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Received 3 August 2011; Accepted 22 October 2011

Academic Editor: Paulo Batista Gonçalves
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A simple and effective procedure is employed to propose a new analytic approximate solution
for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic
Method (OHAM) does not depend upon any small/large parameters and provides us with a
convenient way to control the convergence of the solution. The examples given in this paper lead
to the conclusion that the accuracy of the obtained results is growing along with increasing the
number of constants in the auxiliary function, which are determined using a computer technique.
The results obtained through the proposed method are in very good agreement with the numerical
results.

1. Introduction

In various fields of science and engineering, nonlinear evolution equations, as well as
their analytic and numerical solutions, are fundamentally important. The problem of an in-
compressible, viscous fluid between nonparallel walls with a sink or source at the vertex was
pioneered by Jeffery [1] and Hamel [2]. Hamel mentioned an example of an exact nonsteady
solution of the Navier-Stokes equations which describes the process of decay of a vortex
through the action of the viscosity and considered the distribution of the tangential velocity
component with respect to the radial distance and time and a particular case of the flow
through a divergent channel was discussed and exactly solved. Jeffery-Hamel flows are exact
similarity solution as the Navier-Stokes equations in the special case of two-dimensional
flow through a channel with inclined plane walls meeting at a vertex with a source or sink
at the vertex and have been studied by several authors and discussed in many text books
and articles [3–5]. Sadri [6] denoted that Jeffery-Hamel flow used an asymptotic boundary
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condition to examine steady two-dimensional flow of a viscous fluid in a channel by means
of certain symmetric solution of the flow although asymmetric solution are both possible and
of physical interest [7].

The classical Jeffery-Hamel problem was extended in [8] to include the effects of
external magnetic field in conducted fluid. The magnetic field acts as a control parameter,
along with the flow, Reynolds number, and the angle of the walls.

Most scientific problems such as Jeffery-Hamel flows and other fluid mechanics
problems are inherently nonlinear. Excepting a limited number of these problems, most do
not have analytical solutions. Therefore, these nonlinear equations should be solved using
other methods [9].

The aim of the present work is to propose an accurate approach to the Jeffery-Hamel
flow problem using an analytical technique, namely, OHAM [10, 11].

The efficiency of our procedure, which does not require a small parameter in the
equation, is based on the construction and determination of the auxiliary functions combined
with a convenient way to optimally control the convergence of the solution.

2. Problem Statement and Governing Equation

We consider a system of cylindrical polar coordinates (r, θ, z)with a steady two-dimensional
flow of an incompressible conducting viscous fluid from a source or sink at channel walls
lying in planes, with angle 2α, as shown in Figure 1.

Assuming that the velocity is only along the radial direction and depends on r and
θ, V (u(r, θ), 0) [3–5], using the continuity Navier-Stokes equations in polar coordinates, the
governing equations are

ρ

r

∂

∂r
(ru(r, θ)) = 0, (2.1)

u(r, θ)
∂u(r, θ)

∂r
= −1

ρ

∂p

∂r
+ v

[
∂2u(r, θ)

∂r2
+
1
r

∂u(r, θ)
∂r

+
1
r2

∂2u(r, θ)
∂θ2

− u(r, θ)
r2

]
, (2.2)

− 1
ρr

∂p

∂ρ
+
2v
r2

∂u(r, θ)
∂θ

= 0, (2.3)

where ρ is the fluid density, p is the pressure, and v is the kinematic viscosity. From (2.1) and
using dimensionless parameters we get

f(θ) = ru(r, θ), (2.4)

F(x) =
f(θ)
fmax

, x =
θ

α
. (2.5)
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Figure 1: Geometry of the Jeffery-Hamel flow problem.

Substituting (2.5) into (2.2) and (2.3) and eliminating the pressure, we obtain an
ordinary differential equation for the normalized function profile F(x):

F ′′′(x) + 2αRe F(x)F ′(x) + 4α2F ′(x) = 0, (2.6)

where prime denotes derivative with respect to x and the Reynolds number is

Re =
αfmax

v
=

umax

v

(
divergent channel : α > 0, umax > 0

convergent channel : α < 0, umax < 0

)
(2.7)

and umax is the maximum velocity at the centre of the channel.
The boundary conditions for (2.6) are

F(0) = 1, F ′(0) = 0, F(1) = 0. (2.8)

3. Fundamentals of the OHAM

We consider the following nonlinear differential equation [10, 11]:

L(F(x)) + f(x) +N(F(x)) = 0 (3.1)

subject to a boundary condition

B(F) = 0, (3.2)
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where L is a linear operator, f(x) is a known analytical function, N is a nonlinear operator,
and B is a boundary operator. By means of the OHAM one constructs a family of equations:

(
1 − p

)[
L
(
φ
(
x, p

))
+ f(x)

]
= h

(
x, p

)[
L
(
φ
(
x, p

))
+ f(x) +N

(
φ
(
x, p

))]
, (3.3)

and the boundary condition is

B
(
φ
(
x, p

))
= 0. (3.4)

In (3.3), φ(x, p) is an unknown function, p ∈ [0, 1] is an embedding parameter, and
h(x, p) is an auxiliary function such that h(x, 0) = 0 and h(x, p)/= 0 for p /= 0. When p increases
from 0 to 1, the solution φ(x, p), changes from the initial approximation F0(x) to the solution
F(x). Obviously, when p = 0 and p = 1 it holds that

φ(x, 0) = F0(x), φ(x, 1) = F(x). (3.5)

Expanding φ(x, p) in series with respect to the parameter p, one has

φ
(
x, p

)
= F0(x) + pF1(x) + p2F2(x) + · · · . (3.6)

If the initial approximation F0(x) and the auxiliary function h(x, p) are properly
chosen so that the series (3.6) converges at p = 1, one has

F(x) = F0(x) + F1(x) + F2(x) + . . . . (3.7)

Notice that the series (3.6) contains the auxiliary function h(x, p) which determines
their convergence regions. The results of themth-order approximations are given by

F(x) ≈ F0(x) + F1(x) + F2(x) + · · · + Fm(x). (3.8)

We propose an auxiliary function h(x, p) of the form

h
(
x, p

)
= pK1(x) + p2K2(x) + · · · + pmKm(x), (3.9)

where Ki(x), i = 1, 2, . . . , m can be functions on the variable x.
Substituting (3.6) into (3.1) we obtain

L(F(x)) + f(x) +N(F(x)) = N0(F0(x)) + pN1(F0(x), F1(x))

+ p2N2(F0(x), F1(x), F2(x)) + . . . .
(3.10)

If we substitute (3.9) and (3.10) into (3.3) and we equate to zero the coefficients of
various powers of p, we obtain the following linear equations:

L(F0(x)) + f(x) = 0, B(F0(x)) = 0, (3.11)
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L(Fi) − L(Fi−1) −
∑i

j=1
KjNi−j

(
F0, F1, . . . , Fi−j

)
= 0, B(Fi) = 0, i = 1, 2, . . . , m − 1

(3.12)

L(Fm) − L(Fm−1) −
∑m−1

j=1
KjNm−1−j −KmN0 = 0, B(Fm) = 0. (3.13)

At this moment, themth-order approximate solution given by (3.8) depends on the functions
K1, K2, . . ., Km. The constants C1, C2, . . ., Cq which appear in the expression of Ki(x) can be
identified via various methodologies such as the least square method, the Galerkin method,
and the collocation method.

The constants C1, C2,. . .,Cq could be determined, for example, if we substitute (3.8)
into (3.1) resulting in the following residual:

R(x,Ci) = L
(
F(x,Ci)

)
+ f(x) +N

(
F(x,Ci)

)
, i = 1, 2, . . . . (3.14)

For xi ∈ (a, b) where a and b are two values depending on the given problem and we
substitute xi into (3.14), we obtain the system of equations

R(x1, Ci) = R(x2, Ci) = · · · = R
(
xq, Ci

)
, i = 1, 2, . . . , q, (3.15)

where q is the number of constants Ci which appear in the expression of the functionsK1(x),
K2(x), . . ., Km(x).

One can observe that our procedure contains the auxiliary function h(x, p) which
provides us with a simple but rigorous way to adjust and control the convergence of the
solution. It must be underlined that it is very important to properly choose the functions K1,
. . ., Km(x)which appear in the approximation (3.8).

4. Application of the Jeffery-Hamel Flow Problem

We introduce the basic ideas of the proposed method by considering (2.6) and (2.8). We
choose f(x) = 0 and the linear operator

L
(
φ
(
x, p

))
=

∂3φ
(
x, p

)
∂x3

. (4.1)

The nonlinear operator is

N
(
φ
(
x, p

))
= 2αRe φ

(
x, p

)∂φ(x, p)
∂x

+ 4α2 ∂φ
(
x, p

)
∂x

, (4.2)

and the boundary conditions are

φ
(
0, p

)
= 1,

∂φ
(
0, p

)
∂x

= 0, φ
(
1, p

)
= 0. (4.3)
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Equation (3.11) becomes

F ′′′
0 (x) = 0,

F0(0) = 1, F ′
0(0) = 0, F0(1) = 0.

(4.4)

It is obtained that

F0(x) = 1 − x2. (4.5)

From (4.2) and (3.10), we obtain the following expression:

N0(x) = F ′′′
0 (x) + 2αRe F0(x)F ′

0(x) + 4α2F ′
0(x). (4.6)

If we substitute (4.5) into (4.6), we obtain

N0(x) = 4αRex3 − 4
(
αRe+2α2

)
x. (4.7)

There are many possibilities to choose the functionsKi, i = 1, 2, . . .. The convergence of
the solutions Fi, i = 1, 2, . . . m and consequently the convergence of the approximate solution
F(x) given by (3.8) depend on the auxiliary functionsKi. Basically, the shape ofKi(x) should
follow the terms appearing in (4.7), (3.12), and (3.13) which are polynomial functions. We
consider the following cases (m = 2).

Case 1. If K1(x) is of the form

K1(x) = C1, (4.8)

where C1 is an unknown constant at this moment, then (3.12) for i = 1 becomes

F ′′′
1 (x) − F ′′′

0 (x) −K1N0(F0) = 0. (4.9)

Substituting (4.5), (4.7), and (4.8) into (4.9), we obtain the equation in F1:

F ′′′
1 (x) − 4C1αRe x3 − 4C1

(
αRe + 2α2

)
x = 0, F1(0) = F ′

1(0) = F1(1) = 0. (4.10)

The solution of (4.10) is given by

F1(x) =
C1αRe

30
x6 − C1

(
αRe+2α2)

6
x4 +

2αRe+5α2

15
C1x

2. (4.11)

Equation (3.13) for m = 2 can be written in the form

F ′′′
2 (x) − F ′′′

1 (x) − C1N1(F0, F1) −K2(x)N0(F0) = 0, (4.12)
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where N1 is obtained from (3.10):

N1(F0, F1) = F ′′′
1 + 2αRe

(
F0F

′
1 + F ′

0F1
)
+ 4α2F ′

1. (4.13)

If we consider

K2(x) = C2, (4.14)

where C2 is an unknown constant, then from (4.5), (4.11), (4.12), (4.13), and (4.14)we obtain
the following equation in F2:

F ′′′
2 +

8α2Re2C2
1

15
x7 − 12α2Re2 + 24α2 Re

5
C2

1x
5

−
[
4αRe(2C1 + C2) +

60αRe+36α2Re2 + 40α3 Re−16α4

15
C2

1

]
x3

+

[
4
(
αRe+2α2

)
(C1 + C2) +

60αRe+120α2 − 8α2Re2 − 36α3 Re−40α4

15
C2

1

]
x = 0.

(4.15)

So, the solution of (4.15) is given by

F2(x) = −α
2Re2C2

1

1350
x10 +

α2Re2 + 2α2 Re
140

C2
1x

8

+

[
αRe(2C1 + C2)

30
+
15αRe+9α2Re2 + 10α3 Re−4α4

450
C2

1

]
x6

+

[
−
(
αRe+2α2)(C1 + C2)

6
+
2α2Re2 + 9α3 Re + 10α4 − 15αRe−3α2

90
C2

1

]
x4

+

[
2αRe+5α2

15
(C1 + C2) +

2520αRe−1932α4 + 360α2 − 919α2Re2 − 2580α3 Re
18900

]
x2.

(4.16)

The second-order approximate solution (m = 2) is obtained from (3.8)

F(x) = F0(x) + F1(x) + F2(x), (4.17)

where F0, F1, and F2 are given by (4.5), (4.11), and (4.16), respectively.

Case 2. In this case we consider

K1(x) = C1, (4.18)

K2(x) = C2x + C3, (4.19)

where C1, C2, and C3 are unknown constants.
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It is clear that the function F1 is given by (4.11). Equations (3.13) or (4.12) becomes

F ′′′
2 +

8α2Re2C2
1

15
x7 − 12α2Re2 + 24α2 Re

5
C2

1x
5 − 4αReC3x

4

−
[
4αRe(C1 + C2) +

60αRe−36α2Re2 − 120α3 Re−80α4

15
C2

1

]
x3 + 4

(
αRe+2α2

)
C3x

2

+

[
4
(
αRe+2α2

)
(C1 + C2) +

60αRe+12α2 − 8α2Re2 − 36α3 Re−40α4

15
C2

1

]
x = 0,

F2(0) = F ′
2(0) = F2(1) = 0

(4.20)

and has the solution

F2(x) = −α
2Re2C2

1

1350
x10 +

α2Re2 + 2α2 Re
140

C2
1x

8 +
2αRe
105

C3x
7

+

[
αRe(2C1 + C2)

30
+
15αRe+9α2Re2 + 10α3 Re−4α4

450
C2

1

]
x6 +

αRe+2α2

15
C3x

5

+

[
−
(
αRe+2α2)(C1 + C2)

6
+
2α2Re2 + 9α3 Re+10α4 − 15αRe−3α2

90
C2

1

]
x4

+

[
2αRe+5α2

15
(C1 + C2) +

5αRe+14α2

105
C3

+
2520αRe−1932α4 + 360α2 − 919α2 Re−2580α3 Re

18900
C2

1

]
x2.

(4.21)

The second-order approximate solution becomes

F(x) = F0(x) + F1(x) + F2(x), (4.22)

where F0, F1, and F2 are given by (4.5), (4.11), and (4.21), respectively.

Case 3. In the third case we consider

K1(x) = C1 + C2x,

K2(x) = C3 + C4x + C5x
2.

(4.23)
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Equation (3.12) for i = 1 or (4.9) can be written as

F ′′′
1 − 4αReC2x

4 − 4αReC1x
3 + 4

(
αRe+2α2

)
C2x

2 + 4
(
αRe+2α2

)
C1x = 0,

F1(0) = F ′
1(0) = F1(1) = 0.

(4.24)

From (4.24) we have

F1(x) =
2αReC2

105
x7 +

αReC1

30
x6 −

(
αRe+2α2)C2

15
x5 −

(
αRe+2α2)C1

6
x4

+

[(
αRe+2α2)(5C1 + 2C2)

30
− αRe(7C1 + 4C2)

210

]
x2.

(4.25)

Equation (3.13) becomes

F ′′′
2 (x) +

12α2Re2

35
C2

2x
9 +

92α2Re2C1C2

105
x8 +

(
8α2Re2C2

1

15
− 6α2Re2 + 12α3 Re

5
C2

2

)
x7

− 18α2Re2 + 36α3 Re
5

C1C2x
6

−
[
4αReC5 +

12α2Re2 + 24α3 Re
5

C2
1 +

12αRe−2α2Re2 − 8α3 Re−8α4

3
C2

2

]
x5

−
[
4αRe(C2 + C4) +

120αRe−46α2Re2 − 160α3 Re−120α4

15
C1C2

−40α
2Re2 + 112α3 Re

105
C2

2

]
x4

−
[
4αRe(C1 + C3) − 4

(
αRe+2α2

)
C3 +

60αRe−36α2Re2 − 120α3 Re−80α4

15
C2

1

−40α
2Re2 + 112α3 Re

105
C1C2 − 4

(
αRe+2α2

)
C2

2

]
x3

+

[
4
(
αRe+2α2

)
(C2 + C4) +

120αRe+240α2 − 8α2Re2 − 36α3 Re−40α4

15
C1C2

+
20α2Re2 + 96α3 Re+112α4

105
C2

2

]
x2

+

[
4
(
αRe+2α2

)
(C1 + C3) +

60αRe+120α2 − 8α2Re2 − 36α3 Re−40α4

15
C2

1

−20α
2Re2 + 96α3 Re+112α4

105
C1C2

]
x, F2(0) = F ′

2(0) = F2(1) = 0.

(4.26)
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The solution of (4.26) is

F2(x) = −α
2Re2C2

2

3850
x12 − 46α2Re2C1C2

51975
x11 +

[
−α

2Re2C2
1

1350
+
α2Re2 + 2α3 Re

600
C2

2

]
x10

+
α2Re2 + 2α3 Re

420
C1C2x

9

+

[
αReC5

84
+
α2Re2 + 2α3 Re

140
C2

1 +
6αRe−α2Re2 − 4α3 Re−4α4

504
C2

2

]
x8

+

[
2αRe(C2 + C4)

105
+
60Re−23α2Re2 − 80α3 Re−60α4

1575
C1C2

−20α
2Re2 + 56α3 Re

11025
C2

2

]
x7

+

[
αRe(C1 + C3)

30
−
(
αRe+2α2)C5

30
+
15αRe−9α2Re2 − 30α3 Re−20α4

450
C2

1

+
5α2Re2 + 14α3 Re

1575
C1C2 − αRe+2α2

30
C2

2

]
x6

−
[(

αRe+2α2)(C2 + C4)
15

+
30αRe+60α2 − 2α2Re2 − 9α3 Re−10α4

225
C1C2

−5α
2Re2 + 24α3 Re+28α4

1575
C2

2

]
x5

−
[(

αRe+2α2)(C1 + C3)
6

+
15αRe+30α2 − 2α2Re2 − 9α3 Re−10α4

90
C2

1

−5α
2Re2 + 24α3 Re+28α4

630
C1C2

]
x4

+

[(
2αRe+5α2)(C1 + C3)

15
+

(
5αRe+14α2)(C2 + C4)

105
+
9αRe+28α2

420
C5

+
2520αRe−1260α4 + 6300α2 − 163α2Re2 − 900α3 Re

18900
C2

1

+
19800αRe+55440α2 − 1433α2Re2 − 8514α3 Re−10560α4

207900
C1C2

−4774α
4 − 32340α2 − 10395αRe+2695α3 Re+380α2Re2

485100
C2

2

]
x2.

(4.27)
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The second-order approximate solution is

F(x) = F0(x) + F1(x) + F2(x), (4.28)

where F0, F1, and F2 are given by (4.5), (4.24), and (4.26), respectively.

Case 4. In the last case, we consider

K1(x) = C1 + C2x, (4.29)

K2(x) = C3 + C4x + C5x
2 + C6x

3 + C7x
4 + C8x

5 + C9x
6. (4.30)

The solution of F1(x) is given by (4.24). On the other hand, (3.13) has the solution

F2(x) =

(
αRe
330

C9 −
α2Re2C2

2

3850

)
x12 +

(
2αRe
495

C8 − 46α2Re2

51975
C1C2

)
x11

+

[
αReC7 −

(
Re+2α2)C9

180
− α2Re2

1350
C2

1 +
α2Re2 + 2α3 Re

600
C2

2

]
x10

+

[
αReC6 −

(
αRe+2α2)C8

126
+
α2Re2 + 2α3 Re

420
C1C2

]
x9

+

[
αReC5 −

(
αRe+2α2)C7

84
+
α2Re2 + 2α3 Re

140
C2

1

+
6αRe−α2Re2 − 4α3 Re−4α4

504
C2

2

]
x8

+

[
2αReC4 − 2

(
αRe+2α2)C6

105
+
2αReC2

105
+
60αRe−23α2Re2 − 80α3 Re−60α4

1575
C1C2

−20α
2Re2 + 56α3 Re

11025
C2

2

]
x7

+

[
αRe(C1 + C3) −

(
αRe+2α2)C5

30
+
15αRe−9α2Re2 − 30α3 Re−20α4

450
C2

1

−5α
2Re2 + 14α3 Re

1575
C1C2 −

(
αRe+2α2)C2

2

30

]
x6

+

[
2α2Re2 + 9α3 Re+10α4 − 30αRe−60α2

225
C1C2 − 5α2Re2 + 24α3 Re+28α4

1575
C2

2

−
(
αRe+2α2)(C2 + C4)

15

]
x5
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+

[
2α2Re2 + 9α3 Re+10α4 − 15αRe−30α2

90
C2

1 +
5α2Re2 + 24α3 Re+28α4

630
C1C2

−
(
αRe+2α2)(C1 + C3)

6

]
x4

+

[
5αRe+14α2

105
(C2 + C4) +

2αRe+5α2

15
C1 +

2αRe+15α2

15
C3 +

9αRe+28α2

420
C5

+
7αRe+24α2

630
C6 +

4αRe+15α2

630
C7 +

27αRe+110α2

6930
C8

+
2520αRe−1260α4 + 6300α2 − 163α2Re2 − 900α3 Re

18900
C2

1

+
5αRe+22α2

1980
C9 +

10395αRe−380α2Re2 + 32340α2 − 2685α3 Re−4774α4

485100
C2

2

+
19800αRe−1443α2Re2 + 55440α2 − 8514α3 Re−10560α4

207900
C1C2

]
x2.

(4.31)

The second-order approximate solution in this case is given by

F(x) = F0(x) + F1(x) + F2(x), (4.32)

where F0, F1, and F2 are given by (4.5), (4.24), and (4.30), respectively.

5. Numerical Examples

In the following, using the algorithm described in Section 3, with the help of a computer
program which implement the procedure presented above, we will obtain the convergence-
control constants Ci and we will show that the error of the solution decreases when the
number of terms in the auxiliary function h(x, p) increases. Obviously, the computational
effort increases along with increasing the number of convergence-control constants, but a
significant improvement of the accuracy of results is observed.

Example 5.1. For Re = 50 and α = 5 in Case 1 it is obtained two solutions for the constants C1

and C2:

(a) C1 = 0.017506079 C2 = −0.047286881,
(b) C1 = −0.017506079 C2 = 0.022737435

but the second-order approximate solution (4.16) is the same in both cases:

F(x) ≈ 1 − 1.767845893x2 + 1.236877181x4 − 0.619019693x6 + 0.164176501x8 − 0.014188096x10

(5.1)
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Figure 2: Sample profile of the F(x) function for Re = 50 and α = 5, given by (5.1).

Example 5.2. For Re = 50 and α = 5 in the Case 2, we obtain

(a) C1 = 0.007977212 C2 = −0.041469373 C3 = 0.022761122,

(b) C1 = −0.007977212 C2 = −0.009560525 C3 = 0.022761122.

The second-order approximate solution (4.18) becomes

F(x) ≈ 1 − 1.769527092x2 + 1.40514047x4 − 0.45522244x5 − 0.319921792x6

+ 0.108386295x7 + 0.03409066x8 − 0.002946101x10.
(5.2)

Example 5.3. For Re = 50 and α = 5 in Case 3, the second-order approximate solution (4.27)
can be written in the form

F(x) ≈ 1 − 1.769777647x2 + 1.295738478x4 − 0.010406134x5 − 0.871743272x6 + 0.178832164x7

+ 0.299266794x8 − 0.090606944x9 − 0.040442155x10 + 0.00935599x11 − 0.0002178x12.

(5.3)

Example 5.4. For Re = 80 and α = −5 in Case 4, the second-order approximate solution (4.31)
becomes

F(x) ≈ 1 − 0.399291819x2 − 0.461970063x4 − 0.014703786x5 − 0.12415397x6 − 0.07325724x7

− 0.08278982x8 + 0.45101379x9 − 0.648015234x10 + 0.47466473x11 − 0.121496588x12.

(5.4)

The profile of the F(x) function is presented in Figure 2 for Re = 50 and α = 5.
It is easy to verify the accuracy of the obtained solutions if we compare these analytical

solutions with the numerical ones or with results obtained by other procedures.
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Table 1: The results of the second-order approximate solutions (5.1), (5.2), and (5.3) and numerical solution
of F(x) for Re = 50, α = 5.

x F(x), (5.1) F(x), (5.2) F(x), (5.3) Numerical solution
0 1 1 1 1
0.1 0.98244611 0.982440382 0.982430842 0.98243124
0.2 0.931225969 0.931302469 0.931225959 0.93122597
0.3 0.850471997 0.850810709 0.850611445 0.85061063
0.4 0.746379315 0.747074996 0.746790784 0.74679081
0.5 0.626298626 0.627192084 0.626947253 0.62694818
0.6 0.497665923 0.498340984 0.498235028 0.49823446
0.7 0.366966345 0.366966353 0.366970088 0.36696635
0.8 0.238952034 0.238148782 0.238142322 0.23812375
0.9 0.116313019 0.115260361 0.115219025 0.11515193
1 0 0 0 0

Table 2:Comparison between the OHAM and numerical solutions for Re = 50 and α = 5 (error = |F(x)num−
F(x)app|).

x Error of the solution (5.1) Error of the solution (5.2) Error of the solution (5.3)
0 0 0 0
0.1 0.00001487 0.000009142 0.000000398
0.2 0.000000001 0.000076499 0.000000011
0.3 0.000138633 0.0002 0.000000815
0.4 0.000411495 0.000284186 0.000000026
0.5 0.000649554 0.000243904 0.000000927
0.6 0.000568537 0.000106524 0.000000568
0.7 0.000000005 0.000000003 0.000003738
0.8 0.000828284 0.000024962 0.000018572
0.9 0.0001161089 0.000108431 0.000067095
1 0 0 0

It can be seen from Tables 1, 2, 3, and 4 that the analytical solutions of Jeffery-Hamel
flows obtained by OHAM are very accurate.

6. Conclusions

In this paper the Optimal Homotopy Asymptotic Method (OHAM) is employed to propose
a new analytic approximate solution for the nonlinear MHD Jeffery-Hamel flow problems.
The proposed procedure is valid even if the nonlinear equation does not contain any small or
large parameters.

OHAM provides us with a simple and rigorous way to control and adjust the conver-
gence of the solution through the auxiliary functions h(x, p) involving several constants Ci

which are optimally determined.
From the results presented above, we can conclude that the following.

(1) When α > 0 and steep of the channel is divergent, stream in value of Reynolds
number is caused by decreasing in velocity.
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Table 3: Comparison between Differential Transformation Method (DTM) [4], Homotopy Perturbation
Method (HPM) [4], Homotopy Analysis Method [4], and OHAM-(5.4) for Re = 80, α = −5.

x F(x) (DTM) F(x) (HPM) F(x) (HAM) F(x) (OHAM) Numerical
0 1 1 1 1 1
0.1 0.9959603887 0.9960671874 0.9995960242 0.995960605 0.9959606278
0.2 0.9832745481 0.9836959424 0.9832755258 0.983275548 0.9832755383
0.3 0.9601775551 0.9610758773 0.9601798911 0.960179914 0.96017991139
0.4 0.9235170706 0.9249245156 0.9235215737 0.923521643 0.9235215894
0.5 0.8684511349 0.8701997697 0.8684588997 0.868458963 0.86845887772
0.6 0.7880785402 0.7898325937 0.7880910186 0.788090923 0.78809092032
0.7 0.673248448 0.6745334968 0.6731437690 0.673143633 0.6731436346
0.8 0.5119644061 0.5128373095 0.5119909939 0.511991107 0.5119910891
0.9 0.2915280122 0.2918936991 0.2915580178 0.291558742 0.29155874261
1 0 0 −0.000001149 0 0

Table 4: Comparison between OHAM (5.4) and numerical solutions [4] for Re = 80, α = −5.

x F(x), (5.4) Numerical Error
0 1 1 0
0.1 0.995960605 0.9959606278 0.000000022
0.2 0.983275548 0.9832755383 0.000000009
0.3 0.960179914 0.96017991139 0.000000002
0.4 0.923521643 0.9235215894 0.000000053
0.5 0.868458963 0.86845887772 0.000000085
0.6 0.788090923 0.78809092032 0.000000002
0.7 0.673143633 0.6731436346 0.000000001
0.8 0.511991107 0.5119910891 0.000000017
0.9 0.291558742 0.29155874261 0.000000006
1 0 0 0

(2) When α < 0 and steep of the channel is convergent, the results are inverse. Increase
in value of Reynolds number is caused by increasing in velocity.

The examples related to the Jeffery-Hamel flow problem presented in this paper lead
to the very important conclusion that the accuracy of the obtained results is growing along
with increasing the number of constants in the auxiliary function. This paper confirmed
that DTM, HPM, or HAM gives a good accuracy, but OHAM is by far the best method de-
livering faster convergence and better accuracy. In the proposed procedure, iterations are
performed in a very simple manner by identifying some coefficients, and therefore very good
approximations are obtained in few terms. Actually the capital strength of the proposed
procedure is its fast convergence, since after only two iterations it converges to the exact
solution, which proves that this method is very effective in practice. This version of the
method proves to be very rapid and effective, and this is proved by comparing the analytic
solutions obtained through the proposed method with the solutions obtained via numerical
simulations or other known procedures.
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