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This paper discusses due-window assignment and scheduling with multiple rate-modifying
activities. Multiple types of rate-modifying activities are allowed to perform on a single machine.
The learning effect and job deterioration are also integrated concurrently into the problem which
makes the problem more realistic. The objective is to find jointly the optimal location to perform
multiple rate-modifying activities, the optimal job sequence, and the optimal location and size
of the due window to minimize the total earliness, tardiness, and due-window-related costs. We
propose polynomial time algorithms for all the cases of the problem under study.

1. Introduction

With the complexity of the manufacturing activities more researchers focus on variants of
classical scheduling problems that reflect the reality, such as learning effect, rate-modifying
activity, deteriorating effects, and due-window assignment.

The phenomenon of the actual job processing times decreasing due to repetition of
tasks by workers is known as the learning effect. Learning effect has received considerable
attention in management science since it is first discovered by Wright [1]. However, the
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analysis of scheduling problems with learning effects is relatively recent. Biskup [2] and
Cheng and Wang [3] were among the pioneers. Biskup [2] proposed a learning effect
formulation which implied that learning primarily takes place as a result of repeating
“processing time independent” operations and proved that with the introduction of learning
to job processing times some cases of scheduling problems remain polynomially solvable.
Mosheiov and Sidney [4] extended the setting of learning effect to the case of being job
dependent. They proposed a new learning model in which the actual processing time
of job j is pjr = pjr

aj if it is scheduled in position r, where aj is a job-dependent
negative parameter and pj is the normal processing time. They also provided polynomial
time solutions for several classical objective functions based on this realistic assumption.
Koulamas and Kyparisis [5] studied single-machine and two machine flowshop scheduling
with general learning functions and obtained some results on single-machine and special
cases of two-machine.Wang et al. [6] studied single machine scheduling problem considering
both learning effect and discounted costs. Kuo and Yang [7] introduced a time-independent
learning effect into the single-machine group scheduling problems and provided two
polynomial time algorithms to solve the problems of two different objectives.

More researchers focus on the topic of rate-modifying activity (RMA) since Lee
and Leon [8] first presented this model. In scheduling problems, production rate can be
changed by inserting this activity into the job sequence and no jobs are processed during
the duration of this activity. Zhao et al. [9] studied two parallel machines scheduling
problems in which each machine has a rate-modifying activity. They provided a polynomial
algorithm for the total completion time minimization problem and a pseudopolynomial
time dynamic programming for the total weighted completion time minimization problem
under agreeable ratio condition. Lodree and Geiger [10] addressed a scheduling problem
with a rate-modifying activity under simple linear deterioration and proposed an optimal
policy to schedule the RMA in the middle of the task sequence under certain conditions. Ji
and Cheng [11] studied scheduling with multiple rate-modifying activities. Different from
the above literature, they discussed the case that there are multiple different types of rate-
modifying activities on each machine. They proved that all the cases of the problem are
polynomially solvable. S.-J. Yang and D.-L. Yang [12] analyzed scheduling problems with
several maintenance activities. However, they considered three types of aging/deteriorating
effects, respectively, and the objective is to minimize the total completion time.

Scheduling with deteriorating jobs, first introduced by J. N. D. Gupta and S. K.
Gupta [13], and Browne and Yechiali [14], has received extensive attention in recent years.
Deterioration discussed here means the actual job processing time is dependent on its normal
processing time and actual starting time.Mosheiov [15] first investigated scheduling problem
with the simple linear deteriorating jobs. Ng et al. [16] discussed three scheduling problems
with deteriorating jobs to minimize the total completion time. Mosheiov [17], Lee et al.
[18], and Sun et al. [19] studied job-shop scheduling problem with deteriorating jobs in
different settings of environment. Gawiejnowicz [20] studied two scheduling problems with
proportionally deteriorating jobs and they showed that these problems are both NP complete
in ordinary sense or strong sense. Ji and Cheng [21] considered parallel machine scheduling
problem with simple linear deterioration assumption. They proposed a polynomial time
approximation scheme for the objective of minimizing total completion time. Wang and
Sun [22] discussed the linear deterioration of job processing times and setup time in the
context of group scheduling. Moreover, many studies devoted to scheduling problems with
deteriorating jobs and learning effects such as Lee [23], Wang and Cheng [24], Cheng et al.
[25], and Yang and Kuo [26].
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As an important issue in modern manufacturing system, due window assignment has
also received increasing attention. Distinct from due-date assignment (please see Gordon et
al. [27], and Biskup and Simons [28]), due-window assignment allows a time internal and
no penalized cost are incurred if the jobs are completed within this internal. Otherwise,
related earliness and tardiness are taken into account according to the positions of jobs
before/after due-window. Liman et al. [29] considered the single machine scheduling
problem with common due-window which is an extension of former earliness-tardiness
scheduling problem. They proposed a polynomial algorithm to find the optimal size, location
of the window, and an optimal sequence to minimize the cost function. Mosheiov and Sarig
[30] studied a single machine scheduling problem with due-window and a maintenance
activity. They introduced a polynomial time solution to schedule the jobs, the due-window
and the maintenance activity. Yang et al. [31] considered due-window assignment and
scheduling with job-dependent aging effects and deteriorating maintenance. In their study,
they proposed a model with a deteriorating maintenance and provided polynomial time
solutions. Zhao and Tang [32] investigated due-window assignment and scheduling with
a rate-modifying activity under the assumption of deteriorating jobs that the processing time
of a job is a linear function of its starting time. They proposed anO(n4) algorithm to solve the
problem optimally, where n is the number of jobs.

In this paper, we discuss single-machine scheduling problem with due-window
assignment and multiple rate-modifying activities which is an extension of the work by
Mosheiov and Sarig [30], Ji and Cheng [11], and Yang et al. [31]. In addition, learning
effect, and job deterioration are also integrated concurrently into the problem which makes
the problem more realistic. To our best knowledge, it is the first work that integrates due-
window assignment, multiple rate-modifying activities, learning effect and job deterioration
simultaneously. This paper is organized as follows. The problem is formulated in Section 2.
Section 3 provides preliminary results related. An optimal policy is given in Section 4. The
last section concludes this paper.

2. Problem Formulation

The problem we study can be stated as follows. There are given n independent and
nonpreemptive jobs to be processed on a single machine. Each job j is available for processing
at time 0 and has a normal processing time pj , for j = 1, 2, . . . , n. J[r] (r = 1, 2, . . . , n) denotes
the job scheduled in the rth position. Similar to Yang and Kuo [26], we assume the model of
learning and deteriorating effect is a combination of the job-dependent learning effect model
by Mosheiov and Sidney [4] and the linear deterioration model by Mosheiov [33]. So the
actual processing time of job j with learning effect and deteriorating effect if it is scheduled in
the rth position in a sequence is given by pAj = pj(r)

aj +bsj , for j, r = 1, 2, . . . , n, where aj ≤ 0 is
the job-dependent learning index of job j, b > 0 is the deterioration rate. sj is the starting time
of job j. In addition, we assumemultiple rate-modifying activities are allowed on themachine
to improve its production efficiency throughout the whole scheduling horizon. The lth rate-
modifying activity with constant duration tl is in il, if it is scheduled immediately after the
completion of J[il], l = 1, 2, . . . , u, as in Figure 1. If job j is processed in position r just after
any rate-modifying activity l, its actual processing time becomes pAj = θjlpj(r)

aj + bsj , where
0 < θjl ≤ 1 is job-dependent modifying rate. For a given schedule π , Cj = Cj(π) denotes
the completion time of job j, j = 1, 2, . . . , n. In our problem all jobs are assumed to have a
common due window. Let d1 and d2 denote the starting time and the finishing time of the
due window, respectively. Let D = d2 − d1 denote the due-window size. Ej = max{0, d1 − Cj}
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Figure 1: Structure of a schedule containing n jobs and two rate-modifying activities.

denotes the earliness of job j, j = 1, 2, . . . , n. Tj = max{0, Cj − d2} denotes the tardiness of job
j, j = 1, 2, . . . , n. Further, let α > 0, β > 0, γ > 0 and δ > 0 be the per time unit penalties
for earliness, tardiness and due-window starting and due-window size, respectively. The
objective is to determine the optimal due-window starting time d1, the due-window size,
the position to schedule multiple rate-modifying activities and to find a schedule π which
minimizes the following cost function:

f(d1, D, π) = Z =
n∑

j=1

(
αEj + βTj + γd1 + δD

)
. (2.1)

We focus on the situation that there are two rate-modifying activities (l = 1, 2) first, and then
extend it to multiple rate-modifying activities (l ≥ 3).

Following the three-field notation of Graham et al. [34], we denote our problems
as 1|DJLE, 2RM|∑n

j=1(αEj + βTj + γd1 + δD) with two rate-modifying activities (2RM) and
1|DJLE,MRM|∑n

j=1(αEj + βTj + γd1 + δD) with multiple rate-modifying activities (l ≥ 3)
(MRM), where DJLE means “deteriorating jobs and learning effect”.

3. Preliminary Works

In this section, some useful preliminary works are given. For the situation there are two rate-
modifying activities, we assume the position of the lth rate-modifying activity on machine is
il, l = 1, 2 and they satisfy 1 ≤ i1 ≤ i2 ≤ n. So for any schedule (see Figure 1), we have the
following actual processing times for jobs J[1], J[2], . . . , J[n] which are discussed in three parts:
(J[1], J[2], . . . , J[i1]), (J[i1+1], J[i1+2], . . . , J[i2]), and (J[i2+1], J[i2+2], . . . , J[n]).

Note that the starting time of J[1], s[1] is equal to 0, the stating time of J[2], s[2] is equal
to the completion time of J[1] which is just pA[1], and the stating time of J[3], s[3] is equal to the
completion time of J[2] which is just pA[1] + pA[2],

pA[1] = p[1](1)a[1] ,

pA[2] = p[2](2)a[2] + bs[2]

= p[2](2)a[2] + bC[1]

= p[2](2)a[2] + bp[1](1)a[1] ,

pA[3] = p[3](3)a[3] + bs[3]

= p[3](3)a[3] + bC[2]

= p[3](3)a[3] + b
(
pA[1] + pA[2]

)

= p[3](3)a[3] + bp[2](2)a[2] + b(1 + b)p[1](1)a[1] ,
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pA[4] = p[4](4)a[4] + bp[3](3)a[3] + b(1 + b)p[2](2)a[2] + b(1 + b)2p[1](1)a[1] ,

...

(3.1)

From above analysis, we obtain the following general expression of actual processing time
for jobs J[1], J[2], . . . , J[i1]:

pA[j] = p[j]
(
j
)a[j] + b

j−1∑

h=1

(1 + b)j−1−hp[h](h)
a[h] , j = 1, . . . , i1. (3.2)

For further analysis of actual processing times of other jobs, we provide the actual processing
time of job J[i1] as

pA[i1] = p[i1](i1)
a[i1] + b

i1−1∑

h=1

(1 + b)i1−1−hp[h](h)
a[h] . (3.3)

Note that bs[i1] = pA[i1] − p[i1](i1)
a[i1] , bs[i1+1] = pA[i1]+1 − θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] according to

the expressions of actual processing times of jobs in Section 2, and the starting time of job
J[i1+1], s[i1+1] is equal to the sum of the completion time of job J[i1] and the duration of the first
rate-modifying activity, which is C[i1] + t1. Moreover C[i1] = pA[i1] + s[i1], so

pA[i1+1] = θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + bs[i1+1]

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + b
(
C[i1] + t1

)

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + b
(
t1 + pA[i1] + s[i1]

)

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + bt1 + bpA[i1] + bs[i1]

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + bt1 + bpA[i1] + pA[i1] − p[i1](i1)
a[i1]

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + bt1 + (b + 1)pA[i1] − p[i1](i1)
a[i1]

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + bt1 + bp[i1](i1)
a[i1] + b(b + 1)

i1−1∑

h=1

(1 + b)i1−1−hp[h](h)
a[h]

= θ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + bp[i1](i1)
a[i1] + b

i1−1∑

h=1

(1 + b)i1−hp[h](h)
a[h] + bt1,
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pA[i1+2] = θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + bs[i1+2]

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + bC[i1+1]

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + b
(
pA[i1+1] + s[i1+1]

)

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + bpA[i1+1] + bs[i1+1]

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + bpA[i1+1] + pA[i1+1] − θ[i1+1]1p[i1+1](i1 + 1)a[i1+1]

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + (b + 1)pA[i1+1] − θ[i1+1]1p[i1+1](i1 + 1)a[i1+1]

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + bθ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + b(b + 1)p[i1](i1)
a[i1]

+ b(b + 1)
i1−1∑

h=1

(1 + b)i1−hp[h](h)
a[h] + b(b + 1)t1

= θ[i1+2]1p[i1+2](i1 + 2)a[i1+2] + bθ[i1+1]1p[i1+1](i1 + 1)a[i1+1] + b(b + 1)p[i1](i1)
a[i1]

+ b
i1−1∑

h=1

(1 + b)i1+1−hp[h](h)
a[h] + b(b + 1)t1,

...

(3.4)

We obtain the following general expression of actual processing time for jobs
J[i1+1], J[i1+2], . . . , J[i2]:

pA[j] = θ[j]1p[j]
(
j
)a[j] + b

i1∑

h=1

(1 + b)j−1−hp[h](h)
a[h]

+ b
j−1∑

h=i1+1

(1 + b)j−1−hθ[h]1p[h](h)
a[h] + b(1 + b)j−i1−1t1, j = i1 + 1, . . . , i2,

pA[i2] = θ[i2]1p[i2](i2)
a[i2] + b

i1∑

h=1

(1 + b)i2−1−hp[h](h)
a[h]

+ b
i2−1∑

h=i1+1

(1 + b)i2−1−hθ[h]1p[h](h)
a[h] + b(1 + b)i2−i1−1t1,

pA[i2+1] = θ[i2+1]2p[i2+1](i2 + 1)a[i2+1] + bt2 + bθ[i2]1p[i2](i2)
a[i2]

+ b
i1∑

h=1

(1 + b)i2−hp[h](h)
a[h] + b

i2−1∑

h=i1+1

(1 + b)i2−hθ[h]1p[h](h)
a[h] + b(1 + b)i2−i1t1,

...

(3.5)
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Similarly, the general expression of actual processing time for jobs J[i2+1], J[i2+2], . . . , J[n] is as
follows:

pA[j] = θ[j]2p[j]
(
j
)a[j] + b

i1∑

h=1

(1 + b)j−1−hp[h](h)
a[h] + b

i2∑

h=i1+1

(1 + b)j−1−hθ[h]1p[h](h)
a[h]

+ b
j−1∑

h=i2+1

(1 + b)j−1−hθ[h]2p[h](h)
a[h] + b(1 + b)j−i1−1t1 + b(1 + b)j−i2−1t2, j = i2 + 1, . . . , n.

(3.6)

We present that some properties of an optimal solution for the common due-window
assignment problem proved by Mosheiov and Sarig [30] still hold for the problem discussed
in this paper.

Lemma 3.1. An optimal schedule exists in which the due-window starts and finishes at certain job
completion times.

Proof. For any given job sequence (π = J[1], J[2], . . . , J[k], . . . , J[k+m], . . . , J[n]), we set C[k] <
d1 < C[k+1] and C[k+m] < d2 < C[k+m+1], where kth and (k + m)th are positions in sequence
π and satisfy 0 ≤ k ≤ (k + m) ≤ n (see Figure 2). Considering the relative location of due-
window and two rate-modifying activities, there are six cases altogether, that is, i1 ≤ i2 ≤ k,
k ≤ i1 ≤ i2 ≤ k + m, k + m ≤ i1 ≤ i2, i1 ≤ k&&k + m ≤ i2, i1 ≤ k&&k ≤ i2 ≤ k + m,
and k ≤ i1 ≤ k + m&&k + m ≤ i2. For simplification of description, we only investigate the
case i1 ≤ i2 ≤ k in this part, and the proofs of other cases are similar. In addition, we set
ϕ1 = d1 − C[k], ϕ2 = d2 − C[k+m] and clearly 0 ≤ ϕ1 ≤ pA[k+1] and 0 ≤ ϕ2 ≤ pA[k+m+1].

As described in (2.1), the total cost function includes four parts: the earliness cost, the
tardiness cost, the due-window starting time cost, and the due-window size cost.

For job j of a schedule π , we denote the earliness cost by ZE
j , where j = k, k − 1, . . . , 1.

ZE
k = αϕ1,

ZE
k−1 = α

[
ϕ1 + pA[k]

]
,

ZE
k−2 = α

[
ϕ1 + pA[k] + pA[k−1]

]
,

...

ZE
i2+1 = α

[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+2]

]
,

ZE
i2
= α
[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2

]
,

ZE
i2−1 = α

[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2 + pA[i2]

]
,

ZE
i2−2 = α

[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2 + pA[i2] + pA[i2−1]

]
,

...
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ZE
i1+1 = α

[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2 + pA[i2] + pA[i2−1] + · · · + pA[i1+2]

]
,

ZE
i1
= α
[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2 + pA[i2] + pA[i2−1] + · · · + pA[i1+1] + t1

]
,

ZE
i1−1 = α

[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2 + pA[i2] + pA[i2−1] + · · · + pA[i1+1] + t1 + pA[i1]

]
,

...,

ZE
1 = α

[
ϕ1 + pA[k] + pA[k−1] + · · · pA[i2+1] + t2 + pA[i2] + pA[i2−1] + · · · + pA[i1+1] + t1 + pA[i1] + · · · + pA[2]

]
.

(3.7)

For job j of a scheduleπ , we denote the tardiness cost byZT
j , where j = k+m+1, k+m+2, . . . , n,

ZT
k+m+1 = β

[
pA[k+m+1] − ϕ2

]
,

ZT
k+m+2 = β

[
pA[k+m+1] + pA[k+m+2] − ϕ2

]
,

...

ZT
n = β

[
pA[k+m+1] + pA[k+m+2] + · · · + pA[n] − ϕ2

]
.

(3.8)

The due-window starting time cost denoted by Zd1 can be expressed as

Zd1 =nγ
[
ϕ1+pA[k]+p

A
[k−1]+· · · pA[i2+1]+t2+pA[i2]+pA[i2−1]+· · ·+pA[i1+1]+t1+pA[i1]+· · ·+pA[2]+pA[1]

]
.

(3.9)

The due-window size cost denoted by ZD can be expressed as

ZD = nδ
[
pA[k+1] + · · · + pA[k+m] + ϕ2 − ϕ1

]
. (3.10)

For simplifying the total cost function, let

wj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(
j − 1

)
+ γn, j = 1, . . . , i1,

α
(
j − 1

)
+ γn, j = i1 + 1, . . . , i2,

α
(
j − 1

)
+ γn, j = i2 + 1, . . . , k,

δn, j = k + 1, . . . , k +m,

β
(
n − j + 1

)
, j = k +m + 1, . . . , n.

(3.11)
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J[k+1] J[k+2] J[k+m−1] T

d2d1

C[k] C[k+m]
ϕ1 ϕ2

Due-window

t2

J[i2+1]J[i2−1] J[i2]J[1] J[i1−1] J[i1] J[i1+1] J[k] J[n−1]J[k+m] J[k+m+1] J[n]

t1

Figure 2: Structure of a schedule considering due-window.

The total cost can be represented as

Z =
[
nγ + αk − nδ

]
ϕ1 +

[
δn + β(k +m) − βn

]
ϕ2 +G, (3.12)

where G = [b
∑n

j=i1+1 wj(1 + b)j−i1−1 + nγ + αi1]t1 + [b
∑n

j=i2+1 wj(1 + b)j−i2−1 + nγ + αi2]t2 +
∑n

j=k+m+1[β(n− j +1)+b
∑n

h=j+1(1+b)
h−j−1(β(n−h+1))]θ[j]2p[j](j)a[j] +

∑k+m
j=k+1[nδ+b

∑n
h=j+1(1+

b)h−j−1nδ]θ[j]2p[j](j)
a[j] +

∑k
j=i2+1[nγ +α(j−1)+b

∑n
h=j+1(1+b)

h−j−1(α(h−1)+γn)]θ[j]2p[j](j)a[j] +
∑i2

j=i1+1
[nγ + α(j − 1) + b

∑n
h=j+1(1 + b)h−j−1(α(h − 1) + γn)]θ[j]1p[j](j)

a[j] +
∑i1

j=1[nγ + α(j − 1) +

b
∑n

h=j+1(1 + b)h−j−1(α(h − 1) + γn)]p[j](j)
a[j] .

From (3.12), we know that the total cost includes three items: [nγ + αk − nδ]ϕ1,
[δn + β(k + m) − βn]ϕ2, and G. It is easy to find that G > 0 based on the expression of
G. So the minimization of the total cost depends on the values of [nγ + αk − nδ]ϕ1 and
[δn+β(k+m)−βn]ϕ2. Because of ϕ1 and ϕ2 are independent of the coefficients. So we discuss
the minimization problem in the following four different cases.

(1) If [nγ + αk − nδ] ≥ 0 and [δn + β(k +m) − βn] ≥ 0, then ϕ1 = 0 and ϕ2 = 0.

(2) If [nγ + αk − nδ] ≤ 0 and [δn + β(k + m) − βn] ≤ 0, then ϕ1 = pA[k+1] =

θ[k+1]2p[k+1](k+1)
a[k+1] + b

∑i1
h=1(1+b)

k−hp[h](h)
a[h] +b

∑i2
h=i1+1

(1+b)k−hθ[h]1p[h](h)
a[h] +

b
∑k

h=i2+1(1 + b)k−hθ[h]2p[h](h)
a[h] + b(1 + b)k−i1t1 + b(1 + b)k−i2t2, and ϕ2 = pA[k+m+1] =

θ[k+m+1]2p[k+m+1](k + m + 1)a[k+m+1] + b
∑i1

h=1(1 + b)k+m−hp[h](h)
a[h] + b

∑i2
h=i1+1

(1 +

b)k+m−hθ[h]1p[h](h)
a[h] + b

∑k+m
h=i2+1(1 + b)k+m−hθ[h]2p[h](h)

a[h] + b(1 + b)k+m−i1t1 + b(1 +
b)k+m−i2t2.

(3) If [nγ + αk − nδ] ≥ 0 and [δn + β(k + m) − βn] ≤ 0, then ϕ1 = 0 and ϕ2 =
pA[k+m+1] = θ[k+m+1]2p[k+m+1](k+m+1)a[k+m+1]+b

∑i1
h=1(1+b)

k+m−hp[h](h)
a[h]+b

∑i2
h=i1+1

(1+

b)k+m−hθ[h]1p[h](h)
a[h] + b

∑k+m
h=i2+1(1 + b)k+m−hθ[h]2p[h](h)

a[h] + b(1 + b)k+m−i1t1 + b(1 +
b)k+m−i2t2.

(4) If [nγ + αk − nδ] ≤ 0 and [δn+ β(k +m)− βn] ≥ 0, then ϕ1 = pA[k+1] = θ[k+1]2p[k+1](k +

1)a[k+1] + b
∑i1

h=1(1 + b)k−hp[h](h)
a[h] + b

∑i2
h=i1+1

(1 + b)k−hθ[h]1p[h](h)
a[h] + b

∑k
h=i2+1(1 +

b)k−hθ[h]2p[h](h)
a[h] + b(1 + b)k−i1t1 + b(1 + b)k−i2t2 and ϕ2 = 0.

So, from the analysis, we say that an optimal schedule exists in which the due window starts
and finishes at certain job completion times.

By Lemma 3.1, the the due-window starting time d1 and finishing time d2 are denoted
with k and k +m as the indices of the jobs completed at them, respectively, that is, C[k] = d1
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and C[k+m] = d2. Moreover, we also provide another property of an optimal solution for the
scheduling problem with learning effect and multiple rate-modifying activities.

Lemma 3.2. For the problem 1|DJLE, 2RM|∑n
j=1(αEj + βTj + γd1 + δD), there exists an optimal

schedule in which d1 = C[k] and d2 = C[k+m], where k = �n(δ − γ)/α� and (k +m) = �n(β − δ)/β�.

Proof. The proof is similar to that of Mosheiov and Sarig [30].

Lemma 3.3. For the problem 1|DJLE,MRM|∑n
j=1(αEj +βTj +γd1+δD), there also exists an optimal

schedule in which d1 = C[k] and d2 = C[k+m], where k = �n(δ − γ)/α� and (k +m) = �n(β − δ)/β�.

Proof. The proof is similar to Lemma 3.2.

4. An Optimal Solution Policy

In this section, we show that problems 1|DJLE, 2RM|∑n
j=1(αEj + βTj + γd1 + δD) and

1|DJLE,MRM|∑n
j=1(αEj + βTj + γd1 + δD) can be both solved in polynomial times.

Theorem 4.1. The 1|DJLE, 2RM|∑n
j (αEj +βTj +γd1+δD) problem can be solved inO(n2+3) time.

Proof. For two rate-modifying activities, there are six cases altogether, that is, i1 ≤ i2 ≤ k,
k ≤ i1 ≤ i2 ≤ k + m, k + m ≤ i1 ≤ i2, i1 ≤ k&&k + m ≤ i2, i1 ≤ k&&k ≤ i2 ≤ k + m, and
k ≤ i1 ≤ k +m&&k +m ≤ i2.

Case 1 (i1, i2 < k). If two different rate-modifying activities are performed before the due
window, from the preliminary works, the total cost can be given by

Z =

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + nγ + αi1

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + nγ + αi2

⎤

⎦t2

+
n∑

j=k+m+1

⎡

⎣β
(
n − j + 1

)
+ b

n∑

h=j+1

(1 + b)h−j−1
(
β(n − h + 1)

)
⎤

⎦θ[j]2p[j]
(
j
)a[j]

+
k+m∑

j=k+1

⎡

⎣nδ + b
n∑

h=j+1

(1 + b)h−j−1nδ

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+
k∑

j=i2+1

⎡

⎣nγ + α
(
j − 1

)
+ b

n∑

h=j+1

(1 + b)h−j−1
(
α(h − 1) + γn

)
⎤

⎦θ[j]2p[j]
(
j
)a[j]

+
i2∑

j=i1+1

⎡

⎣nγ + α
(
j − 1

)
+ b

n∑

h=j+1

(1 + b)h−j−1
(
α(h − 1) + γn

)
⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
i1∑

j=1

⎡

⎣nγ + α
(
j − 1

)
+ b

n∑

h=j+1

(1 + b)h−j−1
(
α(h − 1) + γn

)
⎤

⎦p[j]
(
j
)a[j] .

(4.1)
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By substituting (3.11) into above total cost function again, we have

Z =
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j] +

i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j] +

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + nγ + αi1

⎤

⎦t1

+

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + nγ + αi2

⎤

⎦t2.

(4.2)

Case 2 (k ≤ i1, i2 ≤ (k + m)). if two different rate-modifying activities are performed in the
due window, similar to the analysis of Case 1, the total cost can be given by

Z =
n∑

j=1

(
αEj + βTj + γd1 + δD

)

=
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j]

+
i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + nδ

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + nδ

⎤

⎦t2.

(4.3)

Case 3 ((k +m) ≤ i1, i2). if two different rate-modifying activities are performed after the due
window, similar to the analysis of Case 1, the total cost can be given by

Z =
n∑

j=1

(
αEj + βTj + γd1 + δD

)

=
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j]
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+
i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + β(n − i1)

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + β(n − i2)

⎤

⎦t2.

(4.4)

Case 4 ((i1 ≤ k)&&(k +m ≤ i2)). If one rate-modifying activities is performed before the due-
window and the other is after the due-window, similar to the analysis of Case 1, the total cost
can be given by

Z =
n∑

j=1

(
αEj + βTj + γd1 + δD

)

=
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j]

+
i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + nγ + αi1

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + β(n − i2)

⎤

⎦t2.

(4.5)

Case 5 ((i1 ≤ k)&&(k ≤ i2 ≤ k +m)). if one rate-modifying activities is performed before the
due window and the other is in the due window, similar to the analysis of Case 1, the total
cost can be given by

Z =
n∑

j=1

(
αEj + βTj + γd1 + δD

)

=
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j]
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+
i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + nγ + αi1

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + nδ

⎤

⎦t2.

(4.6)

Case 6 ((k ≤ i1 ≤ k +m)&&(k +m ≤ i2)). if one rate-modifying activities is performed in the
due window and the other is after the due window, similar to the analysis of Case 1, the total
cost can be given by

Z =
n∑

j=1

(
αEj + βTj + γd1 + δD

)

=
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j]

+
i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + nδ

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + nγ + αi2

⎤

⎦t2.

(4.7)

In the following discussion, for simplification we still take only one case into
consideration, that is, Case 3. we define variables xjr , for j = 1, 2, . . . , n, r = 1, 2, . . . , n. xjr = 1,
if job j is scheduled in position r,= 0, otherwise.

Let

Bjr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
p[j](r)a[j] , r = 1, . . . , i1,

(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
θ[j]1p[j](r)a[j] , r = i1 + 1, . . . , i2,

(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
θ[j]2p[j](r)a[j] , r = i2 + 1, . . . , n.

(4.8)
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The problem can be formulated as follows:

Min
n∑

j=1

n∑

r=1

Bjrxjr+

⎡

⎣b
n∑

j=i1+1

wj(1+b)
j−i1−1+β(n−i1)

⎤

⎦t1

+

⎡

⎣b
n∑

j=i2+1

wj(1+b)
j−i2−1+β(n−i2)

⎤

⎦t2

subject to
n∑

r=1

xjr = 1, j = 1, 2, . . . , n,

n∑

j=1

xjr = 1, r = 1, 2, . . . , n,

xjr = 1 or 0, j = 1, 2, . . . , n, r = 1, 2, . . . , n.

(4.9)

The first set of constraints guarantees each job j is scheduled only once, the second set of
constraints guarantees each position r is taken by only one job, and the third constraints
means the variable xjr is binary. For given positions i1 and i2, the problem is transferred to
the following assignment problem

Min
n∑

j=1

n∑

r=1

Bjrxjr

subject to
n∑

r=1

xjr = 1, j = 1, 2, . . . , n,

n∑

j=1

xjr = 1, r = 1, 2, . . . , n,

xjr = 1 or 0, j = 1, 2, . . . , n, r = 1, 2, . . . , n.

(AP)

The assignment problem can be solved in O(n3) time (see, e.g., Papadimitriou and Steiglitz
[35] and Brucker [36]). However, i1 and i2 may be any value of 1 · · ·n for all cases, so the
complexity of Case 2 is O(n3+2) = O(n5) and Theorem 4.1 holds.

Theorem 4.2. The 1|JDLE,MRM|∑n
j (αEj+βTj+γd1+δD) problem can be solved inO(n3+u) time.

Proof. When there exist u different rate-modifying activities, we take the case (k +m) ≤ i1 <
i2 < i3 · · · < iu as an example, and the proofs of other cases are similar. We can formulate the
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problem as follows:

Z =
n∑

j

(
αEj + βTj + γd1 + δD

)

=
i1∑

j=1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦p[j]
(
j
)a[j]

+
i2∑

j=i1+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]1p[j]
(
j
)a[j]

+
n∑

j=i2+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]2p[j]
(
j
)a[j]

+ · · · +
n∑

j=iu+1

⎡

⎣wj + b
n∑

h=j+1

(1 + b)h−j−1wh

⎤

⎦θ[j]up[j]
(
j
)a[j]

+

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + β(n − i1)

⎤

⎦t1 +

⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−i2−1 + β(n − i2)

⎤

⎦t2

+ · · · +
⎡

⎣b
n∑

j=i2+1

wj(1 + b)j−iu−1 + β(n − iu)

⎤

⎦tu.

(4.10)

Let

Qjr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
p[j](r)a[j] , r = 1, . . . , i1,

(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
θ[j]1p[j](r)a[j] , r = i1 + 1, . . . , i2,

(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
θ[j]2p[j](r)a[j] , r = i2 + 1, . . . , i3,

...
(
wr + b

n∑

h=r+1

(1 + b)h−r−1wh

)
θ[j]up[j](r)a[j] , r = iu + 1, . . . , n.

(4.11)
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The problem can be transformed to the following form after introducing variable xjr defined
as above:

Min
n∑

j=1

n∑

r=1

Qjrxjr +
u∑

l=1

⎡

⎣b
n∑

j=i1+1

wj(1 + b)j−i1−1 + β(n − iu)

⎤

⎦tl

subject to
n∑

r=1

xjr = 1, j = 1, 2, . . . , n,

n∑

j=1

xjr = 1, r = 1, 2, . . . , n,

xjr = 1 or 0, j = 1, 2, . . . , n, r = 1, 2, . . . , n.

(4.12)

For given positions i1, i2, . . . , iu, the last item in the objective function is constant. So the above
minimization is equivalent to minimizing the following assignment problem:

Min
n∑

j=1

n∑

r=1

Qjrxjr

subject to
n∑

r=1

xjr = 1, j = 1, 2, . . . , n,

n∑

j=1

xjr = 1, r = 1, 2, . . . , n,

xjr = 1 or 0, j = 1, 2, . . . , n, r = 1, 2, . . . , n.

(BP)

Since i1, i2, . . . , iu may be any value of 1 · · ·n, the number of (1, . . . , n) vectors is bounded by
(n + 1)u. The complexity of the problem is O(n3+u) for all cases and Theorem 4.2 holds.

The polynomial time algorithm to solve 1|DJLE, 2RM|∑n
j=1(αEj + βTj + γd1 + δD)

problem optimally is as follows.

Algorithm 1. We have the following steps.

Step 1. Assign the optimal due-window starting time d∗
1 and finishing time d∗

2 at the
completion time of the kth and (k +m)th job specifically, where k = �n(δ − γ)/α�, (k +m) =
�n(β − δ)/β�.

Step 2. For (i2 = 1, iu ≤ n, iu + +) and for (i1 = 1, i1 ≤ n, i1 + +).
Calculate the weight Bjr with (4.8).
Solve the classical assignment problem (AP) and get the total cost.

Step 3. Obtain the optimal schedule with minimum total cost.

The polynomial time algorithm to solve 1|DJLE,MRM|∑n
j=1(αEj + βTj + γd1 + δD)

problem optimally is as follows.
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Algorithm 2. We have the following steps.

Step 1. Assign the optimal due-window starting time d∗
1 and finishing time d∗

2 at the
completion time of the kth and (k +m)th job specifically, where k = �n(δ − γ)/α�, (k +m) =
�n(β − δ)/β�.

Step 2. For (iu = 1, iu ≤ n, iu++), for (iu−1 = 1, iu−1 ≤ n, iu−1++), . . ., and for (i1 = 1, i1 ≤ n, i1++).
Calculate the weight Qjr , for j = 1, 2, . . . , n; r = 1, 2, . . . , n.
Solve the classical assignment problem (BP) and get the total cost.

Step 3. Obtain the optimal schedule with minimum total cost.

From the above description, it is easy to conclude that Algorithms 1 and 2 take O(n5)
time and O(n3+u) time, respectively.

5. Conclusions

In this paper, we consider a single machine scheduling problem with due-window
assignment and multiple rate-modifying activities in the settings of learning effect and
deteriorating jobs. We introduce an O(n3+u) solution algorithm for u different types of rate-
modifying activities considering the objective to find jointly the optimal location to perform
multiple rate-modifying activities, the optimal job sequence, and the optimal location
and size of the due window to minimize the total earliness, tardiness, and due-window-
related costs. Further research may investigate problems with multimachine settings and
deteriorating rate-modifying activities.
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