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Feature extraction plays an important role in preprocessing procedure in dealing with small
sample size problems. Considering the fact that LDA, LPP, and many other existing methods are
confined to one case of the data set. To solve this problem, we propose an efficient method in
this paper, named global between maximum and local within minimum. It not only considers
the global structure of the data set, but also makes the best of the local geometry of the data set
through dividing the data set into four domains. This method preserves relations of the nearest
neighborhood, as well as demonstrates an excellent performance in classification. Superiority of
the proposed method in this paper is manifested in many experiments on data visualization, face
representative, and face recognition.

1. Introduction

Nowadays with the continual development of information technology, the amount of data
has largely expanded, such as in the domain of pattern recognition, artificial intelligence, and
computer vision. Because the dimension of the samples of data set is a lot greater than the
number of the obtained samples of data set, it results in “the curse of dimensionality” [1].
Feature extraction method plays an important role in dealing with small sample size (SSS)
problems. It represents original high dimensional data in the low-dimensional space through
capturing some important data structure and information and is a common preprocessing
procedure in multivariate statistical data analysis. At present, feature extraction methods
have successfully been applied in many domains such as text classification [2], remote
sensing image analysis [3], microarray data analysis [4], and face recognition [5, 6].
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Generally speaking, feature extraction methods can be divided into the following
three kinds with regard to applied tools. Firstly, it is based on algebra properties and takes
advantage of generalized eigen decomposition in matrix theory and extracts some features
that contained more discriminative information through discovering algebra structure of
samples of data set. Secondly, on the basis of geometry characteristics, it aims to find optimal
projection directions in some cases. Thirdly, in the process of dealing with SSS problems,
traditional statistical methods, based on the number of the samples of data set face some
challenges, thus, we must take advantage of intersectant knowledge from statistical inference
and information science to obtain informative features we expect.

From the viewpoint of the data structure, feature extraction methods have two ways:
globally and locally. The former concerns that the data set itself or the class in the data set is
regarded as the whole and extracts the important features wholly of the corresponding data
set. There are some typical methods such as principle component analysis (PCA) [7, 8], linear
discriminant analysis (LDA) [7, 9], and maximum margin criterion (MMC) [10]. Although
intended results could be got in practice, thosemethods do notmake use of the inner structure
of data set. Meanwhile the latter makes use of neighborhood structure of each sample in
the data set and maintains the local information hidden in the extracted features. Locality
preserving projections (LPP) [11, 12], neighborhood preserving embedding (NPE) [13], and
average neighborhood margin maximum (ANMM) [14] suppose the neighborhood of the
sample lies in the submanifold space of the data set and preserve such property. DLPP [15],
PRLPP [16], and ILPP [17] are based on local information which be proposed to address
the small sample size (SSS) problem. In [18], an entropy regularization term is incorporated
into the objective function for controlling the uniformity level of the edge weights in graph.
DLPP/MMC [19] seeks to maximize the difference between local class based on maximum
margin criterion. Those methods only use the local geometry or global information and do
not find entirely the intrinsical structure of the training set.

In this paper, we combine global character with local structure of the data set and
in order to perform linear projection and propose a new feature extraction method called
global between maximum, meanwhile, local within minimum (GBMLWM). As for a fixed
sample from the data set, the others are divided into four parts: the same class with the
fixed sample within or without its nearest neighborhood and the different class from the
fixed sample within or without its nearest neighborhood, see Figure 1. In the course of local
within minimum, we make use of three domains: domain I, domain II, and domain III. And
in the process of global between maximum, similarly to LDA, our methods by maximum
between-class scatter. So it not only overcomes the disadvantages of the global method, but
also takes full advantage of the local method. It is worthwhile highlighting some properties
of GBMLWM algorithm from some perspectives as the followings:

(1) GBMLWM method shares excellent properties with LDA and MMC. In this paper,
we maintain global merit in the process of global between maximum. Similar to
LDA, we first keep all samples in the data set away from the class centroid, and then
let the samples, labeled the same class with the fixed sample and beyond its nearest
neighborhood close to its class centroid. So, GBMLWM is a way to supervise, and it
is feasible to take apart between class of the data set and keep close within class of
the data set.

(2) For making use of local structure of the data set, GBMLWM inherits several
important advantages of local methods, that is, LPP. In this paper, we maintain
the neighborhood of the sample in the data set and keep the samples labeled the
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same class with the fixed sample in its nearest neighborhood approach. At the same
time, let the samples different from the fixed sample away from it. So, GBMLWM
maintains the submanifold space of the fixed sample.

(3) As connection to PCA, LDA, MMC, LPP, and ANMM, we could derive those
methods from GBMLWM framework by imposing some conditions, that is to
say, those methods are the special case of GBMLWM. Visual and classification
experiments have also indicated that proposed method in the paper is superior to
the above methods.

The rest of this paper is organized as follows. Section 2 briefly reviews global and
local methods, that is, PCA, LDA, MMC, LPP, and ANMM. The GBMLWM algorithm is put
forward in Section 3, and its relationship with the above methods is also discussed in this
section. The experimental outcomes are presented in Section 4. The conclusion appears in the
Section 5.

2. Brief Review of Global and Local Methods

Suppose that X = [x1, x2, . . . , xn] ∈ Rm×n is a set of m-dimensional samples of size n, and
it is composed of Ci, i = 1, . . . , C, where each class contains ni samples,

∑C
i=1 = n, and let

xij a m-dimension column vector which denotes the jth sample from the ith class. Generally
speaking, the aim of the linear feature extraction or dimensionality reduction is to find an
optimal linear transformation W ∈ Rm×d (d � m) from the original high-dimensional space
to the goal low-dimensional space yi = WTxi, so that those transformated data in terms of
different optimal criteria best represent different information such as that of algebra and
geometry structure.

2.1. Principle Component Analysis

PCA attempts to seek an optimal projection direction so that covariance of the data set is
maximized, or average cost of projection is minimized after transformation. The objective
function of PCA is defined as follows:

max
W

n∑

i=1

(
yi −my

)2
, (2.1)

where yi = WTxi, my is the mean of {yi}ni=1. Applying algebra knowledge, (2.1) may be
rewritten as

max
W

WTStW, (2.2)

where

St =
1
n

n∑

i=1

(xi −mx)(xi −mx)T (2.3)



4 Mathematical Problems in Engineering

is the sample covariance matrix. mx is the mean of the all samples. The optimal W =
[w1,w2, . . . ,wd] is the eigenvectors of St corresponding to the first d largest eigenvalues.

2.2. Linear Discriminant Analysis

The purpose of LDA is to discriminate and classify, and it seeks an optimal discriminative
subspace bymaximizing between-class scatter matrices, meanwhile, minimizing within-class
scatter matrices. LDA’s objective is to find a set of vectors W according to

W = argmax
W

∣
∣WTSbW

∣
∣

∣
∣WTSwW

∣
∣
, (2.4)

where

Sb =
1
n

C∑

i=1

ni

(
mi

x −mx

)(
mi

x −mx

)T
,

Sw =
1
n

C∑

i=1

ni∑

j=1

(
xij −mi

x

)(
xij −mi

x

)T
,

(2.5)

respectively, represent the between-class scatter matrix and the within-class scatter matrix.
mi

x is the mean of the ith class. The projection directions W are the generalized eigenvectors
w1,w2, . . . , and wd solving Sbw = λSww associated with the first d largest eigenvalues.

2.3. Maximum Margin Criterion

MMC keeps similarity or dissimilarity information of the high-dimensional space as much as
possible after dimensionality reduction by employing the overall variance andmeasuring the
average margin between different classes. MMC’s projection directions matrix is as follows

W = argmax
W

(
WT (Sb − Sw)W

)
, (2.6)

where Sb, Sw are defined as (2.5).

2.4. Locality Preserving Projection

PCA, LDA andMMC aim to preserve global structure of the data set, while LPP is to preserve
the local structure of the data set. LPP models the local submanifold structure by maintaining
the neighborhood relations of the fore and aft transformated samples in data set. With the
same mathematical notations as above, the objective function of LPP is defined as follows:

min
W

WTXLXTW
WTXDXTW

, (2.7)
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whereD is a diagonal matrix, that is,D(i, i) =
∑

j SLij , i = 1, . . . , n, L = D−SL is the Laplacian
matrix. And SL = (SLij)n×n is a similarity matrix, defined as follows:

SL
(
i, j
)
=

⎧
⎨

⎩

S
(
i, j
)
, xi ∈ Nj or xj ∈ Ni

0, otherwise,
(2.8)

where S(i, j) = exp(−‖xi − xj‖2/t), for i, j = 1, . . . , n, t is a kernel parameter, Ni is the set of
nearest neighborhood of xi. The optimal W is given by the d eigenvectors corresponding to
minimum eigenvalue solution to the following generalized eigenvalue problem:

XLXTw = λXDXTw. (2.9)

2.5. Average Neighborhood Margin Maximum

Different from PCA and LDA, ANMM aims to obtain effective discriminating information
by using average local neighborhood margin maximum. For each sample, ANMM aims
at pulling the neighborhood samples with the same label towards it as near as possible,
meanwhile, pushing the neighborhood samples with different labels away from it as far as
possible. ANMM’s solutions as follows:

W = argmax
W

[
WT (A − B)W

]
, (2.10)

where A is called the scatterness matrix, B is called the compactness matrix

A =
∑

i,j xj∈Ne
i

(
xi − xj

)(
xi − xj

)T

∣
∣Ne

i

∣
∣

,

B =
∑

i,j xj∈No
i

(
xi − xj

)(
xi − xj

)T

∣
∣No

i

∣
∣

,

(2.11)

andNe
i ,N

o
i , respectively, is ξ the nearest heterogenous and homogenous neighborhood of the

xi, | · | is the cardinality of a set. Here, we can regard ANMM as the local version of the MMC.

3. Global between Maximum and Local Within Minimum

In this section, we present our algorithm—global between maximum, simultaneously local
withinminimum (GBMLWM). It profits from global and local methods. GBMLWMalgorithm
preserves not only the local neighborhood of submanifold structure, but also the global
information of the data set. To state our proposed algorithm, we first give four domains about
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Figure 1: Here are four domains into which other samples except xi in the data set are divided. The left
figure shows four domains in the original high-dimensional space, and the right depicts four domains in
the low-dimensional space.

xi as follows:

Domain I: those samples are a subset of the nearest neighborhood of xi and labeled
the same class with xi.

Domain II: those samples are also a subset of the nearest neighborhood of xi, but
labeled the different class from xi.

Domain III: those samples labeled the same class with xi, but do not lie in the nearest
neighborhood of xi.

Domain IV: those samples do not lie in the nearest neighborhood of xi and also are
labeled as the different class from xi.

Figure 1 shows us an intuition about the above four domains. The nearest neigh-
borhood of xi consists of domain I and II. The samples labeled the same class with xi lie
in domain I and III, and the samples labeled the different class from xi lie in II and IV.

3.1. Global between Maximum

The purpose of classification and feature extraction is tomake the samples labeled as different
class apart from each other. We first operate those points in domain II and IV via maximizing
global and local between-class scatter. That is to say, our aim is not only to make the data
globally separable, but also to maximize the distance between different classes in the nearest
neighborhood. Thus, our objective functions are defined as follows:

J4(W) =
1
n

C∑

i=1

ni

(
mi

y −my

)(
mi

y −my

)T

= WT

(
1
n

C∑

i=1

ni

(
mi

x −mx

)(
mi

x −mx

)T
)

W

= WTStW.

(3.1)

3.2. Local Within Minimum

As for classification, maximizing between class is not adequate, and compacting within-class
scatter is also required. So, we now make the samples from domain I close to xi itself, the
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samples from II away form xi and the samples from domain II close to their own class
centroid.

J1(W) =
∑

i,j

(
yi − yj

)2Sij

= WT

⎛

⎝
∑

i,j

(
xi − xj

)(
xi − xj

)TSij

⎞

⎠W

= WTXL1XTW

J2(W) =
∑

i,j

(
yi − yj

)2Sij ,

= WT

⎛

⎝
∑

i,j

(
xi − xj

)(
xi − xj

)TSij

⎞

⎠W

= WTXL2XTW

J3(W) =
C∑

i=1

∑

yj∈Ci
⋂
III

(
yj −mi

y

)(
yj −mi

y

)T
,

= WT

⎛

⎝
C∑

i=1

∑

xj∈Ci
⋂
III

(
xj −mi

x

)(
xj −mi

x

)T
⎞

⎠W

= WTSLwXTW,

(3.2)

where

L1 = D1 − S1 (3.3)

and D1(i, i) =
∑

j S1(i, j), S1(i, j) = S(i, j) if xi, xj lie in corresponding to oneself domain I;
otherwise, S1(i, j) = 0

L2 = D2 − S2 (3.4)

and D2(i, i) =
∑

j S2(i, j), S2(i, j) = S(i, j) if xi, xj lie in domain II, otherwise, S2(i, j) = 0.

SLw =
C∑

i=1

∑

xj∈Ci
⋂
III

(
xj −mi

x

)(
xj −mi

x

)T
. (3.5)
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3.3. GBMLBM Algorithm

In the previous description, nearest neighborhood of xi is indicated as K nearest neigh-
borhood based on Euclidue distance between two samples from the data set. Our objective
function is defined as follows:

J(W) = (J2(W) + J4(W)) − (J1(W) + J3(W))

= WT
[
(St − SLw) −

(
XL2XT − XL1XT

)]
W

= WTMW,

(3.6)

where

M = (St − SLw) −
(
XL2XT − XL1XT

)
. (3.7)

And then our optimal projection directions W are solutions to the following optimization
problem:

max
W

J(W),

WTW = I.
(3.8)

So, W = [w1, . . . ,wd] is the eigenvectors of Mw = λw corresponding to the first d largest
eigenvalues. It is obvious that the GBMLWM algorithm is fairly straightforward instead of
computing inverse matrix, and thus it absolutely avoids the SSS problem. Now, the algorithm
procedure of GBMLBM is formally summarized as follows:

(1) as for each sample xi, i = 1, . . . , n, dividing the samples from data set except xi, i =
1, . . . , n into four domains: I, II, III, and VI;

(2) computing St,L1,L2,SLw, according to (2.3), (3.3), (3.4), and (3.5), respectively;

(3) and then, we can obtain matrix M according to (3.7);

(4) computing the generalized eigenvectors of Mw = λw, and the optimal projection
matrix W = [w1, . . . ,wd] corresponding to the d largest eigenvalues, where d is the
rank of matrix M. For a testing sample x, its image in the lower dimensional space
is given by

x �−→ y = WTx. (3.9)

3.4. Discussion

Here, we find those methods limited to global structure or local geometry of the data set
are special case of GBMLWM algorithm. PCA regards the data set as a whole domain and
demands all the samples away from the total mean of the data set. Thus, we see that PCA is
an unsupervised version special case of GBMLWM algorithm. Both MMC and LDA divide
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Table 1: Estimate approximately computational complexity for the six different algorithms, where n
denotes the total number of training samples, k and C are the size of neighborhood and the number of
class, respectively.

Method PCA LDA MMC LPP ANMM GBMLWM
Computational
Complexity O(n) O(n) O(n) O(n2 + kn) O(n2 + kn) O(n2 +kn+kC)

samples except xi in the data set into two domains: one is composed of the samples labeled
as the same class with xi, called within-class Sw; the other contains the samples labeled the
different class from the xi, called between-class Sb. They, respectively, correspond to the
domains I ∪ III and II ∪ VI, as illustrated in Figure 1. The local methods, such as LPP and
ANMM, are different from the above methods based on global structure. LPP and ANMM
divide the whole data set into two domains according to the nearest neighborhood of xi.
LPP is operated in I ∪ II, while ANMM method in the domain I and II, as depicted in
Figure 1. Those local methods do not utilize the global information of the data set and are
local version special case of the algorithm proposed in this paper. The superiority of the
GBMLWM algorithm is manifested in the data experiments in the following section.

Training cost is the amount of computations required to find the optimal projection
vectors and the sample feature vectors of the training set for comparison. We compare the
training cost of the methods based on their computational complexities. Here, we suppose
that each class has the same number of training samples. If we regard each column vector as
a computational cell and do not consider the computational complexity of eigen-analysis, we
estimate approximately computational complexity for six different algorithms which include
based-local methods and based-global techniques. Table 1 gives the analysis of computational
complexity for the six different algorithms. From Table 1, we can see that our method has
the largest training cost. However, in practice, the size of neighborhood and the number of
class are often not large enough to cause much more computation of our algorithm. The
computational complexity of GBMLWM also shows that our algorithm not only considers the
global information, but also utilizes the local geometry. That makes our algorithm efficiently
reflect the intrinsical structure of the training set. The following experimental results also
manifest this point.

4. Experiments

In this section, we will carry out several experiments to show the effectiveness of the
proposed GBWMLW method for data visualization, face representative, and recognition.
Here, we will compare the global methods, that is, PCA, LDA, MMC, and local methods,
that is, LPP, NPE, and ANMM, with our proposed method on the following four databases:
MNIST digit, Yale, ORL, andUMIST database. In the processing of the PCA,we onlymaintain
the N − C dimensions to ensure scatter matrix nonsingular. In testing phases, the size of
neighborhood k is determined by 5-fold cross validation in all experiments, and the nearest
neighbor (NN) rule is used in classification. In using the LPP and GBMLWM algorithms,
the weight of two samples is computed with Gaussian kernel, and the kernel parameter is
selected as follows: we firstly compute the pairwise distance among all the training samples,
then, t is made equal to the half median of those pairwise distance.
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Figure 2: All the samples of handwritten digits from number 0 to 9 used in our data visualization
experiment.

4.1. Data Visualization

In this subsection, we first use a publicly available handwritten digits to illustrate data
visualization. MNIST database [20] has 10 digits, and each digit contains 39 samples. The
number of total samples is 390 which each image has the size 20 × 16. Here, we only select
20 samples from each digit. So the size of the training set is 320 × 200, and each image is
represented lexicographically as a high-dimensional vector of the length 320. Figure 2 shows
all the samples of the ten digits. For visualization, we project the data set in 2-D space by
all seven subspace learning methods. And the experiment results are depicted in Figure 3.
With the exception of LDA and GBMLWM, the samples from the different digits seem to
heavily overlap. Compared with GBMLWM algorithm, LDA makes the samples from the
same class become a point. Although this phenomenon is helpful for classification, it has a
poor generalization ability since it does not exhibit the case in each object oneself. GBMLWM
algorithm not only separates each digit, but also shows what is hidden in each digit. When
the number of the nearest neighbor of xi reduces from K = 15 to K = 2, the samples from the
same object become more and more compacted. That also verifies that LDA is a special case
of GBMLWM.

4.2. Yale Database

This experiment aims to demonstrate the ability of capturing the important information
on Yale face database [21], called face representative. The Yale face database contains 165
gray scale images of 15 individuals. There are 11 images per subject, one per different
facial expression or configuration: center-light, with/without glasses, happy, left/right light,
normal, sad, sleepy, surprised and wink. All images from the Yale database were cropped
and the cropped images normalized to the 32 × 32 pixels with 256 gray level per pixel. Some
samples from the Yale database are shown in Figure 4. Here, the training set is composed of
all the samples from this database. And the most significant 10 eigenfaces obtained from the
Yale face database through using the seven subspace learning methods are shown in Figure 5.
From the Figure 5, we obviously see that our algorithm captures more basic information of
the face than other methods.

4.3. UMIST Database

The UMIST database [22] contains 564 images of 20 individuals, each covering a range of
poses from profile to frontal views. Subjects cover a range of race, sex, and appearance.
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Figure 3: Two-dimensional projections of the handwritten digits, respectively, by using seven related
subspace learning methods. “+” denotes 0, “◦” denotes 1, “∗” denotes 2, “×” denotes 3, “�” denotes 4,
“
” denotes 5, “Δ” denotes 6, “∇” denotes 7, “�” denotes 8, “�” denotes 9.
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Figure 4: Some face samples from the Yale database.

Figure 5: The most significant 10 eigenfaces obtained from the Yale face database through using the seven
subspace learning methods: PCA, LDA, MMC, LPP, NPE, ANMM, and GBMLWM from top to bottom.

We use a cropped version of the UMIST database that is publicly available at S. Roweis’
Web page. All the cropped images normalized to the 64 × 64 pixels with 256 gray level per
pixel. Figure 6 shows some images of an individual. We randomly select three, four, five,
and six images of each individual for training, and the rest for testing. We repeat these trails
ten times and compute the average results. The maximal average recognition rates of seven
subspace learning methods are presented in Table 2. From Table 2, we find that GBMLWM
algorithm’s highest accuracy, respectively, are 79.88%, 86.10%, 91.85%, and 93.80% on the
different training sets and corresponding testing sets. The improvements are significant.
Furthermore, the dimensions of the four GBMLWM subspaces corresponding to the maximal
recognition rates are remarkably low, and they are 15, 13, 11, and 18, respectively.

4.4. ORL Database

In the ORL face database [23], there are 40 distinct subjects, each of which contains ten
different images. So there are 400 images in all. For some subjects, the images are taken
at different times, varying the lighting, facial expressions and facial details. All the images
are taken against a dark homogeneous background with the subjects in an upright, frontal
position. All images from the ORL database are cropped, and the cropped images normalized
to the 32×32 pixels with 256 gray level per pixel. Same samples from this database are showed
in Figure 7. In this experiment, four training sets, respectively, correspond to the numbers
of samples from each subject three, four, five, and six. And other samples, respectively,
form the testing sets. We repeat these trails ten times and compute the average results. The
recognition rates versus the reduced dimensions are shown in Figure 8. The best average
recognition rates of seven subspace learning methods are presented in Table 3. It can be seen
that GBMLWM algorithm’s recognition rates remarkably outperform the other methods in
all the four training subsets with the highest accuracy of 90.07%, 94.67%, 97.20%, and 97.31%,
respectively. The standard deviations of the GBMLWM corresponding to the best results are
0.03, 0.02, 0.02, and 0.02.
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Figure 6: Some face samples from the Yale database.

Figure 7: Some face samples from the ORL database.
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Figure 8: Average recognition rates of seven subspace learning methods and the different samples from
each object versus the reduced dimensions on the ORL database.
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Table 2: Recognition accuracy (%) of different algorithms and the numbers in the bracket corresponding
to dimensions on the UMIST database.

Size PCA LDA MMC LPP NPE ANMM GBMLWM

3 77.26 (50) 77.55 (17) 80.06 (44) 71.61 (32) 70.60 (38) 77.90 (17) 79.88 (15)
4 76.08 (67) 82.73 (19) 83.94 (67) 75.43 (50) 75.74 (60) 81.60 (22) 86.10 (13)
5 82.69 (87) 87.73 (19) 90.59 (77) 81.28 (77) 81.43 (80) 88.48 (20) 91.85 (11)
6 85.72 (68) 89.52 (13) 92.81 (96) 85.74 (77) 85.82 (100) 91.91 (13) 93.80 (18)

Table 3: The best recognition accuracy (%) of different algorithms and the numbers in the bracket
corresponding to standard deviation on the ORL database.

Size PCA LDA MMC LPP NPE ANMM GBMLWM

3 77.43 (0.03) 87.57 (0.03) 84.61 (0.02) 70.04 (0.04) 80.86 (0.03) 84.54 (0.03) 90.07 (0.03)
4 84.71 (0.02) 91.08 (0.02) 90.96 (0.02) 74.33 (0.03) 87.04 (0.02) 91.25 (0.02) 94.64 (0.02)
5 88.20 (0.02) 93.95 (0.02) 93.95 (0.02) 80.15 (0.03) 90.45 (0.02) 94.15 (0.02) 97.20 (0.02)
6 89.44 (0.03) 94.37 (0.02) 94.56 (0.02) 81.69 (0.03) 91.56 (0.03) 95.12 (0.03) 97.31 (0.02)

5. Conclusions

In this paper, we have proposed a new linear projection method, called GBMLWM. It is an
efficient linear subspace learning method with the supervised and unsupervised character.
Similar to PCA, LDA, and MMC, we consider the global character of the data set. At the
same time, similar to LPP, NPE, and ANMM, we also make the best use of the local geometry
structure of the data set. We have pointed out that the existing linear subspace learning
methods are a special case of our GBMLWM algorithm. A large number of experiments
demonstrate that the method which we propose is obviously superior to other existing
methods, such as LDA and LPP.
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