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The homotopy analysis method (HAM) is employed to propose an approach for solving the
nonlinear dynamical system of an electrostatically actuated micro-cantilever in MEMS. There
are two relative merits of the presented HAM compared with some usual procedures of the
HAM. First, a new auxiliary linear operator is constructed. This operator makes it unnecessary
to eliminate any secular terms. Furthermore, all the deformation equations are purely linear.
Numerical examples show the excellent agreement of the attained solutions with numerical ones.
The respective effects of applied voltage, cubic nonlinear stiffness, gap distance, and squeeze film
damping on vibration responses are analyzed detailedly.

1. Introduction

Over the last couple of decades, Liao [1–4] described a nonlinear analytical technique which
does not require small parameters and thus can be applied to solve nonlinear problems
without small or large parameters. This technique is based on homotopy, which is an
important part of topology, called the homotopy analysis method (HAM). Its main idea is to
construct a class of homotopy in a rather general form by introducing an auxiliary parameter.
This parameter can provide us with a convenient way to control the convergence of
approximation series and adjust convergence rate and region when necessary. A systematical
description of this method was presented in [5]. Liao [5] also studied the convergence
properties of the HAM and proved that as long as an HAM series is convergent, it must
converge to one solution of the considered problem.
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Many microelectro-mechanical systems (MEMSs) inherently contain nonlinearities,
such as intrinsic and exterior nonlinearities arising from coupling of different domains
[6–8]. Also, there exist mechanical nonlinearities, for example, large deformations, surface
contact, creep phenomena, time-dependent masses and nonlinear damping effects, and so
forth [9, 10]. It seems fair to say that nonlinear dynamic analysis becomes an increasingly
important task in MEMS research and manufacturing.

The nonlinear dynamical behaviors of microcantilever-based instrument in MEMS
under various loading conditions have stimulated the curiosities and interests of
many researchers [11–15]. For example, the oscillation of an electrostatically actuated
microcantilever-based device in MEMS was investigated through a simplified mass-spring-
damping model subjected to nonlinear electrostatic force [16–19]. Complex nonlinear terms
arising from electrostatic force and from squeeze film damping make it difficult to analyze
the system directly using some routine techniques for nonlinear vibrations. For this reason,
Zhang and Meng [20] suggested an approximate treatment by expanding the nonlinearities
into Taylor series and retaining only the first two terms. The harmonic balance method was
then applied to solve the approximate system. Note that the attained results have not been
compared with any numerical solutions. The purpose of this study is to seek highly accurate
solutions of the aforementioned system on the basis of the HAM.

2. Dynamical System

The electrostatically actuated microcantilever in MEMS as shown in Figure 1 is 4.5μm ×
80μm × 200μm in dimensions [16]. The governing equation describing the motion of the
microstructure is [16, 20]

m
..
y +cẏ + ky = FE(t), (2.1)

where the superscript denotes the differentiation with respect to time t, y the vertical
displacement of the microcantilever relative to the origin of the fixed plate,m the mass, k and
c the effective spring stiffness and damping coefficient of the simplified system, respectively.
According to the parallel plate theory, if the fringe effects at the edges of the plates are ignored
[21], the electrostatic force (FE) generated by applying a voltage V (t) between the capacitor
plates (the fixed plate and the movable plate) can be expressed by

FE =
ε0A

2
V 2(t)

(
d − y

)2 , (2.2)

where ε0 is the absolute dielectric constant of vacuum, ε0 = 8.5 × 10−12 N/m, A the
overlapping area between the two plates, and d (μm) is the gap between them. The other
parameter values are given asm = 3.5 × 10−11 kg, and k = 0.17N/m, c = 1.78 × 10−6 kg/s and
A = 1.6 × 10−9 m2 [20], while the value of d varies.

Introducing the following dimensionless variables

x =
y

d
, ω0 =

√
k

m
, t1 = ω0t, (2.3)
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Figure 1: A simplified dynamical model of the microcantilever in MEMS.

then one can rewrite (2.1) and (2.2) as

..
x +ζẋ + x =

TV 2(t1)

(1 − x)2
, (2.4)

where ζ = c/
√
km, T = ε0A/(2kd3), and the superscript (·) refers to the differentiation with

respect to t1.
When the applied voltage, V (t1), includes alternating current (ac) voltage, V0 cos(ωt1),

and polarization voltage, VP , V (t1) = VP + V0 cos(ωt1) can be considered for analyzing the
nonlinearities of the system. In addition, MEMS devices are often characterized by structures
that are a few microns in size, separated by micron-sized gaps. At these sizes, air damping
dominates over other dissipation. Squeeze film damping may be used to represent the air
damping experienced by the moving plates [22]. When considering the effect of squeeze film
damping and a cubic nonlinear spring stiffness k3x3, system (2.4) is given as

..
x +

[

ζ +
ζ2

(1 − x)3

]

ẋ + k3x
3 + x =

T[VP + V0 cos(ωt1)]2

(1 − x)2
, (2.5)

where ζ2 = c2/(d3
√
km) is a nondimensional parameter, and c2 is the squeeze film damping

(Pa·μm4·s).

3. Mathematical Formulation

In this section, the HAM is applied to solve (2.5). First of all, introducing a new time scale
τ = ωt1, and multiplying (2.5) by (1 − x)3, one can rewrite (2.5) as

(1 − x)3
(
ω2x′′ + ζωx′ + x + k3x

3
)
+ ζ2ωx′ + Tx(VP + V0 cos τ)2 = T(VP + V0 cos τ)2, (3.1)
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where the superscript denotes the differentiation with respect to τ . Compared with (2.5), it is
very easy to expand (3.1) once x is expressed as an HAM series.

3.1. Basic Idea of Homotopy Analysis Method

In the frame of the HAM, the first procedure is to choose an auxiliary linear operator
and a nonlinear operator, respectively. A new equation, usually called as the zeroth-order
deformation equation, is constructed as

(
1 − p

)
L
[
u
(
τ, p

)]
= hpN

[
u
(
τ, p

)]
, (3.2)

where L denotes the chosen auxiliary operator,N the nonlinear one, p ∈ [0, 1] the embedding
parameter and h a nonzero auxiliary parameter. The HAM is based on the continuous
variation of u(τ, p). When the embedding parameter p increases from 0 to 1, u(τ, p) varies
from an initial guess to one exact solution of the considered problem

N
[
u
(
τ, p

)]
= 0. (3.3)

According to (3.1), it can be given as

N
[
u
(
τ, p

)]
= (1 − u)3

(

ω2 ∂
2u

∂τ2 + ζω
∂u

∂τ
+ u + k3u

3

)

+ ζ2ω
∂u

∂τ

+ Tu(VP + V0 cos τ)2 − T(VP + V0 cos τ)2.

(3.4)

When p = 0, (3.2) becomes a linear one, whose exact solution is evident. When p = 1, it is the
same as (3.1) provided that x(τ) = u(τ, 1). Expanding u(τ, p) into a Taylor series

u
(
τ, p

)
=

∞∑

i=0

ui(τ)pi. (3.5)

Note that ui(τ) is dependent upon h. In fact, the auxiliary parameter h is introduced to make
it convenient to control and adjust the convergence of the HAM series (i.e., (3.5)). As long as
series (3.5) is convergent at p = 1, one can obtain the mth-order HAM solution as

x(τ) =
m∑

i=0

ui(τ). (3.6)

Substituting (3.4) and (3.5) into (3.2) and equating the coefficients of pi to 0, one obtains

L[u0] = 0, (3.7)

L[un+1 − un] = hRn(u0, u1, . . . , un), n = 0, 1, 2, . . . , (3.8)
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where

Rn = ω2
n∑

i=0

ziu
′′
n−i + ξω

n∑

i=0

ziu
′
n−i +

n∑

i=0

ziun−i + k3
n∑

i=0

n∑

j=i

n∑

l=j

ziuj−iul−jun−l

+ ζ2ωu′
n + T(VP + V0 cos τ)2un − ϑnT(VP + V0 cos τ)2

(3.9)

when n = 0, ϑn = 1, otherwise ϑn = 0; zi corresponds to the expansion of (1 − u)3, that is,
zi =

∑i
j=1

∑i
l=j vjvl−jvi−l, with v0 = 1 − u0 and vk = −uk, k = 1, 2, . . .. Equations (3.7) and

(3.8) are always linear for every positive integer n. Importantly, the nonlinear equation has
so far been successfully transformed into a series of linear ones. These linear equations can be
solved step by step. That is core idea and also the most outstanding advantage of the HAM.

3.2. A Widely Used Linear Operator

One of key procedures of the HAM is to choose an appropriate linear operator. According
to Liao [5], it should be chosen on the basis of the so-called rule of solution expression.
Periodic/limit cycle solutions can be expressed as Fourier series in τ

x =
∞∑

i=0

[
αi cos(iτ) + βi sin(iτ)

]
. (3.10)

Note that the HAM has been widely used to obtain periodic and/or limit cycle solutions
of nonlinear oscillators [23–29]. Particularly, this technique has found applications in
microsystems [28] and microbeams subjected applied voltages [29], respectively. To the best
of out knowledge, most researchers [23–29] adopted such a following linear operator as

L
[
u
(
τ, p

)]
= ω2

[
∂2u

(
τ, p

)

∂τ2 + u
(
τ, p

)
]

(3.11)

If (3.11) is employed in this study, (3.7) becomes one homogenous equation in u0. This
equation has a series of solutions that has to be determined using the first-order deformation
equation, that is, (3.8) with n = 0. To this end, an initial guess for u0(τ) is usually given as

u0 = c0,1 cos τ + s0,1 sin τ, (3.12)

where c0,1 and s0,1 are prior unknown constants.
Due to the rule of solution expression, un can be given as truncated Fourier series.

Substituting un into Rn, one has

Rn =
ϕ(n)∑

i=0
[Cn,i cos iτ + Sn,i sin iτ], (3.13)

where ϕ(n) refers to the highest harmonic. Considering (3.7) and (3.13), cos τ and sin τ can
result in the so-called secular terms τ sin τ and τ cos τ , respectively. These terms do not
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comply with the rule of solution expression. One usual procedure to eliminate the secular
terms is equating both Cn,1 and Sn,1 to 0, that is,

Cn,1 = 0, Sn,1 = 0. (3.14)

When n ≥ 1, these equations are all linear. When n = 0, however, (3.14) is nonlinear. Actually,
it is essentially the first-order harmonic balance equations [25, 26] governing c0,1 and s0,1.
Well-known, it is a major shortcoming of the harmonic balance method that nonlinear
algebraic equations have to be solved.

3.3. A New Linear Operator

Considering that (3.1) contains powers like x6, there will be c60,1 and s60,1 in (3.14) with n = 0.
These nonlinearities can make it rather difficult to determine the initial solution. It is worthy
to find another linear auxiliary operator to avoid this obstacle. Consider the following linear
operator

L
[
u
(
τ, p

)]
= ω2 ∂

2u
(
τ, p

)

∂τ2 + (ζ + ζ2)ω
∂u

(
τ, p

)

∂τ
+ u

(
τ, p

) − T(VP + V0 cos τ)2

:=L
[
u
(
τ, p

)] − T(VP + V0 cos τ)2.

(3.15)

Substitution of (3.15) into (3.7) and (3.8) results into

L [u0(τ)] − T(VP + V0 cos τ)2 = 0, (3.16)

L (un+1 − σnun) = hRn(u0, u1, . . . , un), n = 0, 1, 2, . . ., (3.17)

where σ0 = 0, otherwise σn = 1 when n ≥ 1. Equations (3.16) and (3.17) provide us with a
purely linear algorithm, without an additional task of eliminating the secular terms as long as
ζ+ ζ2 /= 0. Since (3.16) is an inhomogeneous equation whose exact solution can be determined
analytically, there is also no need to choose an initial guess for u0.

3.4. A Means for Saving Computational Effort

The number of harmonics in the HAM approximations increases acceleratedly, because of
the existence of the powers like x6 in (3.1). Denote the number of harmonics in un as Γn. The
starting solution (u0) provided by (3.16) contains the first two harmonics, that is, Γ0 = 2. In the
equation governing u1, the highest powers is u6

0, hence one knows that Γ1 = 12. As n increases
further, Γ2 = 22 and Γ3 = 32 can be obtained. In most cases, periodic or limit cycle oscillations
are dominated by several lower harmonics. High harmonics contribute to the improvement
of the precision quite limitedly, compared with the lower ones. Therefore, it seems to be
unworthy to improve the accuracy slightly with such a vast increasing of computational cost.
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Therefore, the high-order HAM approximations are obtained with a given number
(N) of harmonics, while neglecting all harmonics higher than the Nth one. Denote the nth-
order HAM approximation as

un =
M∑

i=0

[cn.i cos(iτ) + sn,i sin(iτ)], n = 0, 1, 2, . . . , (3.18)

where M increases with n increasing. Once M > N, retain the first to the Nth harmonics in
un, and rewrite it as

un =
N∑

i=0

[cn,i cos(iτ) + sn.i sin(iτ)], n = 0, 1, 2, . . . . (3.19)

When seeking higher-order HAM approximations, (3.19) but not (3.18) is employed.
Through this means, an HAM solution with N harmonics can be obtained. Interestingly,
as long as this solution converges, it must converge to one harmonic balance solution, as
revealed in [30].

4. Results and Discussion

Theoretically, analytical solutions of ui can be obtained by solving (3.16) and (3.17) step
by step, since all equations are linear. However, their expressions can rapidly become
complicated as n increasing. It is rather easy to obtain semi-analytical solutions when all
parameters are given. The HAM solutions are compared with numerical results. All the
numerical solutions are obtained via integrating (2.5) using the RK method, with the initial
values as x(0) = 0 and ẋ(0) = 0.

Let TN,n denote the CPU time needed to obtain the nth-order HAMapproximation (un)
with N harmonics, and Tn is the counterpart when no harmonic is neglected. In addition, let
Ax be the maximum value (amplitude) of the nth-order HAM solution (i.e.,

∑n
i=0 ui) with N

harmonics retained, and Bx the counterpart. From Figure 2, one can see the convergence of
Ax and Bx to the numerical one as n increasing. It implies that the accuracy will not be lost
by retaining only the first 10 harmonics (N = 10). Also shown in Figure 2 is the ratio between
TN,n and Tn. It rises rapidly when n increases. Therefore, a lot of computational effort can
be saved without losing substantial accuracy, through neglecting some high harmonics. Note
that, all the following HAM solutions are obtained by employing (3.19) rather than (3.18).

A preliminary procedure to obtain an HAM solution consists in the choosing of
the auxiliary parameter h. Liao [23] suggested an h-curve approach for choosing a proper
value of h, which can guarantee both the convergence of HAM series and a relatively rapid
convergence rate. Figure 3 shows the relative errors versus varying h. These errors refer to the
percentage-wise differences between the amplitudes (Ax) of the 20th-order HAM solutions
with 10 harmonics and the numerical results. According to the figure, an appropriate range
for h can be chosen from −2 to −0.5 or so. When the absolute value of h is too large, for
instance more than 2, it can probably make the HAM series divergent. On the other hand, as
long as h approaches 0 enough, the HAM series converge by a relatively slow convergence
rate.
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Figure 2: (a) the HAM solutions; (b) the ratio between TN,n and Tn, N = 10, and h = −1. Parameter values
are given as VP = 1, V0 = 2, d0 = 1, ω = 0.5, k3 = 1, and c2 = 1.
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Figure 3: Relative errors versus h between 20th-order HAM solutions and numerical ones. Parameter
values are c2 = 2, ω = 1, Vp = 1, and d = 2, respectively.

Figure 4 shows a phase plane of system (2.4). The solutions provided by the HAM
approach the numerical one when m increases. The 20th-order HAM solution is nearly the
same as the numerical one. In fact, solutions can be obtained to any desired accuracy without
additional difficulty.

When a nonlinear spring and/or squeeze film damping are taken into account, the
proposed algorithm can still provide very accurate solutions, as shown in Figures 5 and 6.
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Figure 4: Comparison between numerical solutions and HAM results h = −1, where heavy dots denote the
former and solid lines the latter. Parameter values are given as VP = 1, V0 = 3, d = 1.2, k3 = c2 = 0, and
ω = 1.
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Figure 5: Comparison between numerical solutions and HAM solutions h = −1, where heavy dots denote
the former and solid lines the latter. Parameter values are given as VP = 1, V0 = 5, d = 1.5, k3 = 0.5, c2 = 0,
and ω = 1.

Both the figures show clearly the convergence of the HAM solutions to the numerical
ones. It is worthy of emphasizing that, the vibrations described by these phase planes are
nonharmonic, namely the solutions cannot be approximated by the first harmonic alone. That
is probably because high harmonics contribute to the responses to an nonnegligible extent.
The phase plane shown in Figure 6 even has a loop. Even though, the presentedHAM can still
track them with excellent precision. These illustrative examples demonstrate the feasibility
and efficiency of the presented approach in analyzing nonlinear dynamical behaviors.

Frequency-response curve is of substantial importance for dynamic analysis, when
external excitations are included. Figures 7, 8, and 9 show the curves of the amplitudes
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Figure 6: Comparison between numerical solutions and HAM solutions h = −1, where heavy dots denote
the former and solid lines the latter. Parameter values are given as VP = 0.5, V0 = 2, d = 1, k3 = 0.5, c2 = 2,
and ω = 0.5.
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Figure 7: The vibrations amplitudes versus ω, where heavy dots denote numerical results and solid lines
the 20th-order HAM solutions withN = 10, h = −2, V0 = 2, d0 = 1, k3 = 0.5, and c2 = 2.

of periodic solutions versus varying ω, for different values of VP , V0 and d, respectively.
The 20th-order HAM solutions are in excellent agreement with the numerical ones. The
amplitudes decrease with ω increasing for all the three cases. According to (2.5), VP and
V0 correspond to the magnitude of the external excitation, respectively. Also, d is connected
with the external excitation through T = ε0A/(2kd3), which implies that T increases when
d decreases. That is why the amplitude increases when VP(V0) increases or d decreases, as
shown in these figures.

Figures 10 and 11 are presented to investigate the respective effects on the periodic
responses of the cubic stiffness coefficient and the squeeze film damping. Nice agreement of
the 20th-order HAM solution to the numerical results can also be observed. As they show,
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Figure 8: The solutions amplitudes versus ω, where heavy dots denote numerical results and solid lines
the 20th-order HAM solutions withN = 10, h = −2, VP = 0.5, d0 = 1, k3 = 0.5, and c2 = 2.
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Figure 9: The solutions amplitudes versus ω, where heavy dots denote numerical results and solid lines
the 20th-order HAM solutions withN = 10, h = −2, VP = 1, V0 = 2, c2 = 2, and k3 = 0.5.

respectively, the larger k3 or c2 is, the smaller the amplitudes become. According to (2.5),
k3x3 is the nonlinear restoring force, hence k3x2 can be considered as an equivalent linear
stiffness coefficient. Its value keeps nonnegative though varying. The increasing of k3 implies
an increasing of the stiffness, so that the magnitude of response decreases. As concerning
c2, it denotes the coefficient of a positive nonlinear damping. Generally speaking, positive
damping can suppress the vibration to some extent.

It is worthy to point out, the influence of squeeze film damping on vibration
amplitudes reduces rapidly when ω increases. When ω is relative large (ω > 1.5), the
decreasing of c2 makes a very little difference of the amplitudes.
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Figure 11: The solutions amplitudes versus ω where heavy dots denote numerical results and solid lines
the 20th-order HAM solutions withN = 10, h = −2, VP = 1, V0 = 2, d0 = 1, and k3 = 0.5.

5. Conclusions and Remarks

Based on the homotopy analysis method, we have proposed an approach to solve the
nonlinear dynamical system of an electrostatically actuated microcantilever. This approach
was further improved by restricting the number of harmonics as a given number N. It turns
out that the improved approach can save a large amount of computational effort without
reducing accuracy. Numerical examples validate the proposed approach. Approximations for
periodic solutions are obtained very precisely. Using the presented approach, the frequency-
response curves are obtained and discussed in details. The feasibility and efficiency,
illustrated by the numerical examples, imply that we could expect the presented approach
be applicable in more nonlinear vibration problems, especially those arising in MEMS.
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As mentioned above, we have presented an auxiliary operator (3.15) that is different
from another usually-adopted one (3.11). It is advantageous to use (3.15) rather than (3.11)
for the considered problem. First, there is no need to choose an initial guess for the zeroth-
order HAM approximation if one employs linear operator (3.15). Second, if (3.11) is adopted,
a series of algebraic equations have to be solved from time to time to eliminate secular terms
when seeking every order HAM approximation. In many occasions, the first equation is
nonlinear. In our procedures, there is no requirement of doing so. Last but not least, the
proposed procedures are purely linear.
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