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A stereo similarity function based on local multi-model monogenic image feature descriptors
(LMFD) is proposed to match interest points and estimate disparity map for stereo images.
Local multi-model monogenic image features include local orientation and instantaneous phase
of the gray monogenic signal, local color phase of the color monogenic signal, and local mean
colors in the multiscale color monogenic signal framework. The gray monogenic signal, which is
the extension of analytic signal to gray level image using Dirac operator and Laplace equation,
consists of local amplitude, local orientation, and instantaneous phase of 2D image signal. The
color monogenic signal is the extension of monogenic signal to color image based on Clifford
algebras. The local color phase can be estimated by computing geometric product between the
color monogenic signal and a unit reference vector in RGB color space. Experiment results on the
synthetic and natural stereo images show the performance of the proposed approach.

1. Introduction

Shape and motion estimation from stereo images has been one of the core challenges in
computer vision for decades. The robust and accurate computation of stereo depth is
an important problem for many visual tasks such as machine vision, virtual reality,
robot navigation, simultaneous localization and mapping, depth measurements, and 3D
environment reconstruction. Most of conventional approaches, such as intensity-based or
correlation-based matching, feature-based matching, and matching function optimization
techniques, estimate the disparity only based on local intensity and feature between stereo
images so that the results may be susceptible to level shift, scaling, rotation, and noise [1, 2].

To overcome these drawbacks, we propose a new method for establishing spatial
correspondences between a pair of color images. Unlike classical stereo-matching method
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based on brightness constancy assumption and phase congruency constraint, we match fea-
ture points and estimate disparity map between stereo images based on a new local multi-
modal monogenic image feature descriptors in the Color Monogenic Signal framework [3, 4].
We firstly introduce the monogenic signal [5] of 2D gray level image using Dirac operator
and Laplace equation and extract local amplitude, local orientation, and instantaneous phase
information in multiscale space [6]. At the same time, the 2D monogenic signal is extended
to color image, and the color monogenic signal is introduced based on Clifford algebras. The
local color phase is estimated by computing geometric product between the color monogenic
signal and a unit reference vector in RGB color space with Clifford algebras [3, 4]. Then we
focus on defining new local multi-model monogenic image feature descriptors which contain
local geometric (local orientation), structure (instantaneous phase), and color (local color
phase and color values) information in the Color Monogenic Signal framework. Based on the
proposed image feature descriptors, a stereo similarity function between two primitives is
also defined to solve stereo correspondence problem. Finally, we test the performance of the
proposed approach on the synthetic and natural stereo images, and experiment results are
given in detail.

2. Monogenic Signal Analysis in Poisson Scale Space

2.1. Modeling 2D Image Signal

Based on the results of Fourier theory and functional analysis, we assume that each 2D signal
f ∈ L2(�) ∩ L1(�) can be locally modeled by a superposition of arbitrarily orientated one-
dimensional cosine waves [6]:
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with ∗ as the convolution operator and the orientation oν(x, y, s) = [cos θv(x, y, s), sin θv(x,
y, s)]T . Note that each cosine wave is determined with the same amplitude and phase
information. The Poisson convolution kernel reads
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For a certain scale space parameters s ∈ �+ , the Poisson kernel acts as a low pass filter on
the original signal f . The Poisson scale space is naturally related to the generalized Hilbert
transform by the Cauchy kernel. To filter a frequency interval of interest, the difference of
Poisson (DoP) kernel will be used in practice:

psf,sc
(
x, y
)
= psf

(
x, y
)
− psc

(
x, y
)

(2.3)

with sc > sf > 0 and sc as the coarse scale parameter and sf as the fine scale parameter. The
filtered signal is defined by convolution with the difference of Poisson kernel which will be
used to analyze the original with the DoP operator to consider only a small passband of the
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original signal spectrum. Without loss of generality the signal model in (2.1) degrades locally
at the origin (x, y) = (0, 0) of a local coordinate system to

fp
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n∑
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)
cosφ

(
x, y, s

)
. (2.4)

In case of image analysis lines, edges, junctions, and corners can be models in this way. The
signal processing task is now to determine the local amplitude a(x, y, s), the local orientation
θv(x, y, s), and the local phase φ(x, y, s) for a certain scale space parameter s and a
certain location (x, y). This problem has been already solved for one-dimensional signals
by the classical analysis [7] by means of the Hilbert transform [8] and for intrinsically
one-dimensional signals [9] by the two-dimensional monogenic signal by means of the
generalized first-order Hilbert transforms [10].

2.2. The Analytic Signal

Let s: � → � be a real-valued signal, and let f : � → �2,0 [3] be a vector-valued signal such
that f(x) = s(x)e2 [4]. The purpose is to construct a function fulfilling the Dirac equations
whose real part is real-valued signal. It is equivalent to find the solution of a boundary value
problem of the second kind (a Neumann problem):

Δu =
∂2u

∂x2 +
∂2u

∂y2 = 0, if y > 0,

e2
∂u

∂y
= f(x), if y = 0,

(2.5)

with D = e1(∂/∂x) + e2(∂/∂y) and Δ = D2.
The first equation in (2.5) is the 2D Laplace equation restricted to the open domain

y > 0. The second equation is called the boundary condition and the basis vector. e2 is
coherent with the embedding of complex functions as fields (the real part is embedded as
the e2-component). Using the fundamental solution of the 2D Laplace equation, the solution
of the problem leads to

fA
(
x, y
)
= p1 ∗ f

(
x, y
)
+ p1 ∗ h1 ∗ f

(
x, y
)
, (2.6)

where p1 = y/π(x2 + y2) is the 1D-Poisson kernel and h1 = (1/πx)e12 is the Hilbert kernel.
The variable y is a scale parameter, and, taking it equal to zero, the classical analytic signal
can be obtained.

2.3. Instantaneous Phase of the Monogenic Signal

Following the previous construction of the analytic signal, Michael Felsberg and Gerald
Sommer has proposed an extension to 2D signals and defined a monogenic signal which is
the combination of a gray image with its Riesz transform [5]. Let s : �2 → � be a real-valued
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signal and f : �2 → �3,0 a vector-valued signal, and {ei} (i = 1, 2, 3) is the orthonormal
basis of �3 such that f(x, y) = f3(x, y)e3. According to the 3D Laplace equation restricted to
the open half-space z > 0 and the boundary condition of the second kind, we can obtain the
monogenic signal as follows:
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where p2 = z/2π(x2 + y2 + z2)3/2 is a 2D Poisson kernel and hR = (hx, hy) = (xe1/2π(x2 +
y2)3/2, ye2/2π(x2+y2)3/2) is the Riesz kernel, extension on 2D of the Hilbert kernel, z is equal
to the scale space parameter s. Now let fM(x, y, s) = fp(x, y, s) + fx(x, y, s) + fy(x, y, s) and

fq(x, y, s) =
[
fx
fy

]
(x, y, s). In case of intrinsic dimension one signals (The intrinsic dimension

expresses the number of degrees of freedom necessary to describe local structure. Constant
signals without any structure are of intrinsic dimension zero (i0D), arbitrary orientated
straight lines and edges are of intrinsic dimension one (i1D), and all other possible patterns
such as corners and junctions are of intrinsic dimension two (i2D). In general i2D signals can
only be modeled by an infinite number of superimposed i1D signals.) (i.e., n = 1 in (2.1)), we
can obtain:
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where a(x, y, s), θ(x, y, s), and φ(x, y, s) represent the local amplitude, local orientation, and
instantaneous phase, respectively:
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However, we do not know the correct signal of the phase since it depends on the directional
sense of θ(x, y, s). The best possible solution is to project it onto (cos θ, sin θ) as
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2.4. Local Color Phase of the Color Monogenic Signal

In 2009, Demarcq et al. constructed a scale-space signal for color images seen as vectors in
�5,0 [4]. Let s : �2 → �

3 be a real-valued signal and f : �2 → �5,0 a vector-valued signal,
and {ei} (i = 1, 2, 3, 4, 5) is the orthonormal basis of �5 such that f(x1, x2) = f3(x1, x2)e3 +
f4(x1, x2)e4 + f5(x1, x2)e5. Then a color image is decomposed in the RGB space represented
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as the subspace spanned by {e3, e4, e5}. Now we need to find a function which is monogenic
and the e3-, e4- and e5-component, of which are the components r, g, and b, respectively.
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with D =
∑5

i=1 ei(∂/∂xi) and Δ = D2. A scale-space signal which has independent scales
in each component (f3, f4, f5) = (r, g, b) can be defined by splitting the problem into three
boundary value problems in �5,0 as follows:
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(2.12)

Each solution of the system in (2.12) leads to monogenic functions S1, S2, S3: they
satisfy the Dirac equation in each subspace Ei = span{e1, e2, ei} (i = 3, 4, 5) and consequently
the Dirac equation in �5,0(DSi = 0). Let fC = S1 + S2 + S3, then fC is still monogenic in �5,0

(i.e., DfC = 0) and satisfies the boundary conditions. So the scale-space color monogenic
signal can be obtained by using the Dirac operator and the Laplace equation as follows:
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where pi2 = xi/(2π(x2
1 + x

2
2 + x

2
i )

3/2) (i = 3, 4, 5) is a 2D Poisson kernel and hR = (hx, hy) is the
Riesz kernel. As for the analytic or monogenic signal, a color image f can be represented in
terms of local amplitude and local phase. Now our proposal is to use the geometric product
in order to compare two vectors in �5,0 .

In the Clifford algebra of the Euclidean vector space �n , the product of two vectors a
and b, embedded in �n,0 , is given by [3, 4]

ab = a · b + a ∧ b, (2.14)

where a · b is the inner product and a ∧ b, the wedge product of a and b, is a bivector. This
product is usually called the geometric product of a and b. The inner product is symmetric,
and the wedge product is skew symmetric. If V = ue1 + ve2 + ae3 + be4 + ce5 ∈ R5,0 is
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a chosen vector containing structure information (u, v) and color information (r, g, b), then
the geometric product of fC and V can be given by

fCV = fC · V + fC ∧ V =
〈
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〉
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2
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where 〈·〉0 denotes the scalar part, 〈·〉2 the bivector part, and | · | the magnitude of the bivector
part [6]. According to Clifford algebras, the geometric product reveals the relationship
between bivectors and complex numbers [3]. This means that we can form the equivalent
of a complex number, fCV = 〈fCV 〉0 + i|〈fCV 〉2|, by combining a scalar and a unit bivector.
The local color phase can be computed as follows:
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〉
0

)

. (2.16)

This phase describes the angular distance between fC and a given vector V in R5,0, that
is, it gives a correlation measure between a pixel fitted with color and structure information
and a vector containing chosen color and structure.

3. Local Multi-Model Monogenic Image Feature Descriptors

We make use of a visual representation [11] which is motivated by feature processing in the
human visual system and define new local multi-model monogenic image descriptors which
give an explicit and condensed representation of the local image signal as follows:

ε =
(
X, φ̂, ϕc, C

)
. (3.1)

In fact, this representation performs a considerable condensation of information in a local
image patch of n × n (n ∈ �

+ , n > 1) pixels. The symbol X = (x, y) represents central
coordinates of the local image patch, φ̂ is the instantaneous phase of the gray monogenic
signal, ϕc is the local color phase, and C = (r, g, b) is the color values in RGB color space.

Based on the local multi-model image feature descriptors, a stereo similarity function
between two primitives is the weighted sum of squared differences of instantaneous phase,
local color phase, and color vector for a pair of stereo images in the local patch:

e(εl, εr) = αdφ
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i
r

)
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(3.2)

where l, r represent the left and right images, respectively, dφ ∈ [0, π) is the distance
measurement of instantaneous phase φ ∈ [−π, π), dϕ ∈ [0, π] is the distance measurement
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of local color phase ϕc ∈ [0, π], and dc ∈ [0,
√

3] is the distance measurement of color vector
with C ∈ [0, 1]× [0, 1]× [0, 1] and cR + cG + cB = 1 in RGB color space. The symbols α, β, γ are
weighted coefficients with α, β ∈ [0, 1] and γ ∈ [0, 0.5]. In order to achieve a better coherence
with the real scene, we use an adaptive support-weight technique in the local patch [12]. The
support weight for each pixel in the window is calculated based on the Gestalt Principles,
which state that the grouping of pixels should be based on spatial proximity and chromatic
similarity. The original formula proposed is given as follows [13]:

w
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where (xl, yl) and (xr , yr) are the pixel of interest in left and right images, (m,n) is the pixel
offset within the local window, w(x, y,m, n) represents the weight of neighboring pixel (x +
m,y + n), Δcx,y,m,n is the color difference between pixel (x, y) and (x + m,y + n), Δqx,y,m,n
is the Euclidean distance between pixel (x, y) and (x +m,y + n), γc and γg are user defined
parameters and, E(xl, yl, xr , yr) is the aggregated cost between pixel (xl, yl) in the left image
and (xr, yr) in the right image.

In the proposed feature descriptors, there are several merits. Firstly, the instantaneous
phase contains local orientation (or geometric information) and information about contrast
transition so that it describes an intrinsically one-dimensional structure in a grey level image,
that is, an image structure that is dominated by one orientation. Examples of different contrast
transitions are a dark/bright (bright/dark) edge or a bright (dark) line on dark (bright)
background. Of course, there is a continuum between these different grey level structures.
The instantaneous phase as an additional feature allows us to take this information into
account (as one parameter in addition to orientation) in a compact way [11]. Secondly, local
color phase describes the angular distance between color monogenic signal fc of color image
and a given color vector V in R5,0 and gives a correlation measure between a pixel fitted
with color and structure information and a vector containing chosen color and structure [14].
Finally, the color vector indicates the mean color structure of local image because color is
also an important cue to improve stereo matching. Because the stereo similarity function
with the local multi-model feature descriptors contains local geometric, structure, and color
information, it is much more robust against noise and brightness change than others in
feature matching and 3D reconstruction.

4. Experimentation Results

Once the similarity function is given, minimization process can be performed to find the
optimal disparity. In order to reduce noise sensitivity and simultaneously achieve higher
efficiency, the multiscale space and a winner-take-all technique are employed to optimize
the disparity map for stereo matching. We test the performance of the proposed local multi-
model feature descriptors and similarity function on the synthetic and natural stereo images.
On the first step, we estimate and compare the disparity maps of a pair of synthetic images
using each of three distance measurement and the proposed stereo similarity function. On the
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(a) (b) (c)

Figure 1: Stereo pair of Cloth1. (a) Left image, (b) right image, and (c) ground disparity map.
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Figure 2: The instantaneous phase maps. (a) First scale, (b) second scale, and (c) third scale.

second step, we reconstruct 3D shape and appearance of natural object and scene combing
the proposed stereo similarity function and multiview stereo technique [15].

4.1. Disparity Estimation Experiment

In the first experiment, we chose a pair of color images (cloth1) from the website [16]; the left
image, right image, and ground disparity map of the stereo pair are showed in Figures 1(a)–
1(c), respectively.

Firstly, the left and right color images are converted to gray level image. The gray
monogenic signals with s = 3 scales are computed, and the instantaneous phases are
estimated for both gray images in Poisson scale space. Figure 2 show three instantaneous
phase maps of the left image. At the same time, the scale-space color monogenic signals with
s = 3 scales are computed, and a chosen reference vector V = (e3 + e4 + e5)/

√
3 with local

geometric structure (u, v) = (0, 0) and a unit vector (a, b, c) = (1, 1, 1)/
√

3 in RGB color
space are used to estimate the local color phase for both images [14]. Figure 3 also shows
three color phase maps of the left image.

Secondly, the proposed stereo similarity function based on local multi-model mono-
genic image descriptors is employed to compute the weighted sum of squared differences of
instantaneous phase, local color phase, and color vector. The scale-space color monogenic
framework [14] and a local optimization technique [17] are employed to optimize the
disparity map according to the adaptive support-weight cost aggregation as in (3.4). In the
scale space, the disparity field at the coarser scale is used as starting guesses for estimation
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Figure 3: Local-color-phase maps. (a) First scale, (b) second scale, and (c) third scale.

(a) (b)

(c) (d)

Figure 4: Experiment results for disparity estimation with the different weighted coefficients. (a) α = 0, β =
0, γ = 0.5; (b) α = 1, β = 0, γ = 0; (c) α = 0, β = 1, γ = 0; (d) α = 1, β = 1, γ = 0.5.

at the next finer scale, then a subpixel disparity can be obtained. For example, we estimate
the disparity map at the third scale using the cost function (3.2) and (3.4). The disparities at
the third scale directly subtending the second scale under scrutiny are all used as candidate
starting guesses. The candidate leading to best match is accepted for the regularization step.
Estimation proceeds in this fashion, decrementing scale from coarser to finer, with matching
following by regularization, until the finest level of detail is reached. Figure 4 shows the dense
disparity map based on the proposed algorithm. Figures 4(a)–4(d) show four estimated
disparity maps with the different weighted coefficients (α, β, γ).

Thirdly, a comparison is performed to further validate the claims about the perfor-
mance of the proposed algorithm. This comparison is performed between the proposed
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Table 1: The comparison of the estimated disparity with the different algorithms.

Algorithms

The selected algorithms The proposed algorithms

SAD SSD GC CWT DWT QWT
α = 0 α = 1 α = 0 α = 1
β = 0 β = 0 β = 1 β = 1
γ = 0.5 γ = 0 γ = 0 γ = 0.5

RMSE 4.23 3.78 2.25 2.69 3.17 2.53 3.24 2.61 1.98 1.82
PBD 0.37 0.31 0.15 0.19 0.29 0.18 0.30 0.20 0.13 0.09

algorithm and a number of selected algorithms from the literature, which are Sum of Absolute
Differences (SAD) [18], Sum of Squared Differences (SSD) [18], Graph Cuts (GC) [18],
Discrete Wavelet (DWT) [19], Complex Discrete Wavelet (CWT) [19], and Quaternion
Wavelet (QWT) [20]. To create a better understanding of the comparison, statistic root mean
square error (RMSE) and percent-age of bad disparities (PBD) are calculated as [19]

RMSE =

√√
√
√ 1
N

∑

i,j

∣∣dE
(
i, j
)
− dG

(
i, j
)∣∣2,

PBD =
1
N

∑

i,j

∣∣dE
(
i, j
)
− dG

(
i, j
)∣∣ > ζ,

(4.1)

where dE and dG are the estimated and ground truth disparity maps and N is the total
number of pixels in an image, whereas ζ represents the disparity error tolerance. The statistics
RMSE and PBD related to all of the above algorithms is presented in Table 1. As it can be seen
in Table 1, the proposed algorithms with the weighted coefficients α = 1, β = 1, γ = 0.5 obtain
better results (RMSE = 1.82 and PDB = 0.09) than others.

4.2. The Robustness against Noise and Brightness

Now we aim to investigate the robustness of the proposed approach against noise and bright-
ness change. In a first step, Gaussian noises with σ = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 are
added to both color images, respectively, and the disparity maps are estimated using the
proposed method with four different weighted coefficients. The statistic root mean square
error (RMSE) and percentage of bad disparities (PBD) for each disparity map with
noise also are calculated using (4.1). In a second step, the brightness values with I =
−30, −20, −10, 10, 20, 30 are added to the right image. We also compute the disparity maps,
RMSE and PBD, with four different weighted coefficients. The experiment results in Table 2
show that the proposed approach with = 1,β = 1, γ = 0.5 are insusceptible to noise and
brightness change.

4.3. 3D Reconstruction Experimentation

In the last experiment, the proposed approach is used to reconstruct a set of oriented points
for 3D natural scenes by multiview stereopsis. We firstly captured stereo images with the
size of 1024× 768 around 3D object and scene (a static color paper cup and a deforming color
texture paper) under the condition of natural light by two color cameras (AVT Guppy F146C).
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Table 2: Experiment results for testing robustness against noise and brightness change.

Noise/brightness
change

α = 0, β = 0, γ = 0.5 α = 1, β = 0, γ = 0 α = 0, β = 1, γ = 0 α = 1, β = 1, γ = 0.5

RMSE PBD RMSE PBD RMSE PBD RMSE PBD

None 3.24 0.30 2.61 0.20 1.98 0.13 1.82 0.09

σ = 0.05 3.46 0.34 2.73 0.22 1.99 0.14 1.89 0.10

σ = 0.10 3.73 0.37 2.89 0.24 2.13 0.15 1.96 0.11

σ = 0.15 3.98 0.41 2.99 0.26 2.18 0.16 2.04 0.12

σ = 0.20 4.41 0.46 3.17 0.28 2.29 0.18 2.12 0.13

σ = 0.25 5.09 0.51 3.29 0.31 2.41 0.20 2.19 0.15

σ = 0.30 6.12 0.59 3.50 0.35 2.53 0.22 2.26 0.18

I = −30 6.47 0.62 2.86 0.28 2.30 0.19 2.07 0.14

I = −20 5.35 0.54 2.67 0.25 2.12 0.16 1.96 0.12

I = −10 4.05 0.41 2.43 0.23 1.97 0.14 1.89 0.10

I = 10 4.02 0.39 2.39 0.22 1.96 0.13 1.86 0.10

I = 20 5.10 0.49 2.46 0.24 2.14 0.15 1.94 0.11

I = 30 6.59 0.61 2.72 0.27 2.27 0.18 2.09 0.14

We also calibrate the intrinsic and external parameters for all of cameras and images and
estimated the corresponding epipolar lines among images. Feature points for all images are
detected by using Speeded-Up Robust Features (SURF) with blob response threshold of 1000
[21] and are matched by using the corresponding epipolar constraints and the proposed
similarity function with α = 1, β = 1, γ = 0.5 in (3.2) and (3.4). According to these init matched
feature points, we reconstruct a set of 3D sparse oriented points for object and scene similar to
multiview stereopsis in [15]. Then we expand and filter it to a set of robust 3D dense oriented
points with each image cell of 2 × 2 pixels and reconstruct. We reconstruct three-dimensional
surface of the object. For the static color paper cup, we capture 16 images and reconstruct the
3D dense oriented points and shape. In Figure 5, there are the captured images, the 3D dense
oriented points, and three-dimensional surface at the 1st, 7th, and 13th view, respectively. For
the deforming color texture paper, we capture the stereo sequence using two cameras at the
rate of 7 frames each second and reconstruct the time-varying 3D shape and motion. Figure 6
shows the captured image of one camera and the time-varying 3D shape at the 0th, 20th, 40th,
80th, and 100th frames.

To further validate the performance of the proposed method, a new set of 3D dense
patches for the static color paper cup also is reconstructed by the SSD-based photometric
discrepancy function in [15]. And, for both algorithms, we calculated the mean feature points
(MFP) and percentage of bad disparities (PBD) of each image, the number of 3D oriented
points at the init matching (MAT 3D), expanding (EXP 3D) and filtering (FIL 3D) stages,
and the percentage of image cells not to be reconstructed (PNR). Statistical results are shown
in Table 3.

5. Conclusions

In the paper, we propose a stereo similarity function based on local multi-model monogenic
image feature descriptors to solve stereo-matching problem. Local multi-model monogenic
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Figure 5: The 3D dense oriented points reconstruction for the color paper cup. (a)–(c) The captured images,
(d)–(f) the 3D dense oriented points, and (g)–(i) the three-dimensional surface at the 1st, 7th, and 13th
view.

Table 3: Experiment results for matching features and reconstructed 3D oriented points.

Algorithm MFP PBD MAT 3D EXP 3D FIL 3D PNR
The proposed method 1632 0.18 4699 102417 99336 7.26%
SSD-based 1632 0.38 3578 8796 8169 16.32%

image features include local orientation and instantaneous phase of the gray monogenic
signal, local color phase of the color monogenic signal, and local mean colors in the multiscale
color monogenic signal framework. The gray monogenic signal, which is the extension of
analytic signal to gray level image using Dirac operator and Laplace equation, consists of
local amplitude, local orientation, and instantaneous phase of 2D image signal. The color
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Figure 6: The time-varying shape and motion estimation for the color texture paper. (a)–(f) The captured
images and (g)–(l) the three-dimensional surface at the 0th, 20th, 40th, 60th, 80th, and 100th frames.

monogenic signal is the extension of monogenic signal to color image based on Clifford
algebras. The local color phase can be estimated by computing geometric product between
the color monogenic signal and a unit reference vector in RGB color space. Experiment results
on the synthetic and natural stereo images show the performance of the proposed approach.
But there is a shortcoming that the proposed method needs much more run time and storage
space. So we will be devoted to improving the efficiency and evaluating the proposed method
in the future work.
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