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Five equivalence classes had been found for systems of two second-order ordinary differential
equations, transformable to linear equations (linearizable systems) by a change of variables. An
“optimal (or simplest) canonical form” of linear systems had been established to obtain the
symmetry structure, namely, with 5-, 6-, 7-, 8-, and 15-dimensional Lie algebras. For those systems
that arise from a scalar complex second-order ordinary differential equation, treated as a pair of
real ordinary differential equations, we provide a “reduced optimal canonical form.” This form
yields three of the five equivalence classes of linearizable systems of two dimensions. We show
that there exist 6-, 7-, and 15-dimensional algebras for these systems and illustrate our results with
examples.

1. Introduction
Lie used algebraic symmetry properties of differential equations to extract their solutions
[1–4]. One method developed was to transform the equation to linear form by changing
the dependent and independent variables invertibly. Such transformations are called point
transformations and the transformed equations are said to be linearized. Equations that can
be so transformed are said to be linearizable. Lie proved that the necessary and sufficient
condition for a scalar nonlinear ordinary differential equation (ODE) to be linearizable is that
it must have eight Lie point symmetries. He exploited the fact that all scalar linear second-
order ODEs are equivalent under point transformations [5], that is, every linearizable scalar
second-order ODE is reducible to the free particle equation. While the situation is not so
simple for scalar linear ODEs of order n ≥ 3, it was proved that there are three equivalence
classes with n + 1, n + 2, or n + 4 infinitesimal symmetry generators [6].
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For linearization of systems of two nonlinear ODEs, we will first consider the
equivalence of the corresponding linear systems under point transformations. Nonlinear
systems of two second-order ODEs that are linearizable to systems of ODEs with constant
coefficients, were proved to have three equivalence classes [7]. They have 7-,8-, or 15-
dimensional Lie algebras. This result was extended to those nonlinear systems which are
equivalent to linear systems of ODEs with constant or variable coefficients [8]. They obtained
an “optimal” canonical form of the linear systems involving three parameters, whose specific
choices yielded five equivalence classes, namely, with 5-,6-,7-,8-, or 15-dimensional Lie
algebras.

Geometric methods were developed to transform nonlinear systems of second-order
ODEs [9–11] to a system of the free particle equations by treating them as geodesic equations
and then projecting those equations down from an m × m system to an (m − 1) × (m − 1)
system. In this process the originally homogeneous quadratically semilinear system in m
dimensions generically becomes a nonhomogeneous, cubically semilinear system in (m − 1)
dimensions. When used for m = 2 the Lie conditions for the scalar ODE are recovered
precisely. The criterion for linearizability is simply that the manifold for the (projected)
geodesic equations be flat. The symmetry algebra in this case is sl(n + 2, R ) and hence
the number of generators is n2 + 4n + 3. Thus for a system of two equations to be
linearizable by this method it must have 15 generators. Separately, linearizability conditions
have been derived for the equivalence of linearizable systems of two second-order ODEs
and corresponding linear forms with d-dimensional Lie algebras where d = 5, 6, 7, or 8
[12]. The linearization problem for two-dimensional systems of second-order ODEs has
been addressed by constructing a general procedure to obtain invertible or noninvertible
linearizing transformations [13]. A general solution scheme has been established to solve
systems [14]whichmainly consists of the reduction of the number of the dependent variables
and linearization of the reduced systems. This method is known as sequential linearization
and found to linearize those two-dimensional systems of second-order ODEs that are not
linearizable via point transformations.

A scalar complex ODE involves two real functions of two real variables, yielding a
system of two partial differential equations (PDEs) [15, 16]. By restricting the independent
variable to be real we obtain a system of ODEs. Complex symmetry analysis (CSA) provides
the symmetry algebra for systems of two ODEs with the help of the symmetry generators of
the corresponding complex ODE. This is not a simple matter of doubling the generators for
the scalar complex ODE. The inequivalence of these systems from the systems obtained by
geometric means [11], has been proved [17]. Thus their symmetry structures are not the same. A
two-dimensional system of second-order ODEs corresponds to a scalar complex second-order
ODE if the coefficients of the system satisfy Cauchy-Riemann equations (CR-equations).
We provide the full symmetry algebra of those systems that correspond to linearizable
scalar complex ODEs. For this purpose we derive a reduced optimal canonical form for linear
systems obtainable from a complex linear equation. We prove that this form provides three
equivalence classes of linearizable systems of two second-order ODEs while there exist five
linearizable classes [8] by real symmetry analysis. This difference arises due to the fact that in
CSA we invoke equivalence of scalar second-order ODEs to obtain the reduced optimal form
while in real symmetry analysis equivalence of linear systems of two ODEs was used to derive
their optimal form. The nonlinear systems transformable to one of the three equivalence
classes are characterized by complex transformations of the form

T : (x, u(x)) −→ (
χ(x), U(x, u)

)
. (1.1)
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Indeed, these complex transformations generate these linearizable classes of two-
dimensional systems. Note that not all the complex linearizing transformations for scalar
complex equations provide the corresponding real transformations for systems.

The plan of the paper is as follows. In the next section we present the preliminaries for
determining the symmetry structures. The third section deals with the conditions derived for
systems that can be obtained by CSA. In section four we obtain the reduced optimal canonical
form for systems associated with complex linear ODEs. The theory developed to classify
linearizable systems of ODEs transformable to this reduced optimal form is given in the fifth
section. Applications of the theory are given in the next section. The last section summarizes
and discusses the work.

2. Preliminaries

The simplest form of a second-order equation has the maximal-dimensional algebra, sl(3, R).
To discuss the equivalence of systems of two linear second-order ODEs, we need to use the
following result for the equivalence of a general system of n linear homogeneous second-
order ODEs with 2n2 + n arbitrary coefficients and some canonical forms that have fewer
arbitrary coefficients [18]. Any system of n second-order nonhomogeneous linear ODEs

ü = Au̇ + Bu + c, (2.1)

can be mapped invertibly to one of the following forms:

v̈ = Cv̇, (2.2)

ẅ = Dw, (2.3)

where A, B, C, D are n × n matrix functions, u, v, w, c are vector functions, and the dot
represents differentiation relative to the independent variable t. For a system of two second-
order ODEs (n = 2) there are a total of 10 coefficients for the system represented by (2.1). It is
reducible to the first and second canonical forms, (2.2) and (2.3), respectively. Thus a system
with 4 arbitrary coefficients of the form

ẅ1 = d11(t)w1 + d12(t)w2,

ẅ2 = d21(t)w1 + d22(t)w2,
(2.4)

can be obtained by using the equivalence of (2.1) and the counterpart of the Laguerre-Forsyth
second canonical form (2.3). This result demonstrates the equivalence of systems of two
ODEs having 10 and 4 arbitrary coefficients, respectively. The number of arbitrary coefficients
can be further reduced to three by the change of variables [8]

ỹ =
w1

ρ(t)
, z̃ =

w2

ρ(t)
, x =

∫ t

ρ−2(s)ds, (2.5)

where ρ satisfies

ρ′′ − d11 + d22

2
ρ = 0, (2.6)
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to the linear system

ỹ′′ = d̃11(x)ỹ + d̃12(x)z̃,

z̃′′ = d̃21(x)ỹ − d̃11(x)z̃,
(2.7)

where

d̃11 =
ρ3(d11 − d22)

2
, d̃12 = ρ3d12, d̃21 = ρ3d21. (2.8)

This procedure of reduction of arbitrary coefficients for linearizable systems simplifies
the classification problem enormously. System (2.7) is called the optimal canonical form for
linear systems of two second-order ODEs, as it has the fewest arbitrary coefficients, namely,
three.

3. Systems of ODEs Obtainable by CSA

Following the classical Lie procedure [19], one uses invertible point transformations

X = X
(
x, y, z

)
, Y = Y

(
x, y, z

)
, Z = Z

(
x, y, z

)
, (3.1)

to map the general system of ODEs

y′′ = Γ1
(
x, y, z, y′, z′

)
,

z′′ = Γ2
(
x, y, z, y′, z′

)
,

(3.2)

where prime denotes differentiation with respect to x, to the simplest form

Y ′′ = 0, Z′′ = 0, (3.3)

where the prime now denotes differentiation with respect to X and the derivatives transform
as

Y ′ =
Dx(Y )
Dx(X)

= F1
(
x, y, z, y′, z′

)
,

Z′ =
Dx(Z)
Dx(X)

= F2
(
x, y, z, y′, z′

)
,

(3.4)

Y ′′ =
Dx(F1)
Dx(X)

, Z′′ =
Dx(F2)
Dx(X)

, (3.5)
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where Dx is the total derivative operator. The most general linearizable form of (3.2)
obtainable from the transformations (3.1) is given by

y′′ + α11y
′3 + α12y

′2z′ + α13y
′z

′2 + α14z
′3 + β11y

′2 + β12y
′z′ + β13z

′2

+ γ11y
′ + γ12z

′ + δ1 = 0,

z′′ + α21y
′3 + α22y

′2z′ + α23y
′z

′2 + α24z
′3 + β21y

′2 + β22y
′z′ + β23z

′2

+ γ21y
′ + γ22z

′ + δ2 = 0,

(3.6)

where the coefficients are functions of the dependent and independent variables, which are
given in the appendix. System (3.6) is the most general candidate for two second-order
ODEs that may be linearizable. On the other hand CSA deals with a class of systems of the
forms (3.2) in which Γ1 and Γ2 satisfy CR-equations. The role of CR-equations in yielding
the solutions of two-dimensional systems from the solutions of complex base equations has
been investigated [20]. To make a complete characterization of such systems we restate the
following theorem.

Theorem 3.1. A general two-dimensional system of second-order ODEs (3.2) corresponds to a
complex equation

u′′ = Γ
(
x, u, u′), (3.7)

if and only if Γ1 and Γ2 satisfy the CR-equations

Γ1,y = Γ2,z, Γ1,z = −Γ2,y,

Γ1,y′ = Γ2,z′ , Γ1,z′ = −Γ2,y′ ,
(3.8)

where Γ(x, u, u′) = Γ1(x, y, z, y′, z′) + iΓ2(x, y, z, y′, z′).

Another candidate of linearizability of two dimensional systems obtainable from the
most general form of a complex linearizable equation

u′′ + E3(x, u)u
′3 + E2(x, u)u

′2 + E1(x, u)u′ + E0(x, u) = 0, (3.9)

where u is a complex function of the real independent variable x, is also cubically semilinear,
that is, a system of the form

y′′ + α11y
′3 − 3α12y

′2z′ − 3α11y
′z

′2 + α12z
′3 + β11y

′2 − 2β12y
′z′ − β11z

′2

+ γ11y
′ − γ12z

′ + δ11 = 0,

z′′ + α12y
′3 + 3α11y

′2z′ − 3α12y
′z

′2 − α11z
′3 + β12y

′2 + 2β11y
′z′ − β12z

′2

+ γ12y
′
+ γ11z

′
+ δ12 = 0,

(3.10)
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here the coefficients α1i, β1i, γ1i, and δ1i for i = 1, 2 are functions of x, y, and z. Clearly, the
coefficients α1i, β1i, γ1i, and δ1i satisfy the CR-equations, that is, α11,y = α12,z, α12,y = −α11,z and
vice versa. It is obvious that (3.9) generates a system by decomposing the complex coefficients
Ej , for j = 0, 1, 2, 3 into real and imaginary parts

E3 = α11 + iα12, E2 = β11 + iβ12, E1 = γ11 + iγ12, E0 = δ11 + iδ12, (3.11)

where all the functions are analytic. The system of the form (3.10) is called complex linearizable
as it comes from a complex linearizable ODE (3.9). In order to establish correspondence
between cubically semilinear forms (3.6) and (3.10), we state the following theorem.

Theorem 3.2. A system of the form (3.6) corresponds to (3.10) if and only if coefficients of both the
systems satisfy the following set of equations:

α11 = −1
3
α13 =

1
3
α22 = −α24 = α11, β21 = −1

2
β12 = −β23 = β12,

α14 = −1
3
α12 = −1

3
α23 = α21 = α12, β11 =

1
2
β22 = −β13 = β11,

γ11 = γ22 = γ11, γ21 = −γ12 = γ12, δ1 = δ11, δ2 = δ12.

(3.12)

Theorem 3.2 identifies those two-dimensional systemswhich are complex linearizable.
It may be pointed out that the coefficients of (3.6) also satisfy CR-equations as a result of
(3.12).

4. Reduced Optimal Canonical Forms

The simplest forms for linear systems of two second-order ODEs corresponding to complex
scalar ODEs can be established by invoking the equivalence of scalar second-order linear
ODEs. Consider a general linear scalar complex second-order ODE

u′′ = ζ1(x)u′ + ζ2(x)u + ζ3(x), (4.1)

where prime denotes differentiation relative to x. As all the linear scalar second-order ODEs
are equivalent, so (4.1) is equivalent to the following scalar second-order complex ODEs

u′′ = ζ4(x)u′, (4.2)

u′′ = ζ5(x)u, (4.3)

where all the three forms (4.1), (4.2), and (4.3) are transformable to each other. Indeed these
three forms are reducible to the free particle equation. These three complex scalar linear ODEs
belong to the same equivalence class, that is, all have eight Lie point symmetry generators.
In this paper we prove that the systems obtainable by these forms using CSA have more than
one equivalence class. To extract systems of two linear ODEs from (4.2) and (4.3) we put
u(x) = y(x) + iz(x), ζ4(x) = α1(x) + iα2(x) and ζ5(x) = α3(x) + iα4(x), to obtain two forms of



Mathematical Problems in Engineering 7

systems of two linear ODEs

y′′ = α1(x)y′ − α2(x)z′,

z′′ = α2(x)y′ + α1(x)z′,
(4.4)

y′′ = α3(x)y − α4(x)z,

z′′ = α4(x)y + α3(x)z,
(4.5)

thus we state the following theorem.

Theorem 4.1. If a system of two second-order ODEs is linearizable via invertible complex point
transformations then it can be mapped to one of the two forms (4.4) or (4.5).

Notice that here we have only two arbitrary coefficients in both the linear forms while the
minimum number obtained before was three, that is, a system of the form (2.7). The reason
we can reduce further is that we are dealing with the special classes of linear systems of
ODEs that correspond to the scalar complex ODEs. In fact (4.5) can be reduced further by the
change of variables

Y =
y

ρ(x)
, Z =

z

ρ(x)
, X =

∫x

ρ−2(s)ds, (4.6)

where ρ satisfies

ρ′′ − α3ρ = 0, (4.7)

to

Y ′′ = −β(X)Z,

Z′′ = β(X)Y,
(4.8)

where β = ρ3α4, and prime denotes the differentiation with respect to X. Hence we arrive at
the following result.

Theorem 4.2. Any linear system of two second-order ODEs of the form (4.5) with two arbitrary
coefficients is transformable to a simplest system of two linear ODEs (4.8) with one arbitrary
coefficient via real point transformations (4.6) where (4.7) holds.

The system (4.8) provides the reduced optimal canonical form associated with complex
ODEs that contain a single coefficient β(x), which is an arbitrary function of x. The
equivalence of systems (4.4) and (4.5) can be established via invertible point transformations
which we state in the form of following theorem.
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Theorem 4.3. Two linear forms of the systems of two second-order ODEs (4.4) and (4.5) are
equivalent via invertible point transformations

y = M1(x)y1 −M2(x)y2 + y∗, z = M1(x)y2 +M2(x)y1 + z∗, (4.9)

of the dependent variables only, whereM1(x),M2(x) are two linearly independent solutions of

α1M1 − α2M2 = 2M′
1,

α2M1 + α1M2 = 2M′
2,

(4.10)

and y∗, z∗are the particular solutions of (4.4).

Proof. Differentiating the set of equations (4.9) and inserting the result in the linear form
(4.4), routine calculations show that under the conditions (4.10) system (4.4) can be mapped
to (4.5) where

α3(x) =
1

M2
1 +M2

2

(
M1

(
α1M

′
1 − α2M

′
2 −M′′

1

)
+M2

(
α1M

′
2 + α2M

′
1 −M′′

2
))
,

α4(x) =
1

M2
1 +M2

2

(
M1

(
α1M

′
2 + α2M

′
1 −M′′

2
) −M2

(
α1M

′
1 − α2M

′
2 −M′′

1

))
.

(4.11)

Thus the linear form (4.4) is reducible to (4.8).

Remark 4.4. Any nonlinear system of two second-order ODEs that is linearizable by complex
methods can be mapped invertibly to a system of the form (4.8)with one coefficient which is
an arbitrary function of the independent variable.

5. Symmetry Structure of Linear Systems Obtained by CSA

To use the reduced canonical form [21] for deriving the symmetry structure of linearizable
systems associated with the complex scalar linearizable ODEs, we obtain a system of PDEs
whose solution provides the symmetry generators for the corresponding linearizable systems
of two second-order ODEs.

Theorem 5.1. Linearizable systems of two second-order ODEs reducible to the linear form (4.8) via
invertible complex point transformations, have 6-, 7-, or 15-dimensional Lie point symmetry algebras.

Proof. The symmetry conditions provide the following set of PDEs for the system (4.8)

ξ,xx = ξ,xy = ξ,yy = 0 = η1,zz = η2,yy, (5.1)

η1,yy − 2ξxy = η1,yz − ξ,xz = η2,yz − ξxy = η2,zz − 2ξ,xz = 0, (5.2)

ξ,xx − 2η1,xy − 3zβ(x)ξ,y + yβ(x)ξ,z = η1,xz + zβ(x)ξ,z = 0, (5.3)

ξ,xx − 2η2,xz + 3yβ(x)ξ,z − zβ(x)ξ,y = η2,xy − yβ(x)ξ,y = 0, (5.4)
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η1,xx + β(x)
(
yη1,z + 2zξ,x − zη1,y + η2

)
+ zβ′(x)ξ = 0, (5.5)

η2,xx + β(x)
(
yη2,z − 2yξ,x − zη2,y − η1

) − yβ′(x)ξ = 0. (5.6)

Equations (5.3)–(5.6) involve an arbitrary function of the independent variable and its first
derivatives. Using (5.1) and (5.2)we have the following solution set

ξ = γ1(x)y + γ2(x)z + γ3(x),

η1 = γ ′1(x)y
2 + γ ′2(x)yz + γ4(x)y + γ5(x)z + γ6(x),

η2 = γ ′1(x)yz + γ ′2(x)z
2 + γ7(x)y + γ8(x)z + γ9(x).

(5.7)

Using (5.3) and (5.4), we get

β(x)γ1(x) = 0 = β(x)γ2(x). (5.8)

Now assuming β(x) to be zero, nonzero constant and arbitrary function of x will
generate the following cases.

Case 1 (β(x) = 0). The set of determining equations (5.1)–(5.6) will reduce to a trivial system
of PDEs

η1,xx = η1,xz = η1,zz = 0,

η2,xx = η2,xy = η2,yy = 0,

2ξ,xy − η1,yy = 0 = 2ξ,xz − η2,zz,

ξ,xz − η1,yz = 0 = ξ,xy − η2,yz,

ξ,xx − 2η1,xy = 0 = ξ,xx − 2η2,xz,

(5.9)

which can be extracted classically for the system of free particle equations. Solving it we find
a 15-dimensional Lie point symmetry algebra.

Case 2 (β(x)/= 0). Then (5.8) implies γ1(x) = γ2(x) = 0 and (5.7) reduces to

ξ = γ3(x),

η1 =

(
γ ′3(x)
2

+ c3

)

y + c1z + γ6(x),

η2 = c2y +

(
γ ′3(x)
2

+ c4

)

z + γ9(x).

(5.10)

Here three subcases arise.
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Subcase 2.1 (β(x) is a non-zero constant). As equations (5.5) and (5.6) involve the derivatives
of β(x), which will now be zero, equations (5.3)–(5.6) and (5.10) yield a 7-dimensional Lie
algebra. The explicit expressions of the symmetry generators involve trigonometric functions.
But for a simple demonstration of the algorithm consider β(x) = 1. The solution of the set of
the determining equations is

ξ = C1,

η1 = C2y +
(
−C4e

x/
√
2 − C3e

−x/√2
)
sin

(
x√
2

)
+ C6e

x/
√
2 cos

(
x√
2

)

+ C5e
−x/√2 cos

(
x/

√
2
)
+ C7z,

η2 =
(
−C6e

x/
√
2 + C5e

−x/√2
)
sin

(
x√
2

)
− C4e

x/
√
2 cos

(
x√
2

)
− C2z

+ C3e
−x/√2 cos

(
x/

√
2
)
+ C7y.

(5.11)

This yields a 7-dimensional symmetry algebra.

Subcase 2.2 (β(x) = x−2, x−4, or (x + 1)−4). Equations (5.3)–(5.6) and (5.10) yield a 7-
dimensional Lie algebra. Thus the 7-dimensional algebras can be related with systems which
have variable coefficients in their linear forms, apart from the linear forms with constant
coefficients.

Subcase 2.3 (β(x) = x−1, x2, x2 ± C0 or ex). Using equations (5.3)–(5.6) and (5.10), we arrive
at a 6-dimensional Lie point symmetry algebra. The explicit expressions involve special
functions, for example, for β(x) = x−1, x2, x2 ± C0 we get Bessel functions. Similarly for
β(x) = ex there are six symmetries, including the generators y∂y − exz∂z, z∂z + exy∂y. The
remaining four generators come from the solution of an ODE of order four.

Thus there appear only 6-, 7-, or 15-dimensional algebras for linearizable systems of
two second-order ODEs transformable to (4.8) via invertible complex point transformations.
We are not investigating the remaining two linear forms (4.4) and (4.5), because these are
transformable to system (4.8), that is, all these forms have the same symmetry structures.
Nowwe verify that the linear forms with Lie algebras of dimensions 6 or 7 are also obtainable
from (2.7). For instance, take the coefficients in (2.7) as non-zero constants, d̃11(x) = a0,
d̃12(x) = b0, and d̃21(x) = c0, where

a2
0 + b0c0 /= 0. (5.12)

The corresponding system has 7-dimensional algebra which is the same as the linear form
(4.8). Moreover the 8-dimensional symmetry algebra was extracted [8] by assuming

a2
0 + b0c0 = 0. (5.13)

Such linear forms cannot be obtained from (4.8). These two examples explain why a 7-
dimensional algebra can be obtained from (4.8), but a linear form with an 8-dimensional
algebra is not obtainable from it.
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To prove these observations consider arbitrary point transformations of the form

ỹ = a(x)y + b(x)z, z̃ = c(x)y + d(x)z. (5.14)

Case a. If a(x) = a0, b(x) = b0, c(x) = c0, and d(x) = d0 are constants then (5.14) implies

ỹ′′ = a0y
′′ + b0z

′′,

z̃′′ = c0y
′′ + d0z

′′.
(5.15)

Using (2.7) and (4.5) in the above equation we find

(a0d0 − b0c0)y′′ =
(
(a0d0 + b0c0)d̃11(x) + c0d0d̃12(x) − a0b0d̃21(x)

)
y

+
(
2b0d0d̃11(x) + d2

0d̃12(x) − b20d̃21(x)
)
z,

(a0d0 − b0c0)z′′ =
(
(a0d0 + b0c0) d̃11(x) + c0d0d̃12(x) − a0b0d̃21(x)

)
z

+
(
2a0c0d̃11(x) + c20d̃12(x) − a2

0d̃21(x)
)
y,

(5.16)

where a0d0 − b0c0 /= 0. Using (4.5), (5.16), and the linear independence of the d̃’s, gives

a0b0 = c0d0 = 0,

a2
0 − b20 = c20 − d2

0 = 0,

a0d0 + b0c0 = a0c0 − b0d0 = 0,

(5.17)

which has a solution a0 = b0 = c0 = d0 = 0, which is inconsistent with (5.16) because the
requirement was a0d0 − b0c0 /= 0.

Case b. If a(x), b(x), c(x), and d(x) are arbitrary functions of x then

ỹ′′ = a(x)y′′ + b(x)z′′ + a′′(x)y + b′′(x)z + 2a′(x)y′ + 2b′(x)z′,

z̃′′ = c(x)y′′ + d(x)z′′ + c′′(x)y + d′′(x)z + 2c′(x)y′ + 2d′(x)z′.
(5.18)

Thus we obtain

(ad − bc)y′′ =
[
(ad + bc)d̃11 + cdd̃12 − abd̃21 − a′′d + c′′b

]
y

+
(
2bdd̃11 + d2d̃12 − b2d̃21 − b′′d + d′′b

)
z − 2d

(
a′y′ + b′z′

)
+ 2b

(
c′y′ + d′z′

)
,

(ad − bc)z′′ =
(
2acd̃11 + c2d̃12 − a2d̃21 − a′′c + c′′a

)
y

+
[
(ad + bc)d̃11 + cdd̃12 − abd̃21 − b′′c + d′′a

]
z − 2c

(
a′y′ + b′z′

)
+ 2a

(
c′y′ + d′z′

)
.

(5.19)
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Comparing the coefficients as before and using the linear independence of d̃’s we obtain

a′(x) = b′(x) = c′(x) = d′(x) = 0, (5.20)

which implies that it reduces to a system of the form (5.16), which leaves us again with the
same result. Thus we have the following theorem.

Theorem 5.2. The linear forms for systems of two second-order ODEs obtainable by real symmetry
analysis with 5- or 8-dimensional algebras are not transformable to (4.5) by invertible point
transformations.

Before presenting some illustrative applications of the theory developed we refine
Theorem 5.1 by using Theorem 5.2 to make the following remark.

Remark 5.3. There are only 6-, 7-, or 15-dimensional algebras for linearizable systems
obtainable by scalar complex linearizable ODEs, that is, there are no 5- or 8-dimensional Lie
point symmetry algebras for such systems.

6. Applications

Consider a system of nonhomogeneous geodesic-type differential equations

y′′ + y
′2 − z

′2 = Ω1
(
x, y, z, y′, z′

)
,

z′′ + 2y′z′ = Ω2
(
x, y, z, y′, z′

)
,

(6.1)

where Ω1 and Ω1 are linear functions of the dependent variables and their derivatives. This
system corresponds to a complex scalar equation

u′′ + u
′2 = Ω

(
x, u, u′), (6.2)

which is either transformable to the free particle equation or one of the linear forms (4.1)–
(4.3), by means of the complex transformations

χ = χ(x), U
(
χ
)
= eu. (6.3)

Which are further transformable to the free particle equation by utilizing another set of
invertible complex point transformations. Generally, the system (6.1) is transformable to a
system of the free particle equations or a linear system of the form

Y ′′ = Ω̃1
(
χ, Y,Z, Y ′, Z′) − Ω̃2

(
χ, Y,Z, Y ′, Z′),

Z′′ = Ω̃2
(
χ, Y,Z, Y ′, Z′) + Ω̃1

(
χ, Y,Z, Y ′, Z′).

(6.4)

Here Ω̃1 and Ω̃2 are linear functions of the dependent variables and their derivatives,
via an invertible change of variables obtainable from (6.3). The linear form (6.4) can
be mapped to a maximally symmetric system if and only if there exist some invertible
complex transformations of the form (6.3), otherwise these forms cannot be reduced further.
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This is the reason why we obtain three equivalence classes, namely, with 6-, 7-, and 15-
dimensional algebras for systems corresponding to linearizable complex equations with
only one equivalence class. We first consider an example of a nonlinear system that admits
a 15-dimensional algebra which can be mapped to the free particle system using (6.3).
Then we consider four applications to nonlinear systems of quadratically semilinear ODEs
transformable to (6.4) via (6.3) that are not further reducible to the free particle system.

(1) Consider (6.1) with

Ω1 = − 2
x
y′,

Ω2 = − 2
x
z′,

(6.5)

it admits a 15-dimensional algebra. The real linearizing transformations

χ(x) =
1
x
, Y = ey cos(z), Z = ey sin(z), (6.6)

obtainable from the complex transformations (6.3)withU(χ) = Y (χ) + iZ(χ), map the above
nonlinear system to Y ′′ = 0, Z′′ = 0. Moreover, the solution of (6.5) corresponds to the
solution of the corresponding complex equation

u′′ + u
′2 +

2
x
u′ = 0. (6.7)

(2)Now consider Ω1 and Ω2 to be linear functions of the first derivatives y′, z′, that is,
system (6.1)with

Ω1 = c1y
′ − c2z

′,

Ω2 = c2y
′ + c1z

′,
(6.8)

which admits a 7-dimensional algebra, provided both c1 and c2 are not simultaneously zero.
It is associated with the complex equation

u′′ + u
′2 − cu′ = 0. (6.9)

Using the transformations (6.3) to generate the real transformations

χ(x) = x, Y = ey cos(z), Z = ey sin(z), (6.10)

which map the nonlinear system to a linear system of the form (4.4), that is,

Y ′′ = c1Y
′ − c2Z

′,

Z′′ = c2Y
′ + c1Z

′,
(6.11)

which also has a 7-dimensional symmetry algebra and corresponds to

U′′ − cU′ = 0. (6.12)



14 Mathematical Problems in Engineering

All the linear second-order ODEs are transformable to the free particle equation thus
we can invertibly transform the above equation to Ũ′′ = 0, using

(
χ(x), U

) −→
(
χ̃ = α + βecχ(x), Ũ = U

)
, (6.13)

where α, β, and c are complex. But these complex transformations can not generate real
transformations to reduce the corresponding system (6.11) to a maximally symmetric system.

(3) A system with a 6-dimensional Lie algebra is obtainable from (6.1) by introducing
a linear function of x in the above coefficients, that is,

Ω1 = (1 + x)
(
c1y

′ − c2z
′),

Ω2 = (1 + x)
(
c2y

′ + c1z
′),

(6.14)

in (6.1), then the same transformations (6.10) converts the above system into a linear system

Y ′′ =
(
1 + χ

)(
c1Y

′ − c2Z
′),

Z′′ =
(
1 + χ

)(
c2Y

′ + c1Z
′),

(6.15)

where both systems (6.14) and (6.15) are in agreement on the dimensions (i.e., six) of their
symmetry algebras. Again, the above system is a special case of the linear system (4.4).

(4) If we chooseΩ1 = c1, Ω2 = c2, where ci(i = 1, 2) are non-zero constants, then under
the same real transformations (6.10), the nonlinear system (6.1) takes the form

Y ′′ = c1Y − c2Z,

Z′′ = c2Y + c1Z.
(6.16)

7. Conclusion

The classification of linearizable systems of two second-order ODEs was obtained by using
the equivalence properties of systems of two linear second-order ODEs [8]. The “optimal
canonical form” of the corresponding linear systems of two second-order ODEs, to which
a linearizable system could be mapped, is crucial. This canonical form used invertible
transformations, the invertibility of these mappings insuring that the symmetry structure is
preserved. That optimal canonical form of the linear systems of two second-order ODEs led
to five linearizable classes with respect to Lie point symmetry algebras with dimensions 5, 6,
7, 8, and 15.

Systems of two second-order ODEs appearing in CSA correspond to some scalar
complex second-order ODE.We proved the existence of a reduced optimal canonical form for
such linear systems of two ODEs. This reduced canonical form provided three equivalence
classes, namely, with 6-, 7-, or 15-dimensional point symmetry algebras. Two cases are
eliminated in the theory of complex symmetries: those of 5 and 8-dimensional algebras. The
systems corresponding to a complex linearized scalar ODE involve one parameter which
can only cover three possibilities: (a) it is zero, (b) it is a non-zero constant, and (c) it is a
nonconstant function. The nonexistence of 5- and 8-dimensional algebras for the linear forms
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appearing due to CSA has been proved by showing that these forms are not equivalent to
those provided by the real symmetry approach for systems [8] with 5 and 8 generators.

Work is in progress [20] to find complex methods of solving a class of 2-dimensional
nonlinearizable systems of second-order ODEs. It is also obtainable from the linearizable scalar
complex second-order ODEs, which are transformable to the free particle equation via an
invertible change of the dependent and independent variables of the form

χ = χ(x, u), U
(
χ
)
= U(x, u). (7.1)

Notice that these transformations are different from (6.3). The real transformations
corresponding to the complex transformations above cannot be used to linearize the real sys-
tem. But the linearizability of the complex scalar equations can be used to provide solutions
for the corresponding systems.

One might wonder how the procedures developed can be extended to odd dimen-
sional systems of equations. To obtain a 2n-dimensional systemwe can take an n-dimensional
system, regard it as complex and split it. This method will not work for odd dimensions.
An extension of the procedure has been developed [22] of using the splitting procedure
iteratively starting with a scalar base equation. Among others, this gave a 3-dimensional
system of ODEs. The procedure could be used by increasing the number of iterations or
starting with a higher dimensional system and using a second iteration, to obtain any
dimensional system—even or odd.

Appendix

Inserting F1(x, y, z, y′, z′) and F2(x, y, z, y′, z′) from (3.4) into (3.5) we obtain

Dx(X) ·D2
x(Y ) −Dx(Y ) ·D2

x(X)

(Dx(X))3
= 0,

Dx(X) ·D2
x(Z) −Dx(Z) ·D2

x(X)

(Dx(X))3
= 0.

(A.1)

Substituting

Dx(X) = Xx + y′Xy + z′Xz,

D2
x(X) = Xxx + 2y′Xxy + 2z′Xxz + y

′2Xyy + 2y′z′Xyz + z
′2Xzz + y′′Xy + z′′Xz,

(A.2)

and similar expressions for Dx(Y ), Dx(Z), D2
x(Y ), and D2

x(Z) in (A.1), yields

α1y
′′ + α2z

′′ + β1y
′3 + β2y

′2z′ + β3y
′z

′2 + β4z
′3 + γ1y

′2 + γ2y
′z′ + γ3z

′2

+ δ1y
′ + δ2z

′ + ε1 = 0,

α3y
′′ + α4z

′′ + β5y
′3 + β6y

′2z′ + β7y
′z

′2 + β8z
′3 + γ4y

′2 + γ5y
′z′ + γ6z

′2

+ δ3y
′ + δ4z

′ + ε2 = 0.

(A.3)



16 Mathematical Problems in Engineering

The coefficients of the above system of ODEs are

α1 = XxYy − YxXy + z′
(
XzYy − YzXy

)
, α2 = XxYz − YxXz + y′(XyYz − YyXz

)
,

α3 = XxZy − ZxXy + z′
(
XzZy − ZzXy

)
, α4 = XxZz − ZxXz + y′(XyZz − ZyXz

)
,

β1 = XyYyy − YyXyy, β2 = XzYyy − YzXyy + 2
(
XyYyz − YyXyz

)
,

β3 = XyYzz − YyXzz + 2
(
XzYyz − YzXyz

)
, β4 = XzYzz − YzXzz,

β5 = XyZyy − ZyXyy, β6 = XzZyy − ZzXyy + 2
(
XyZyz − ZyXyz

)
,

β7 = XyZzz − ZyXzz + 2
(
XzZyz − ZzXyz

)
, β8 = XzZzz − ZzXzz,

γ1 = XxYyy − YxXyy + 2
(
XyYxy − YyXxy

)
,

γ2 = 2
[
XxYyz +XyYxz +XzYxy −

(
YxXyz + YyXxz + YzXxy

)]
,

γ3 = XxYzz − YxXzz + 2(XzYxz − YzXxz),

γ4 = XxZyy − ZxXyy + 2
(
XyZxy − ZyXxy

)
,

γ5 = 2
[
XxZyz +XyZxz +XzZxy −

(
ZxXyz + ZyXxz + ZzXxy

)]
,

γ6 = XxZzz − ZxXzz + 2(XzZxz − ZzXxz),

δ1 = XyYxx − YyXxx + 2
(
XxYxy − YxXxy

)
,

δ2 = XzYxx − YzXxx + 2(XxYxz − YxXxz),

δ3 = XyZxx − ZyXxx + 2
(
XxZxy − ZxXxy

)
,

δ4 = XzZxx − ZzXxx + 2(XxZxz − ZxXxz),

ε1 = XxYxx − YxXxx, ε2 = XxZxx − ZxXxx.

(A.4)

System (A.3) yields a system of the form (3.6) with the following coefficients:

α11 = τ1
(
α4β1 − α2β5

)
, α12 = τ1

(
α4β2 − α2β6

)
, α13 = τ1

(
α4β3 − α2β7

)
,

α14 = τ1
(
α4β4 − α2β8

)
, α21 = τ2

(
α3β1 − α1β5

)
, α22 = τ2

(
α3β2 − α1β6

)
,

α23 = τ2
(
α3β3 − α1β7

)
, α24 = τ2

(
α3β4 − α1β8

)
,

β11 = τ1
(
α4γ1 − α2γ4

)
, β12 = τ1

(
α4γ2 − α2γ5

)
, β13 = τ1

(
α4γ3 − α2γ6

)
,

β21 = τ2
(
α3γ1 − α1γ4

)
, β22 = τ2

(
α3γ2 − α1γ5

)
, β23 = τ2

(
α2γ3 − α1γ6

)
,

γ11 = τ1
(
α4δ1 − α2δ3

)
, γ12 = τ1

(
α4δ2 − α2δ4

)
, γ21 = τ2

(
α3δ1 − α1δ3

)
,

γ22 = τ2
(
α3δ2 − α1δ4

)
, δ1 = τ1(α4ε1 − α2ε2), δ2 = τ2(α3ε1 − α1ε2),

(A.5)

where τ1 = −τ2 = α1α4 − α2α3.
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