (4.36), we have

un − un

=
αe−γτ − βk1 +

√(
αe−γτ − βk1

)2 + 4β
(
αe−γτk1 − c1νn

)

2β

−
αe−γτ − βk1 +

√(
αe−γτ − βk1

)2 + 4β(αe−γτk1 − c1νn)

2β
+ 2ε

= − 4c1
(
νn − νn

)
β

2β
(√(

αe−γτ − βk1
)2 + 4β

(
αe−γτk1 − c1νn

)
+
√(

αe−γτ − βk1
)2 + 4β(αe−γτk1 − c1νn)

)

+ 2ε

< − c1
(
νn − νn

)

(
αe−γτ − βk1

) + 2ε.

(4.37)

Let n → ∞, we have

(
u − u

) ≤ c1(r2/c2)
(
u − u

)
+ 2ε

αe−γτ − βk1
+ 2ε, (4.38)

hence

(
αe−γτ − βk1 − c1

r2
c2

)
(
u − u

) ≤ (1 + αe−γτ − βk1
)
2ε. (4.39)

By (4.10), we know that αe−γτ − βk1 − (c1r2)/c2 > 0 and (1 + αe−γτ − βk1) > 0. Note that ε can
be arbitrarily small, that is, letting ε → 0 leads to the conclusion that u = u. From (4.36) and
letting n → ∞, we also conclude that ν = ν. The proof is complete.

5. Discussion

In this paper, we consider a Leslie-Gower predator-prey type model that incorporates the
prey “age” structure (an extension of the ODE model in the study by Aziz-Alaoui and
Daher Okiye [11]). We derive the “conditional” basic demographic number (�0) for the
prey, that is the value of �0 when the predator’s population size has reached its steady
state in the absence of prey. We obtain sufficient conditions that ensure the boundedness of
solutions as well as permanence of System (1.11) (�0 > p0 > 1). Second, we derive sufficient
conditions for the local stability of nonnegative equilibria of Model (1.11). We show that
E0 = (0, 0) and E1 = (αe−γτ/β, 0) are unstable, E2 = (0, k2r2/c2) is unstable if �0 > 1 (stable if
�0 < 1), and the positive equilibrium E3 exists when �0 > 1. Finally, through the application
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Figure 1: The boundary equilibrium E2 = (0, k2r2/c2) of System (1.11) is globally asymptotically stable.
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Figure 2: The positive equilibrium E3 of System (1.11) is globally attractive.

of the comparison principle, sufficient conditions for the global attractivity of nonnegative
equilibria are obtained. We prove that E2 is globally asymptotically stable when �0 < p1 < 1.
We conclude that the incorporation of a delay (“age” structure in the prey) does not change
the asymptotic behavior of the model when some restrictions are imposed on the effect of
such delay. Here we provide two numerical examples to illustrate our main results.
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Example 5.1. If α = 12, γ = 0.2, β = 1, c1 = 0.5, c2 = 1.1, k1 = 1, k2 = 1, r2 = 1, and τ = 20 then
the conditions of Theorem 4.1 are satisfied and the equilibrium E2 = (0, k2r2/c2) of System
(1.11) is globally asymptotically stable (see Figure 1).

Example 5.2. If α = 12, γ = 0.2, β = 1.2, c1 = 0.5, c2 = 2, k1 = 0.25, k2 = 10, r2 = 0.25, and τ = 4
then the conditions of Theorem 4.5 are satisfied and the positive equilibrium E3 of system
(1.11) is globally attractive (see Figure 2).

The length of the time delay τ plays an important role on the stability of the
positive equilibrium of System (1.11). Since the delay also appears in the coefficient of the
variable x2(t − τ) in the second equation of (1.8) linearization at the positive equilibrium
is algebraically complicated. This complication prevents us from analytically computing the
precise parameter regimes where the positive equilibrium switches its stability as the delay
τ is increased. Furthermore, because the positive equilibrium depends on τ then some of
the existing stability switch methods are unapplicable (see [26]). Recently Beretta and Kuang
[29] have introduced a systematic method for the study of associated characteristic equations.
However, their approach is computer assisted and consequently, requires the identification
of suitable choices for the model parameters. We hope to apply their method to Model (1.8)
in near future.
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