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Jozef Kačur,1 Benny Malengier,2 and Pavol Kišon1
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Several centrifugation scenarios enabling the determination of soil parameters for saturated-
unsaturated flow in porous media are presented, investigated, and discussed. Only global
characteristics of the infiltration process in a sample are used, so that only simple, noninvasive
measurements are performed. The characteristics can be transient measurements of the rotational
momentum, or of the gravitational center, or of the water amount injected and expelled from
the sample. No information about the saturation or the head distribution in the sample is
required. This setup is different from the common multioutflow experiments. We give numerical
proof that this method allows for fast determination of soil parameters in comparison to
traditional measurements based on equilibrium conditions. The mathematical model of infiltration
is represented by Richards’ strongly nonlinear and degenerate equation expressed in terms of soil
parameters in the van Genuchten-Mualem ansatz. The parameter identification process is realized
in an iterative way applying the Levenberg-Marquardt method. Numerical experiments support
the efficiency of the analyzedmethod and allow one to identify the optimal centrifugation scenario
for imbibition and drainage to be applied when using global characteristics.

1. Introduction

To predict flow and solute transport in soils concerns the soil hydraulic properties in terms
of soil parameters, which are required in the governing mathematical model. This model
is expressed in terms of saturation and pressure head in Richards’ equation, which is a
nonlinear and degenerate parabolic equation with free boundaries between saturated and
partially saturated zones and between dry and partially saturated zones.
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The capillary pressure and hydraulic permeability functions linking the saturation
and pressure head are expressed using the van Genuchten-Mualem ansatz by means of soil
parameters. To measure these soil parameters is usually time consuming and expensive,
specifically for low-conductive materials. The determination can be accelerated by using
centrifugation. The measurement of capillary pressure curves with a centrifuge was initiated
in [1]. With the development of more efficient numerical tools, this method became more
popular in the last decades. A more detailed overview on this topic can be found in [2] (see
also citations there).

Recently, themethod of centrifugation has been applied in [3, 4]where the equilibrium
and transient analysis at a set of rotational speeds has been used for the determination of
soil parameters. In [4], the distribution of the saturation in equilibria (linked with the cor-
responding rotational speeds) is measured via electrical signals from electrodes installed in
the sample.

The majority of applications of centrifugation are based on the measurements in a
series of equilibria reached in the sample by application of a fixed rotational speed and
by control of the boundary conditions. This can require a very long time of centrifugation
and requires information on the error, since reaching equilibrium is an asymptotic process.
A first approach applies the series of equilibria and the amount of expelled water to
obtain the retention curve, see overview in [5]. This approach is slow however. A second
approach requires transient data from inside the sample at one or more points, which results
in relatively expensive measurements. This approach is similar to the common multistep
outflow experiments to determine the soil retention curve. For example, [6] shows that such
an approach combined with an inverse method allows one to determine hysteretic hydraulic
properties of the soil retention curve.

Our main goal is to replace the internal measurements with global characteristics such
as rotational momentum of the water infiltrated into the sample, gravitational center of the
water content, and time evolution of the amount of water going into and coming out of the
sample. It is possible to measure these variables during rotation of the centrifuge. Hence,
the considered measurements do not include pointwise saturation or head distributions over
the sample. Doing so, however, adds some constraints to the approximation method used:
conservation of mass and correct prediction of the interfaces (wetness and saturated fronts)
will be important. This is because they have a large influence on the computed rotational
momentum and gravitational center, meaning that errors would have a large influence. We
do not focus here on how these global measurements can be done practically. Based on the
results we present here, a project has started with that specific goal, testing various measuring
techniques in a custom-built, table-top centrifuge.

The mathematical model based on Richards’ equation is highly nonlinear with free
boundaries and a sharp front on the interface between partially saturated and dry zones in the
sample. On the other hand, the free boundary between the fully saturated and the partially
saturated front is difficult to identify (when they are expressed in terms of saturation, see
Figure 2). It is therefore a difficult task for numerical approximations to supply experimenters
with accurate values to use in the determination of model parameters. Additionally, the
computation has to be able to simulate long centrifugation runs (sometimes weeks). The
second goal in this paper is therefore to present a new approximation method which is
accurate and efficient and which can supply us with the needed global characteristics.

Using only global characteristics makes the inverse determination process of the soil
parameters more difficult, so we investigate the sensitivity of the global characteristics,
which could be small. Numerical experiments previously done by us indicate that
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a series of equilibria are not suitable to obtain strong sensitivity of global characteristics
on the soil parameters. Moreover, in this setup, the centrifugation has to continue for a
very long time to obtain sufficient experimental data. As an extra complication, creating
equilibria by centrifugation (with zero input and output flux) means that some regions in
the sample exhibit drainage while others undergo imbibition. Therefore some aspects of
hysteresis should then be taken into consideration, but this increases the number of unknown
parameters considerably. The dynamics behind the hysteresis phenomenon of the retention
curve, and the optimal way of modeling it, is still being discussed in the literature. Practical
numerical modeling has been realized only under strict conditions, see, for example, [6–8].
For this reason, the centrifugation scenarios we use are designed in such a way as to avoid the
hysteresis phenomenon, using only the extremal drainage curve and imbibition curve. In a
previous article [9], only drainage is considered in a start-stop scenario. Here we extend this
method and present a scenario for drainage and imbibition that allows continuous operation
of the centrifuge.

The centrifugation scenario for imbibition consists of a water chamber on top of the
sample that allows infiltration into an originally dry sample. On the other hand, the soil
parameters in drainage mode can be obtained by centrifugating a fully saturated sample
with zero input flux. In both cases it is assumed that no compactification occurs. Injecting
water (by centrifugation) into an originally dry sample will give rise to a fully saturated
zone in the front of the sample followed by a partially saturated and a dry zone. Tracking
the water movement in this system leads to global characteristics that are sensitive to the soil
parameters. As determination of the saturated hydraulic permeability (Ks) is well known,
see, for example [2], we can reduce the number of soil parameters by assuming Ks to be
known.

The presented mathematical model and its numerical realization can be applied in
many different centrifugation scenarios. The accurate numerical approximation is based on
the following principles:

(i) application of a mathematical model for the evolution of the wetness front
(interface between partially saturated and dry region), which was developed in
[3], see Section 2;

(ii) application of moving grid points which significantly increase the numerical
accuracy and effectiveness;

(iii) numerical modeling of the free boundary between saturated and partially saturated
zones, based on global water mass balance, extending the method developed in [9];

(iv) expressing the governing Richards’ equation or in terms of saturation, or in terms
of pressure head, depending on the distance to both free boundaries which separate
the partially saturated zone from the dry and fully saturated zones;

(v) approximation of the governing mathematical model (1D) by a system of ODE, the
so-called method of lines (MOL).

In Section 2 the mathematical model is introduced, and in Section 3 the numerical
method is used. Numerical experiments are discussed in Section 4. In Experiment 1 we
present the solution of infiltration into the sample; Experiment 2 discusses the applicability
of the method for the determination of soil parameters in imbibition mode, Experiment 3
presents the determination of the saturated conductivity, and Experiment 4 contains the
determination of the soil parameters in drainage mode. Finally, in Experiment 5 we dem-
onstrate the applicability of the method for a larger scale of soil parameters, as in the first
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Figure 1: Schematic representation of the centrifuge. A water chamber to the left of height �, sample for
r ∈ (r0, r0 + L), and outflow chamber to the right. Full saturation up to r0 + s1 and dry zone to the right of
r0 + s2.
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Figure 2: Time evolution of the saturation, t = i Tout/20, i = 0, . . . , 20; Tout = 5016. Left curve at t = 0, right
curve for t = Tout.

experiments only one set of “standard soil parameters” (corresponding to layered clay)
has been used. Moreover, we discuss the infiltration of water into the sample during the
preparation period. The determination of soil parameters is realized iteratively using the
Levenberg-Marquardt method (LM), as in [6]. In all these experiments we demonstrate the
practical applicability of global characteristics.

2. Mathematical Model

We consider a one-dimensional dry sample in the form of a tube which starts (left boundary)
at the distance r = r0 from the center of the centrifuge and ends at the distance r = r0 + L,
see Figure 1. A water chamber is placed at position r ∈ (r0 − �0, r0) of the centrifuge. When
the dry sample, defined as a sample from which no longer water can be removed, comes in
contact with water, different zones will arise. First, a partially saturated zone will appear,
characterized by capillary flow. In this zone, air and water are present in the pores. Secondly,
a saturated zone will appear. This zone is characterized by pores which are completely filled
by water.



Mathematical Problems in Engineering 5

Saturated flow (piezometric head h ≥ 0) in porous media under centrifugation is
modeled by Darcy’s equation, while the unsaturated part (h < 0) is governed by Richards’
equation as follows:

Ks∂r

[
∂rh − ω2

g
r

]
= 0, h ≥ 0,

∂tθ = Ks∂r

[
k(θ)

(
∂rh − ω2

g
r

)]
, h < 0,

(2.1)

where θ is the saturation of the porous media, ω the angular speed of rotation (in radians per
second), Ks the saturated hydraulic conductivity, g the gravitational constant, and function
Ksk(θ) the hydraulic conductivity in the unsaturated region. Denote by u = (θ −θr)/(θs −θr)
the effective saturation, where θs is the volumetric water content at saturation and θr the
residual volumetric water content. We have u ∈ (0, 1), since θ ∈ (θr, θs). We consider soil
hydraulic properties which were proposed in [10]

u =
1(

1 +
(
γh

)n)m , h ∈ (−∞, 0),

k(u) = u1/2
[
1 − (

1 − u1/m)m]2,
(2.2)

where m = 1 − 1/n, n > 1, and γ = −(21/m − 1)1−m/hb are empirical soil parameters and hb

is the bubbling pressure. Hence, flow in an unsaturated region can be rewritten in terms of
saturation as

∂tu = Ks∂r

(
D(u)∂ru − ω2

g
k(u)r

)
, (2.3)

where

D(u) = − 1
(n − 1)γ(θs − θr)

× u1/2−1/m
(
1 − u1/m

)−m[
1 −

(
1 − u1/m

)m] 2
. (2.4)

Equation (2.3) is strongly nonlinear and degenerate (D(0) = 0, D(1) = ∞). As a consequence
of this, the propagation of the wetness front into the dry region will proceed with finite speed
(i.e., there appears an interface or free boundary). The first equation in (2.1) can be integrated,
which leads to

h(r) =
ω2

2g
r2 + C1r + C2. (2.5)

During the centrifugation, the water from the reservoir is pushed into the dry region of the
sample and creates a saturated and unsaturated subregion in the sample. Denote by s1(t) ∈
(0, L) the free boundary which separates the saturated and unsaturated regions in the sample,
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and denote by s2(t) the free boundary separating the partially saturated zone from the dry
zone (wetness front), s1(t) < s2(t) < L. To obtain the solution for r ∈ (r0, r0 + s1(t)), the
2 integration parameters in (2.5) need to be determined from boundary conditions. We can
easily determine that

h(r0, t) =
ω2

2g
�(t)(2r0 − �(t)), h(s1(t), t) = 0, (2.6)

since the piezometric head at r0 is equal to the pressure of the water in the reservoir
(contained in the interval (r0 − �(t), r0)) and the piezometric head on the interface r0 + s1(t)
is zero. After elimination of the integration parameters we obtain the solution of (2.1) in the
saturated region r ∈ (r0, r0 + s1(t)) in the form

h(r, t) =
ω2

2g

[
(r − r0)2 − (r − r0)

(
1
s1
�(2r0 − �) + s1

)
+ �(2r0 − �)

]
. (2.7)

From this we can derive the flux q(t) at the interface as

q(t) = −Ks

[
∂yh

(
r0 + y

)∣∣
y=s1(t)

− ω2

g
(r0 + s1(t))

]

= Ks
ω2

2g
1

s1(t)

[
2r0s1(t) + s1(t)2 + �(t)(2r0 − �(t))

]
,

(2.8)

where �(t) and s1(t) have to be determined. Since the flux of water along (r0, r0 + s1(t)) is
constant (at fixed t) due to mass balance, it follows that

�̇(t) = −q(t) := f1(�, s1), (2.9)

where q is obtained from (2.8). We proceed by constructing a model for ṡ1(t). Because
of mass balance reasons, the flux q(t) is used to increase the saturated and unsaturated
subregions. The crucial point is to obtain the flux qint(t) entering the unsaturated subregion.
The unsaturated region is placed between two free boundaries r ∈ (r0 + s1(t), r0 + s2(t)).
We note that u(s2(t), t) = 0 and u(s1(t), t) = 1, for all t. Then u in the unsaturated region
is governed by (2.1) with the moving domain of solution (s1(t), s2(t)) (we shift the original
domain by r0). We transform the moving domain to a fixed domain, using the transformation
y = (r − s1(t))/(s2(t) − s1(t)). Denote u(y, t) := u(r, t), and, for simplicity, in the following we
drop the overline, writing shorthand u for u(y, t). We have that

∂tu
(
y, t

)
=

Ks

s21(t)2
∂y

(
D(u)∂yu − s21(t)k(u)

ω2

g

(
r0 + s1(t) + ys21(t)

))

+
(
ṡ1(t)

(
1 − y

)
+ ṡ2(t)y

) 1
s21(t)

∂yu,

(2.10)
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where s21(t) := s2(t) − s1(t), and with boundary and initial conditions

u(0, t) = 1, u(1, t) = 0; u
(
y, 0

)
:= u0(y). (2.11)

Modeling the interface s2(t), we follow [3] where problems similar to (2.10) have been
studied. We compute first the order of degeneracy of D:

lim
z→ 0

D(z)
zp

=
1

(n − 1)γ(θs − θr)
m2, (2.12)

where p = 1/2 + 1/m. Therefore,

ṡ2(t) = − Ksm
2

p(θs − θr)γ(n − 1)
1

s21(t)
∂yu(1, t)p, where p =

1
2
+

1
m
. (2.13)

Now, the solution of (2.10)–(2.13) defines a flux qint(t)which is the flux of the solution
at y = 0. Finally, we close our system with the mass balance condition q(t) = ṡ1(t) + qint(t),
from which we obtain

ṡ1(t) = q(t) − qint(t). (2.14)

The final system (2.9)–(2.14) can be solved by approximating it with a corresponding ODE
system.

This model has to be modified when the wetting front (s2) reaches the right boundary.
Note that we do not consider the case where the injection becomes empty (� = 0), as in this
scenario we want to avoid drainage (which starts from the left when � = 0). If however at
some t = Tout we have � > 0 and s2 = L, the dry zone is no longer present. At that instance,
we start to control the amount of water expelled from the right boundary of the sample.
Experimentally, the water level wout in the water-collecting chamber situated on the right of
the sample can now be measured. In the mathematical model we obtain it from the flux on
the boundary which is linked with ẇout and with the global water mass balance.

In the case of a drainage scenario, the initial condition is a saturated sample with no
injection water chamber. Only drainage will occur, and the outflow can be controlled in the
same way as in the above scenario when the wetness front reaches the outflow boundary.
The difference with [9] lies in the attempt to have a continuous operation of the centrifuge. In
[9] it was shown that the soil parameters can be recovered from global characteristics when
starting from a partially saturated sample and applying first a period with free outflow, then
a period with no outflow up to equilibrium, and finally a period with again free outflow. The
drawback of that approach is firstly that the operation of the centrifuge is not continuous and
secondly that during the no-outflow period imbibition takes place in part of the sample. In
this paper we show in the experiments that starting from a fully saturated sample, the soil
parameters can also be retrieved, with some caveats however.

Remark 2.1. Practically, the ground sample will have to be contained in the centrifuge via
two fixed filters (porous stone) at the start and finish. For simplicity this is neglected in this
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Figure 3: Time evolution of the head, t = i Tout/20, i = 0, . . . , 20; Tout = 5016. Left curve at t = 0, right curve
for t = Tout.

study, but a realistic model will have to take them into account by using variable groundwater
characteristics like porosity and saturated conductivity, . . ..

3. Numerical Method

The 1D mathematical model results in a coupled system of PDE and ODE (2.9)–(2.14) and
is therefore a good candidate for applying first a space discretization and then solving the
resulting ODE system (MOL method). The space discretization can reflect the expected
profile of the solution in x ∈ (s1(t), s2(t))which was transformed to a fixed domain y ∈ (0, 1).
Apply the space discretization

0 = y0 < y1 < · · · < yi < · · ·yN = 1, (3.1)

and define α0 = 0, αi := yi − yi−1, i = 1, . . . ,N. This discretization corresponds to moving
grid points xi(t) = r0 + s1(t) + yis21(t) in the sample. Since the solution has a sharp front at
the wetness interface (see Figure 3), an increasing density of grid points near the boundary
point y = 1 is chosen. The used transformation then guarantees a good approximation
accuracy of space derivatives at the sharp front during the entire computation. For the
space discretization equation (2.10) is integrated over the domain Ii := (yi − αi/2, yi +
αi+1/2), for all i = 1, . . . ,N − 1. Denote ui(t) ≈ u(yi, t) and ∂tu(y, t) ≈ u̇i(t) in the interval
Ii, for all i = 1, . . . ,N − 1. Approximate

∂yu
∣∣
y=yi+1/2

≈ ui+1(t) − ui(t)
αi+1

=: ∂+ui, (3.2)

where yi+1/2 := yi + αi+1/2 , and similarly approximate ∂yu|y=yi−1/2
and denote it by ∂−ui.

Also denote ui+1/2 := (ui+1 + ui)/2 and ki+1/2 := k(ui+1/2) (similarly for i − 1/2). Then, the
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approximation of (2.10) at the point y = yi, i = 1, . . . ,N − 1, reads as follows:

u̇i =
2Ks

(αi + αi+1)(θs − θr)
1
s221

×
[
Di+1/2∂

+ui −Di−1/2∂−ui − ω2s21
g

×(ki+1/2(r0 + s1 + yi+1/2s21
) − ki−1/2

(
r0 + s1 + yi−1/2s21

))]

+
(
ṡ1
(
1 − yi

)
+ ṡ2yi

) dL(
z;yi

)
dz

∣∣∣∣∣
z=yi

,

(3.3)

�̇(t) = f1(�, s1), (3.4)

ṡ1(t) = f1(�, s1) − f2(s1, s2, u1, u2), (3.5)

ṡ2(t) = f3(s1, s2, uN−2, uN−1), (3.6)

where L(z;yi) is the Lagrange polynomial of the second order crossing the points
(yi−1, ui−1(t)), (yi, ui(t)), and (yi+1, ui+1(t)), and function f3 is given by

f3(s1, s2, uN−2, uN−1) = − Ksm
2

p(θs − θr)γ(n − 1)
1

s21(t)

[
dL−

(
z;yN

)
dz

∣∣∣∣∣
z=1

]p

, (3.7)

where p = 1/2 + 1/m and L−(z;yN) is the Lagrange polynomial crossing the points
(yN−2, uN−2(t)), (yN−1, uN−1(t)), and (1, 0). The function f2 represents the numerical
approximation of the flux qint and reads as follows:

f2(s1, s2, u1, u2) =
Ks

s21(θs − θr)

(
dL+

(
z;y0

)
dz

∣∣∣∣∣
z=0

− ω2

g
s1

)
,

(3.8)

where L+(z;y0) is the Lagrange polynomial crossing the points (0, 0), (y1, h1), and (y2, h2),
with

hi = −1
γ

[
−1 + u−1/m

i

]1/n
, i = 1, 2. (3.9)

We note that the flux at y = 0 must be expressed in terms of head (instead of saturation) since
at y = 0 we have u0 = 1, h0 = 0, and D(1) = +∞. We replace ṡ1, ṡ2 in (3.3) by f1 − f2 and f3,
respectively, to obtain the ODE system

ẇ = F(t,w), w = [u1, . . . , uN−1, �, s1, s2], (3.10)

and solve it by an ODE solver for stiff systems. This system must be completed by the initial
state w(0) = [u1(0), . . . , uN−1(0), �(0), s1(0), s2(0)]. Due to the first experimental scenario
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(infiltration into a dry region), all components of u would be zero, and also s1(0) = s2(0) = 0
and �(0) = �0. This would be a singular case for our ODE system (initial and boundary
conditions are not compatible), and hence, a slight regularization is applied, in the sense that
we take s2(0) > s1(0) > 0, with 0 < u < 1 in between.

A problem in the above approach to discretizing Richards’ equation is that typically
mass balance is not well kept, see, for example, [11], which is problematic as errors in mass
balance will have a big influence on the global characteristics. Specifically to this approach is
also that s1 is not accurately determined. We do not follow the solution of [11]which consists
of using a mass-pressure scheme. Instead, like in [9], we drop (3.5) and replace it by the
global mass balance equation

(θs − θr)

(
s1(t) +

N∑
i=0

ciui

)
+wout(t) = �(t) − �(0), (3.11)

where

ci = s21(t)
αi+1 + αi

2
, i = 1, . . . ,N − 1,

c0 = s21(t)
α0

2
, cN = s21(t)

α0

2
.

(3.12)

This mathematical model can be used up to the time t = Tout when s2(Tout) = L. At that
moment it is needed to replace s2 by uN ≈ u(1, t) and put s2 ≡ L; that is, we drop (3.6)
and add the ODE for u̇N to (3.3) (created on the same argumentation as for 1 ≤ i ≤ N − 1).
Moreover, the ODE system is completed by

ẇout(t) = −Ks

[
D(uN)∂yh

(
r0 + y

)∣∣
y=1− −

ω2

g
k(uN)(r0 + s1(t))

]
(3.13)

linking the outflow flux and uN . Now, the approximation consists of N + 2 ODE and the
algebraic equation (3.11). This system can be written in the form

M(t, z)ż(t) = f(t, z), (3.14)

where

z = [h1, . . . , hi0 , ui0+1, . . . , uN−1, s1, uN, �,wout]. (3.15)

In this, the index i0 is chosen suitably large so that towards the saturated part pressure head
is used as unknown, while towards the dry part the saturation is used. Practically, for the
computations, we have chosen i0 = N/2. Note also that theNth row of the matrixM consists
of zeros as it corresponds to the algebraic equation modeling mass balance.
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3.1. Centrifugation of an Initially Saturated Sample with Outflow Control

We shortly discuss the second scenario where the sample undergoes drainage during the
centrifugation. Now, the input flux is zero and there is an ODE for u0. The governing ODE
system is obtained from (3.3) with i = 0, . . . ,N − 1, where s1 = 0, s2 = L, and s21 = L, � = 0.
An ODE is added for u̇0 similarly as for u̇N before. The outflow wout is governed by (3.13),
where r0+s1(t) is replacedwith r0+L. The system is completedwith themass balance equation
(3.11), where s1 = 0 and �(t) − �(0) is replaced by Mw which represents the mass of water in
the fully saturated sample. The system (3.14) has to be rewritten in terms of

z = [h0, . . . , hi0, ui0+1, . . . , uN, �,wout]. (3.16)

3.2. Centrifugation of a Saturated Sample with Input and Output Control

In order to allow one single experimental run to determine the soil parameters including
the saturated conductivity Ks, we discuss how centrifugation of a fully saturated sample
with injection chamber and outflow fits into the presented modeling. One can start with
a saturated sample and a filled injection chamber and measure Ks. The right boundary of
the sample is free. In this case, the injected water amount is equal to the amount of output
water. This significantly changes the measured rotational moment or gravitational center and
consequently increases the reliability of the determination of Ks. In this case there is one
governing ODE in terms of �, given by

�̇(t) = Ks
ω2

2gL

(
L2 − �(t)2 + 2r0(L + �(t))

)
, (3.17)

and we can proceed centrifugation up to � = 0.

4. Numerical Experiments and Discussion

As only numerical experiments are performed, variables that have correct order of magnitude
are chosen, dropping the units. Unless clearly noted otherwise, the following values are used:
r0 = 30, L = 10, ω = 20, Ks = 2.4 10−5, θr = 0.02, θs = 0.4, γ = −0.0189, and n = 2.81. For the
space discretization N = 40 grid points are used with geometrical distribution: a first space
interval with width d1 = L/20, and then di+1 = qdi (i = 1, . . . , 39) with q < 1. Furthermore,
the surface area of the sample and the water chambers is assumed to be 1. The chamber for
expelled water is situated in r ∈ (L, L+R), with R = 4. At the start it is assumed that no water
is present in the outflow chamber (which remains the case up to t < Tout). In the case of a
filled injection chamber, initial water level �0 = 6 is taken.

The global characteristics that we assume can bemeasured accurately are the rotational
momentum Mr (rotational kinetic energy of the water mass, both in the sample and
chambers), gravitational center G, and water mass in the injection and outflow chamber,
respectively, � andwout (as the surface is 1). The partially saturated zone was transformed to
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Figure 4: Time evolution of the saturation front (full line), wetness front (dashed), and water level in the
injection chamber (dash-dot, right scale) for t ∈ (0, 5016 = Tout).

the domain y ∈ (0, 1). The contribution of the mobile water in the partially saturated zone to
the global characteristics is denoted by superindex (p) and can be calculated from

M
(p)
r (t) =

s21(t)ω2

2

∫1

0

(
r0 + s1 + s21(t)y

)2
u
(
y, t

)
dy,

M
(p)
w (t) = s21(t)

∫1

0
u
(
y, t

)
dy,

G(p)(t) = s21(t)
∫1

0

(
r0 + s1 + s21(t)y

)
u
(
y, t

)
dy

Mw
,

(4.1)

with Mw being the total amount of water. The integrals are evaluated numerically using the
trapezoidal rule. If all the water is included, the superindex is dropped, so Mr and G are
used; that is, these characteristics are linked with all the water in r ∈ (r0 − �(t), r0 + L + R).

Experiment 1 (accuracy). The efficiency of the numerical method in solving the direct problem
with sufficient accuracy is now demonstrated. The time evolution of the saturation and head
profile is shown in 20 equidistant time sections for t ∈ (0, Tout) in Figures 2 and 3. For the
same time sections s1, s2 and � are presented in Figure 4. The corresponding values of global
characteristicsMr ,G,M(p)

w in 10 time sections (ti = i·400, i = 1, . . . , 10, t11 = Tout) are included
in Table 1. Due to the numerical model satisfying the mass conservation principle, a global
water mass Mw = 6.1595 is found for the entire simulation time. The water amount of 0.1595
corresponds to an initial regularization of s1 = 0.2, s2 = 0.4 (zero values are singular for the
ODE system); a smaller regularization can be used if needed. The entire computation only
needs 10 seconds on a normal desktop PC. In Figure 3 only the nonpositive part of the head
in the sample is shown, that is, only the region (s1(t), s2(t)). In the region (0, s1(t)), the head
is a positive, convex parabola as given by formula (2.7).
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Table 1: Water in the sample, rotational momentum, and gravitational center, for Experiment 1.

i M
(p)
w Mr · 10−6 G

1 0.9100 0.9665 27.9404
2 1.3066 1.0031 28.4539
3 1.6256 1.0354 28.8971
4 1.9044 1.0658 29.3067
5 2.1576 1.0952 29.6965
6 2.3928 1.1241 30.0739
7 2.6144 1.1527 30.4430
8 2.8253 1.1813 30.8065
9 3.0277 1.2099 31.1662
10 3.2229 1.2386 31.5236
11 3.6931 1.3125 32.4262
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Figure 5: Time evolution of the saturation t = 5016 + i 400, i = 0, . . . , 10.

Next, the centrifugation is continued over a time interval t ∈ (5016 = Tout, 9016) with
outflow of the water. The corresponding saturation, saturation front, and expelled water level
are drawn for 11 time sections in Figures 5 and 6. The global characteristics corresponding
to these time sections are presented in Table 2. The following conclusions can be drawn. The
global characteristics show significant change over the simulation time, indicating a good
sensitivity. Figure 2 shows that the entire soil retention curve is needed to compute a solution
during imbibition, and the use of a nonlocal boundary condition based on mass conservation
allows simulation of the free outflow boundary, evident in Figure 5. A consequence of this is
that for t > Tout, the flow is still governed partially by the unsaturated flow regime (u ≈ 0.5 at
r = L), making it useful to continue centrifugation in order to determine the soil parameters.

We now present how the soil parameters can be identified. For this, we focus on the
parameters γ and n in the van Genuchten model.

Experiment 2 (parameter identification). The data from Experiment 1 is used to construct an
inverse problem: global measurements are extracted from this direct run and perturbed, and
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Figure 6: Time evolution of the saturation front s1 (full line) and the expelled waterwout (dashed line, right
scale), t ∈ (5016, 9016).

Table 2: Rotational momentum and gravitational center.

i Mr · 10−6 G

1 1.3446 33.4371
2 1.3807 33.8598
3 1.4155 34.2633
4 1.4491 34.6520
5 1.4813 35.0254
6 1.5123 35.3844
7 1.5420 35.7296
8 1.5706 36.0617
9 1.5981 36.3808
10 1.6244 36.6867
11 1.6855 37.3956

an inverse method (LM) is used to retrieve the original soil parameters. We focus on the
parameters γ , n, which in the direct simulation are.

γ� = −0.0189, n� = 2.81. (4.2)

During the time interval (0, Tout) the global characteristics that can be measured are
[�,Mr,G, s2], while for t > Tout they are [�,Mr,G,wout]. Variations of these measurements
will be considered to determine their influence. The wetness front s2 has been added here
as it is a sharp interface that hence can be measured in several ways (not a requirement, see
further). All measurements are collected in a vector we denote by D� the data. Practically,
consider measurements at 10 uniformly distributed time sections with the time increment
dt = 400 for t < Tout and dt = 200 for t > Tout. The end time is t = 9016, while from the direct
run we know Tout = 5016.
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Figure 7: Data: [�,Mr,G,wout], (a) (s/p(k)) curves, (b) (pe/p(k)) curves. Circles: start of inverse
procedure, full line: correct result, dash-dots: result of inverse procedure with 5% noise, dots: result of
inverse procedure with 10% noise.

Before starting the inverse modeling, the data is perturbed by 5% or 10% by means
of a random function. The resulting measurement is denoted by D5, D10, respectively, and
is the approximation of the real measurement performed. The resulting soil parameters are
indicated with the same subindex; for example, γ5 is the resulting value for γ from D5. The
LMmethod requires a starting parameter set, which we denote by γ , n, and minimizes ‖Dp −
D(i)‖2. Here, Dp is the given perturbed measurement (e.g., D5) and D(i) corresponds to γ (i),
n(i) in the ith LM iteration step.

For different measurements used we will depict the resulting saturation-capillary
pressure and hydraulic permeability-capillary pressure curves as given by (2.2). The curves
corresponding to γ�, n� will be given by a full line, γ5, n5 with dash-dots, γ10, n10 with dots,
and γ , n with circles.

2A, Rotational Momentum and Gravitational Center.

Starting from γ = −0.0129, n = 2, and using [�,Mr,G,wout], the following values are retrieved:

γ5 = −0.0183, n5 = 2.7,

γ10 = −0.0175, n10 = 2.6,
(4.3)

corresponding toD5 andD10. The corresponding saturation-capillary pressure and hydraulic
permeability-capillary pressure curves are given in Figure 7.

2B, Gravitational Center.

In the previous experiment the values of Mr are dropped from the measurements, which
gives the following values:

γ5 = −0.0188, n5 = 2.79,

γ10 = −0.0192, n10 = 2.85.
(4.4)
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Figure 8: Data: [�,G,wout], (a) (s/p(k)) curves, (b) (pe/p(k)) curves. Circles: start of inverse procedure,
full line: correct result, dash-dots: result of inverse procedure with 5% noise, dots: result of inverse
procedure with 10% noise.

Corresponding curves are given in Figure 8. We note that the reconstructed saturation-
capillary pressure curve is better than when rotational moment is also considered. If in a
similar experiment the values of G are dropped instead of Mr , the restoration results are
less good. This results corresponds to the observation that for the determined parameters the
gravitational center is, in this specific case, more robust to the noise level than the rotational
moment. Normally, adding more measurements improves the inverse method; however, this
behavior was also seen in other experiments. Many more experiments would have to be done
in order to make a general claim. This behavior is a weak point of the Levenberg-Marquardt
method which includes the possibility of many local minima, see also Remark 4.1.

2C, Wetness Front.

We examine the influence of the evolution of the wetness front on the determination process.
The measurements now consist of [�, s2, wout]. We obtain

γ5 = −0.017, n5 = 2.55,

γ10 = −0.0166, n10 = 2.49,
(4.5)

with corresponding curves in Figure 9. The result for the permeability curve is very good, but
the saturation-capillary pressure curve is less good than in the other cases.

2D, Wetness Front and Gravitational Center.

We add now the G measurements, giving data [�, s2, G,wout]. This gives

γ5 = −0.0175, n5 = 2.6,

γ10 = −0.017, n10 = 2.54,
(4.6)
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Figure 9: Data: [�, s2, wout], (a) (s/p(k)) curves, (b) (pe/p(k)) curves. circles: start of inverse procedure,
full line: correct result, dash-dots: result of inverse procedure with 5% noise, dots: result of inverse
procedure with 10% noise.

with corresponding curves in Figure 10. This result indicates a slight improvement as a
consequence of adding the gravitational center measurements. However, this result is less
good than when only the gravitational center is used, which again indicates it would be a
good strategy to give the gravitational center a larger weight than the other measurements in
the LM method.

We can conclude that the inverse determination works good, even with a perturbation
of 10%. Using the levels in the water chambers combined with the gravitational center
gives the best results. Errors on the rotational moment cause relatively large changes in
the reconstructed saturation-capillary pressure curve. Changing the gravitational center
measurements with those of the wetness front is an alternative but implies a penalty on the
obtained values.

Experiment 3 (saturated conductivity). We briefly show that also the saturated conductivity
Ks can easily be retrieved using the same model. For this, start with a saturated sample and
water level �(0) = 3 in the injection chamber. Assume the measurements D� of the global
characteristics [�,Mr,G,wout] in 10 uniformly distributed time section over (0, 2000), and the
perturbed data D5, D10, D15 as before. The starting value for the inverse model is Ks = 10−5,
while the correct one is Ks,� = 2.4 10−5. We obtain with the LM method

Ks,5 = 2.39 10−5, Ks,10 = 2.41 10−5,

Ks,15 = 2.38 10−5.
(4.7)

In the case where only Mr measurements are used, we obtain

Ks,5 = 2.35 10−5, Ks,10 = 2.44 10−5,

Ks,15 = 2.33 10−5.
(4.8)
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Figure 10: Data: [�, s2, G,wout], (a) (s/p(k)) curves, (b) (pe/p(k)) curves. Circles: start of inverse
procedure, full line: correct result, dash-dots: result of inverse procedure with 5% noise, dots: result of
inverse procedure with 10% noise.

Collecting only �(t) measurements, we obtain

Ks,5 = 2.398 10−5, Ks,10 = 2.36 10−5,

Ks,15 = 2.49 10−5.
(4.9)

We can conclude that for the determination of Ks all global characteristics lead to good
identification, even in the presence of large perturbations.

Experiment 4 (drainage). We have determined the imbibition soil parameters in the second
experiment. Now we present the setup to determine the drainage soil parameters. This is
analogue with the well known outflow experiment, but we again augment the measurements
with global characteristics. For drainage, a fully saturated sample is centrifugated over the
time interval (0, 10000 s). In the model this translates to a zero flux condition at the left
boundary and controls outflow as before at the right boundary with outflow water collected
in a water chamber. In a first experiment the measurements [Mr,G,wout] from 20 uniformly
distributed time sections are used. By LM iterations, starting from γ = −0.0129, n = 2, we
obtain

γ5 = −0.0176, n5 = 2.68,

γ10 = −0.0215, n10 = 2.67.

(4.10)

Next, we investigate the influence of the rotational speed. Using now measurements from 20
uniformly distributed time sections in t ∈ (0, 15000 s) from separate centrifugations with 3
different rotational speeds, we obtain the results from Table 3. The rotational speeds used are
ω = 20, 30, and 40. Note that the average of these parameters (from 3 separate runs) gives a
better estimate of the retention curve. We remark also that our experiments have shown that
this average is better than the value obtained by LM iterations using the data collected in one
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Table 3: Estimated γ , n by LM method using all measurements for 3 rotational speeds.

ω γ5 n5 γ10 n10

20 −0.0191 2.82 −0.0186 2.6
30 −0.0192 2.79 −0.0169 3
40 −0.0229 2.99 −0.0142 3

Table 4: Estimated γ , n by LM method excluding rotational momentum measurements for 3 rotational
speeds.

ω γ5 n5 γ10 n10

20 −0.0177 2.64 −0.0205 2.37
30 −0.017 2.98 −0.022 2.35
40 −0.0158 2.78 −0.023 2.7

centrifuge run where the rotational speed is changed after every 10000s, taking consecutively
Ω = 20, 30, and 40.

As with the imbibition we now investigate if reducing the type of measurements still
gives good results. Using the same measurements, but dropping the values ofMr , we obtain
the results in Table 4. As in the imbibition case, the results are better. We remark that dropping
the measurements of the gravitational center leads again to less good approximations of the
parameters.

As a last numerical experiment, we apply consecutively two different rotational speeds
ω = 20 and ω = 30, each over a period of 5000s. Collecting as measurementsMr,G,wout over
10 uniformly distributed time sections along the interval t ∈ (0, 10000 s), we obtain

γ5 = −0.0242, n5 = 2.91,

γ10 = −0.0192, n10 = 2.9.

(4.11)

This result is worse than when only ω = 20 is used.
We can conclude from these experiments that the required soil parameters could be

determined also in drainage mode with the proposed method.

Experiment 5 (range of validity). In this experiment we examine the efficiency of the proposed
algorithm on several different infiltration parameters. Consider the infiltration parameters
γ0 = −0.0189, γ5 = 5 γ0, γ10 = 10 γ0 and Ks,0 = 2.4.10−5, Ks,10 = 10 Ks,0, Ks,20 = 20 Ks,0, while
n = 2.81, Ω = 30, and in the injection chamber we have initial water level �0 = 1.9. As before,
there is a regularization so that at t = 0 we have s1 = 0.2, s2 = 0.4. In Figures 11, 12, and 13,
we draw the time evolution of the saturation distributions in 10 equidistant time points up to
the time Te, which is defined as the time at which the injection chamber is empty. This clearly
shows that the algorithm can handle a wide range of parameter values.

Lastly, we perform some experiments to show that the regularization performed at the
start for all computations up to now is not a limitation. For a practical experiment, one needs
to start with a sample that is prepared and placed in the centrifuge. Hence, the sample will
be in contact with water before the centrifugation starts. This allows to compute an initial
profile of the saturation depending on this initial contact time. For simplicity we neglect
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Figure 11: Time evolution of the saturation for t = i Te/10, i = 0, . . . , 10, (a) γ0, Ks = Ks,0, Te = 1516; (b) γ0,
Ks,10, Te = 167.
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Figure 12: Time evolution of the saturation for t = i Te/10, i = 0, . . . , 10, (a) γ5,Ks,10, Te = 187; (b) γ10,Ks,10,
Te = 190.

gravitation here (it can be added to the algorithm in a similar fashion if needed). In Figures
14 and 15, the result is presented as twominutes of water infiltration into the sample from the
water chamber in the absence of centrifugation (Ω = 0). Here, a very small regularization at
t = 0 was performed corresponding with s1 = 0.01 and s2 = 0.02, which is small enough
not to influence the final solution. From these figures it is clear that the contribution of
infiltrated water (during 2 minutes) without centrifugation is significant, especially when
the permeability is high. However, correct starting values for the full algorithm with Ω > 0
can be computed without problems.

Remark 4.1. As is typical, the inverse problem to determine γ and n has (generally) many
local minima. Applying the LM method, the obtained results (local minima) depend on the
starting point chosen, and on several parameters inherent to the LM method. Therefore, one
can run LM with different method parameters for the same starting point and then choose
the “optimal” one defined by a minimal RMS. Next, one can create the set of such “optimal”
solutions corresponding to different starting points and use a statistical analysis to create a
reliable result. Sometimes it suffices to use an average of “local optimal” solutions. Between
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Figure 13: Time evolution of the saturation for t = i Te/10, i = 0, . . . , 10, with γ5, Ks,20, Te = 98.
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Figure 14: Time evolution of the saturation for Ω = 0, t ∈ (0, 120), (a) γ0, Ks,0; (b) γ5, Ks,10.

them we can choose those candidates for which RMS < 0.4E (where E = ‖D� −D10‖2, a
measure of the measurement error). We have applied this procedure in Experiment 4 with 4
local minima.

Remark 4.2. One can increase the reliability of the obtained γ and n by using more meas-
urements (extending the vectorD of measured characteristics). Also, in those cases where the
imbibition/drainage hysteresis phenomenon can be neglected, the imbibition and drainage
scenario above can be combined in one set of measurements, leading also to more meas-
urements available. In those cases more complicated scenarios become also possible, like
refilling the injection chamber after partial drainage of the sample.

5. Conclusions

A new and efficient numerical approximation for a water-air infiltration problem in porous
media (in 1D) is developed, allowing for a free outflow boundary and resolution of the
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Figure 15: Time evolution of the saturation for Ω = 0, t ∈ (0, 120), γ5, Ks,20.

interfaces arising. It is shown with this model that it is sufficient to use only global
characteristics, like rotational momentum, gravitational center, and inflow-outflow of water,
to reconstruct the soil parameters in the governing mathematical model. The numerical
experiments show that for practical realization, concentrating on measuring the gravitational
center over the rotational momentum is advisable.

On the base of the developed numerical approximation, it is possible to use
different centrifugation scenarios, which could be used for the realistic determination of soil
parameters in imbibition or drainage mode.

It is also shown that to measure the wetness front in the sample is an alternative to
measuring the rotational momentum and the gravitational center in the imbibition scenario.
This front is very sharp during the centrifugation, allowing its precise determination with a
detector (e.g., visually from the outside via a colorant and high-speed camera, or alternatively
via X-rays to detect the water).

Based on the results of this numerical study, we propose to construct a centrifuge
allowing to measure the gravitational center. Even if more detailed models are required
(adding, e.g., consolidation, swelling, a 3D model with the Coriolis effect, . . .), the
conclusion drawn here—several global characteristics are sufficient for determining the soil
parameters—will remain valid.
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[3] D. Constales and J. Kačur, “Determination of soil parameters via the solution of inverse problems in
infiltration,” Computational Geosciences, vol. 5, no. 1, pp. 25–46, 2001.
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