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We derive a variable step of the implicit block methods based on the backward differentiation
formulae (BDF) for solving stiff initial value problems (IVPs). A simplified strategy in controlling
the step size is proposed with the aim of optimizing the performance in terms of precision and
computation time. The numerical results obtained support the enhancement of the method pro-
posed as compared to MATLAB’s suite of ordinary differential equations (ODEs) solvers, namely,
ode15s and ode23s.

1. Introduction

Consider the first-order ordinary differential equations in the form of

y′ = f
(
x, y

)
(1.1)

with given initial values y(a) = y0 in the given interval x ∈ [a, b]. The system of (1.1) is said
to be stiff if the eigenvalues of the matrix ∂f(x, y)/∂y have negative real parts at every time
x and varies greatly in magnitude. Solving stiff ODEs which aroused from mainly applied
problems, for example, from physical, chemical, and biological phenomena is made easy with
several methods of interest appeared in subroutine libraries [1]. Some examples can be seen
in [2–4]. From the code pioneered by Gear called DIFSUB, the wide interest in stiff ODEs has
caused many other codes evolved to meet the same objective of finding the most accurate
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approximation for IVPs [5]. Some renowned codes are EPISODE and LSODE [5]. With the
advancements of the existing methods of solving ODEs, many of these codes are preinstalled
in MATLAB to work as numerical solvers. An overview of MATLAB’s numerical solvers
presented in [2] shows awide choice of solvers according to the problem type, step, and order
to deal with stiff and nonstiff problems. Since then, several measures have been brought up
by many researchers to evaluate which method turns out to be the most efficient method [6].
Despite that there exist some limitations in each method, these methods proven to have their
own strength in solving certain initial value problems [1].

The need to solve large systems of stiff IVPs has also influenced the development
of other existing method. These include iterative linear equation solvers and sparse direct
linear equation solvers. Further discussion and additional references on this method are
discussed in more detail in [2]. The method that incorporated with BDF proposed by Gear
has been expanded gradually to become an improved method [7]. The study on producing
block approximations yn+1, yn+2, yn+3, . . . , yn+k also known as block backward differentiation
formulae (BBDF) [7] was inspired by Gear’s method. BBDF method in [7] has verified the
competency of computing concurrent solution values at different points. Apart from that,
block approximations have been used in different methods to improve the methods to give
a better accuracy and computation time. Consequently, the study by Ibrahim et al. in [8] is
extended in a way that the accuracy is improved with reduction of total steps and lesser
computational time.

In the next section, we discuss the derivation of the 5th-order variable step block
backward differentiation formulae (5oBBDF). The strategies and implementations are
presented next, followed by the results and discussion. It is also one of the main aims of this
paper to prove that the method proposed acts as an alternative way in solving IVPs which
arise in engineering and applied sciences. We are interested to compare the numerical results
obtained with stiff ODEs solvers provided by MATLAB, namely, ode15s and ode23s.

2. General 5oBBDF Formulation

The ratio distance between current (xn) and previous step (xn−1) is represented as q in
Figure 1. In this paper, the step size is given selection to decrease to half of the previous steps
or increase up to a factor of 1.9. For simplicity, q is assigned as 1, 2 and 10/19 for the case of
constant, halving, and increasing the step size, respectively. The zero stability is achieved for
each of these cases and explained in the next section.

We find approximating polynomials Pk(x) by means of a k-degree polynomial inter-
polating the values of y at given points are (xn−2, yn−2), (xn−1, yn−1), . . . , (xn+2, yn+2),

Pk =
k∑

j=0

y
(
xn+1−j

) · Lk,j(x), (2.1)

where

Lk,j(x) =
k∏

i=0
i /= j

(x − xn+1−i)(
xn+1−j − xn+1−i

) for each j = 0, 1, . . . , k. (2.2)
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Figure 1: 5th order block method of variable step size.

Define s = (x − xn+1)/h to find the 4th-order interpolating polynomial for (2.1),

P(x) = P(xn+1 + sh)

=

(
2q + 1 + s

)(
q + 1 + s

)
(1 + s)(s)

4
(
q + 1

)(
q + 2

) yn+2 +

(
2q + 1 + s

)(
q + 1 + s

)
(1 + s)(s − 1)

−(q + 1
)(
2q + 1

) yn+1

+

(
2q + 1 + s

)(
q + 1 + s

)
(s)(s − 1)

4q2
yn +

(
2q + 1 + s

)
(1 + s)(s)(s − 1)

−q2(q + 1
)(
q + 2

) yn−1

+

(
q + 1 + s

)
(1 + s)(s)(s − 1)

4q2
(
2q + 1

)(
q + 1

) yn−2

(2.3)

s is equated to 0 and 1 after the polynomial is differentiated with respect to s, when x =
xn+1 and x = xn+2, respectively,

hfn+1 =
1 + 2q2 + 3q

4
(
q + 1

)(
q + 2

)yn+2 +
2 + 3q

(
q + 1

)(
2q + 1

)yn+1 +
−1 − 2q2 − 3q

4q2
yn

+
1 + 2q

q2
(
q + 1

)(
q + 2

)yn−1 +
−1 − q

4q2
(
2q + 1

)(
q + 1

)yn−2,

hfn+2 =
10 + 3q2 + 12q
2
(
q + 1

)(
q + 2

)yn+2 +
−4q2 − 12q − 8
(
q + 1

)(
2q + 1

)yn+1 +
2 + q2 + 3q

2q2
yn

+
−4q − 4

q2
(
q + 1

)(
q + 2

)yn−1 +
q + 2

2q2
(
2q + 1

)(
q + 1

)yn−2.

(2.4)
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Upon substituting q = 1, 2 and 10/19 into P ′(xn+1) and P ′(xn+2), we obtained the coefficients
for points yn+1 and yn+2 as follows:

for q = 1,

yn+1 =
6
5
hfn+1 − 3

10
yn+2 +

9
5
yn − 3

5
yn−1 +

1
10
yn−2,

yn+2 =
12
25
hfn+1 +

48
25
yn+2 − 36

25
yn +

16
25
yn−1 − 3

25
yn−2,

for q = 2,

yn+1 =
15
8
hfn+1 − 75

128
yn+2 +

225
128

yn − 25
128

yn−1 +
3

128
yn−2,

yn+2 =
12
23
hfn+2 +

192
115

yn+1 − 18
23
yn +

3
23
yn−1 − 2

115
yn−2,

for q = 10/19,

yn+1 =
1131
1292

hfn+1 − 14703
82688

yn+2 +
1279161
516800

yn − 183027
108800

yn−1 +
10469
27200

yn−2,

yn+2 =
1392
3095

hfn+2 +
89088
40235

yn+1 − 242208
77375

yn +
198911
77375

yn−1 − 658464
1005875

yn−2.

(2.5)

3. Implementation of 5oBBDF Method

It is commonly known that stiff ODEs codes must solve both nonlinear and linear systems
at each step of differentiation. This is due to implicity of the formulae for solving stiff IVPs.
Throughout this section, we illustrate the effect of Newton-type scheme to find the approx-
imation solutions of yn+1 and yn+2 simultaneously in every step. The general forms of the
5th-order BBDF method are

yn+1 = α1hfn+1 + θ1yn+2 + ψ1,

yn+2 = α1hfn+2 + θ1yn+1 + ψ2

(3.1)

with ψ1 and ψ2 are the back values. Equation (3.1) in matrix-vector form is equivalent to

(I −A)Yn+1,n+2 = hBFn+1,n+2 + ξn+1,n+2. (3.2)

By setting I =
[ 1 0
0 1

]
, Yn+1,n+2 =

[ yn+1
yn+2

]
, A =

[
0 θ1
θ2 0

]
, B =

[
α1 0
0 α2

]
, Fn+1,n+2 =

[
fn+1
fn+2

]
, and ξn+1,n+2 =

[ ψ1
ψ2

]
, (3.1) is simplified as

f̂n+1,n+2 = (I −A)Yn+1,n+2 − hBFn+1,n+2 − ξn+1,n+2 = 0. (3.3)
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Newton iteration is performed to the system f̂n+1,n+2 = 0, by taking the analogous form

Y
(i+1)
n+1,n+2 − Y

(i)
n+1,n+2 = −

[
(I −A) − hB ∂F

∂Y

(
Y

(i)
n+1,n+2

)]−1
(I −A)Y (i)

n+1,n+2 − hBF
(
Y

(i)
n+1,n+2

)
− ξn+1,n+2,

(3.4)

where Jn+1,n+2 = (∂F/∂Y)(Y (i)
n+1,n+2) is the Jacobian matrix of F with respect to Y . Equation

(3.4) is separated to three different matrices denoted as

E
(i+1)
1,2 = Y (i+1)

n+1,n+2 − Y
(i)
n+1,n+2, (3.5)

Â = (I −A) − hB ∂F
∂Y

(
Y

(i)
n+1,n+2

)
, (3.6)

B̂ = (I −A)Y (i)
n+1,n+2 − hBF

(
Y

(i)
n+1,n+2

)
− ξn+1,n+2. (3.7)

Two-stage Newton iteration is now introduced in order to find the approximate
solution to (1.1). Thus, the corresponding linear system to be solved is ÂE(i+1)

1,2 = B̂. According

to Jackson in [9], evaluating the Jacobian Jn+1,n+2 and LU factorization of Â require the most
computation time during the operations. As a result, two strategies which are based on the
step size are applied to ensure the efficiency of the method:

(i) no calculation of new matrices Â and B̂ if the step size h remains as previous step
size. Hence, there is no new calculation of the Jacobian matrix Jn+1,n+2,

(ii) the matrices Â and B̂ are updated with new evaluation of the Jacobian matrix
Jn+1,n+2 for every occurrence of changing step size.

As a result, this paper agrees with [10] that this method has a higher tendency
in saving computational time. Unlike most modern solvers that incorporated full Newton
iterations, 5oBBDF method offers refined strategy for reevaluating the Jacobian matrix
Jn+1,n+2.

3.1. Stability Conditions for 5oBBDF

In this section, we provide the conditions for the stability of 5oBBDF method as in (2.5). To
begin with, we include some definitions to support the practical criterion for a method to be
useful in solving ODEs.

Definition 3.1. A method is said to be zero stable if the roots of the polynomial ρ(z) = π(z, 0)
satisfy the condition z1 = 1 ≤ |z2|, z2 /= 1.

Definition 3.2. A method is said to be absolute stable in a region R for a given hλ if for that
hλ, all the roots rs of the stability polynomial π(r, hλ) = ρ(r) − hλσ(r) = 0 satisfy |rs| < 1,
s = 1, 2, . . . , k.

The stability polynomial, R(t, ĥ), associated with the method of (2.5) is given by
det(At2 − Bt − C), while the absolute stability region of this method in the hλ plane is
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Figure 2: Stability regions when q = 1, q = 2, and q = 10/19.

determined by solving det(At2 − Bt − C = 0). Below are the absolute stability regions in
the method of (2.5) for different step size selections: (q = 1) (q = 2) and (q = 10/19),
respectively,

R
(
t, ĥ

)
=
197
125

t4 − 42
25
t4h − 153

125
t3 − 9

25
t2 +

72
125

t4h2 − 252
125

t3h − 18
125

t2h +
1
125

t = 0,

R
(
t, ĥ

)
=
91
46
t4 − 441

184
t4h − 173

92
t3 − 289

2944
t2 +

45
46
t4h2 − 1155

736
t3h − 3

92
t2h +

1
2944

t = 0,

R
(
t, ĥ

)
=
1393273
999685

t4 − 5298909
3998740

t4h − 42149421
199937000

t3 − 544951521
420920000

t2 +
393588
999685

t4h2

− 1398292623
399874000

t3h − 753768
1315375

t2h +
47045881
420920000

t = 0.

(3.8)

To determine for zero stable, we substitute ĥ = hλ = 0 to (3.8). We will have the following eq-
uations for each step size selection mentioned previously:

197
125

t4 − 153
125

t3 − 9
25
t2 +

1
125

t = 0,

91
46
t4 − 173

92
t3 − 289

2944
t2 +

1
2944

t = 0,

1393273
999685

t4 − 42149421
199937000

t3 − 544951521
420920000

t2 +
47045881
420920000

t = 0.

(3.9)
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Hence, the roots for three different step size selections obtained by using Maple are listed
below

(1) t = −.24414201370, t = 0.02079175991, and t = 1,

(2) t = −0.052708171410, t = 0.003257621961, and t = 1,

(3) t = −0.93455113330, t = 0.08581158625, and t = 1.

Since all of the roots have modulus less than or equal to 1, the method (2.5)when (q = 1) (q =
2) and (q = 10/19) is zero stable.

The stability region was given by the set of points determined by the boundary t = eiθ,
0 ≤ θ ≤ 2π . The stability region is obtained by finding the region for which |t| < 1. Figure 2
shows the stability for the cases (q = 1) (q = 2) and (q = 10/19), respectively. The stability
regions lie outside the closed region for each case.

Based on Figure 2, the 5th-order BBDF possesses the region absolute stability, which
contains almost whole of the half-plane Re(hλ) < 0.

3.2. Choosing Step Size

The importance in choosing the step size is to achieve reduction in computation time and
number of iterations. Therefore, this paper proposed three basic strategies for the step size
selections. For each successful step, the step size remains constant (q = 1) or increased by a
factor of 1.9 (q = 10/19). Inversely, when a fail step occurs, the next step size will be halved of
the previous step size (q = 2). The user initially will have to provide an error tolerance limit,
TOL on any given step, and obtain the local truncation error (LTE) for each iteration. The LTE
is obtained from

LTE = y(k+1)
n+2 − y(k)

n+2, k = 4, (3.10)

where y(k+1)
n+2 is the (k + 1)th order method, and y(k)

n+2 is the kth order method.
The successful step is dependent on the condition LTE < TOL. If this condition fails,

the values of yn+1,yn+2 are rejected, and the current step is reiterated with step size selection
(q = 2). On the contrary, the step size increment for each successful step is defined as

hnew = c × hold ×
(
TOL
LTE

)1/p

. (3.11)

And if hnew > 1.9 × hold, then hnew = 1.9 × hold. Where c is the safety factor, p is the
order of the method, while hold and hnew are the step size from previous and current blocks,
respectively. In this paper, c is set to be 0.8.

4. MATLAB’s Stiff Numerical Solvers

MATLAB offers several numerical solvers to solve either stiff or nonstiff ordinary differential
equations. These built-in numerical solvers are capable in approximating solutions to almost
any system of differential equations [2]. As far as this paper is concerned, we are interested
in solving stiff ODEs. For comparison purposes, this paper considers only ode15s and
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ode23s. This is because both of the methods deal with stiff differential equations based on
backward differentiation formulas (BDFs) and on a modified Rosenbrock formula of order 2,
respectively. Therefore, a fair comparison is obtained, and the discussions are made easy.

5. Numerical Results

We carry out numerical experiments to compare the performance of the 5th-order BBDF
method with stiffODE solvers in MATLABmentioned above. Three sets of stiff test problems
aroused from problems in physics are tested for the purpose of elucidating the difference in
numerical results obtained. These test problems are performed under different conditions of
error tolerances—(a) 10−2, (b) 10−4, and (c) 10−6, and the error trend is defined by

Error =
∣∣yapproximate − yactual

∣∣. (5.1)

The test problems and solution are listed below

(1) basic circuit problem is

y′ = −20y + 24, y(0) = 0, 0 ≤ x ≤ 10, (5.2)

with solution y(x) = 6/5 − (6/5)e−20x,

(2) oscillatory problems in physics: Torsion spring oscillator with dry and viscous
friction [7]

y′
1 = 998y1 + 1998y2, y1(0) = 1, 0 ≤ x ≤ 10,

y′
2 = −999y1 − 1999y2, y2(0) = 2,

(5.3)

with solution

y1(x) = 2e−x − e−1000x,

y2(x) = −e−x + e−1000x,
(5.4)

eigenvalues, λ = −1, −1000,
(3) Physical problem [11] is

y′
1 = −20y1 − 0.25y2 − 19.75y3, y1(0) = 1, 0 ≤ x ≤ 10,

y′
2 = 20y1 − 20.25y2 + 0.25y3, y2(0) = 0,

y′
3 = 20y1 − 19.75y2 − 0.25y3, y3(0) = −1,

(5.5)
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Figure 3: Efficiency curves for problem (1.1).

with solution

y1(x) = 0.5
[
e−0.5x + e−20x(cos 20x + sin 20x)

]
,

y2(x) = 0.5
[
e−0.5x − e−20x(cos 20x − sin 20x)

]
,

y3(x) = −0.5
[
e−0.5x + e−20x(cos 20x − sin 20x)

]
,

(5.6)

eigenvalues, λ = −0.5, −20 ± 20i.

From Table 1, among the three methods tested, our method, 5oBBDF, requires the
shortest execution time for each given tolerance level. On top of that, this method also gives
the smallest maximum error and average error. From Figure 3, we can see that 5oBBDF gives
the lowest maximum error for every tolerance level. When we look at the convergence of
the methods compared in Figure 3, our method comparably converges faster with minimum
number of steps taken.

From Table 2, once again, 5oBBDF requires the shortest execution time for each given
tolerance level. From the error trends described in Figure 4, we can see that the maximum
errors for 5oBBDF are the smallest for each TOL as compared to ode15s and ode23s. So the
convergence of the method, 5oBBDF is found to converge fastest among the methods tested.

From Table 3, similarly, 5oBBDF gives the shortest execution time for each given
tolerance level. This method is also completed with lesser total steps except when TOL is 10−2.
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Figure 4: Efficiency curves for problem (2.1).

Table 1:Numerical results for problem (1.1).

TOL Method TS AVEE MAXE Time

10−2
5oBBDF 21 1.09720e − 005 7.3154e − 005 0.01067
ode15s 29 1.400e − 003 8.700e − 003 0.0313
ode23s 19 1.200e − 003 4.800e − 003 0.2813

10−4
5oBBDF 37 1.88948e − 007 9.1173e − 007 0.02234
ode15s 61 3.4444e − 005 1.7046e − 004 0.0313
ode23s 43 1.2509e − 004 2.7400e − 004 0.0156

10−6
5oBBDF 79 1.72338e − 009 8.8279e − 009 0.009139
ode15s 96 9.0543e − 007 2.7175e − 006 0.0469
ode23s 148 8.0523e − 006 1.3309e − 005 0.0313

Table 2:Numerical results for problem (2.1).

TOL Method STs AVEE MAXE Time

10−2
5oBBDF 27 3.02605e − 005 1.0244e − 004 0.011902
ode15s 38 3.100e − 003 1.760e − 002 0.0469
ode23s 23 2.300e − 003 7.300e − 003 0.1406

10−4
5oBBDF 57 3.15965e − 007 1.0632e − 006 0.064613
ode15s 90 4.3445e − 005 1.8659e − 004 0.0156
ode23s 68 1.9392e − 004 3.6837e − 004 0.0625

10−6
5oBBDF 147 2.10931e − 009 1.0440e − 008 0.009559
ode15s 162 8.3966e − 007 3.9569e − 006 0.0625
ode23s 288 9.9147e − 006 1.7039e − 005 0.0781
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Figure 5: Efficiency curves for problem (2.2).

Table 3:Numerical results for problem (2.2).

TOL Method TSs Average error MAXE Time

10−2
5oBBDF 24 3.16762e − 005 2.1568e − 004 0.01150
ode15s 34 1.090e − 002 1.090e − 002 0.0313
ode23s 21 1.004e − 003 6.400e − 003 0.0313

10−4
5oBBDF 48 4.39634e − 007 1.8652e − 006 0.033346
ode15s 71 5.7501e − 005 2.0274e − 004 0.0469
ode23s 55 1.3953e − 004 3.5375e − 004 0.0156

10−6
5oBBDF 127 1.41711e − 008 2.0629e − 009 0.009460
ode15s 140 8.3688e − 007 4.0059e − 006 0.0469
ode23s 233 7.2824e − 006 1.7023e − 005 0.1250

The error trends for all of the methods tested are depicted in Figure 5. The error trend shows
that 5oBBDF converged fastest with smallest maximum error for each TOL as compared to
ode15s and ode23s.

6. Conclusion

For all problems tested, it is proven that, the 5th-order variable step BBDF has outperformed
the ode15s and ode23s in terms of average errors as well as maximum errors. It also managed
to reduce the number of total steps taken in most of the cases especially when TOL is less
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than 10−2. When we tested the convergence of the methods compared in this paper, the error
trend worked as the identifier for the fastest error of the method approaches zero. Figures 3,
4, and 5 illustrate how fast the error of 5th-order variable step BBDF converged as compared
to the other two methods used. As a result, we found that this method converges fastest
for all problems tested. In terms of computation timewise, it gave lesser values for all of
the test problems. Therefore, we can conclude that the 5th-order variable step BBDF is one
compatible alternative solver for solving stiff ordinary differential equations which mostly
arise in engineering and applied sciences.

Abbreviations

TS: The total number of steps taken
TOL: The initial value for the local error estimate
MAXE: The maximum error
AVEE: The average error
METHOD: The method used
TIME: The total execution time (seconds)
5oBBDF: 5th-order variable step BBDF
e: Error for each point of approximations.
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